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abstract: Traditional conservation biology regards environmental

fluctuations as detrimental to persistence, reducing long-term average

growth rates and increasing the probability of extinction. By contrast,

coexistence models from community ecology suggest that for species

with dormancy, environmental fluctuations may be essential for per-

sistence in competitive communities. We used models based on Cal-

ifornia grasslands to examine the influence of interannual fluctua-

tions in the environment on the persistence of rare forbs competing

with exotic grasses. Despite grasses and forbs independently pos-

sessing high fecundity in the same types of years, interspecific dif-

ferences in germination biology and dormancy caused the rare forb

to benefit from variation in the environment. Owing to the buildup

of grass competitors, consecutive favorable years proved highly det-

rimental to forb persistence. Consequently, negative temporal au-

tocorrelation, a low probability of a favorable year, and high variation

in year quality all benefited the forb. In addition, the litter produced

by grasses in a previously favorable year benefited forb persistence

by inhibiting its germination into highly competitive grass environ-

ments. We conclude that contrary to conventional predictions of

conservation and population biology, yearly fluctuations in climate

may be essential for the persistence of rare species in invaded habitats.
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Growing concerns over the persistence of threatened and

endangered species have rekindled interest in one of the

classic problems in ecology: how rare species persist

(Griggs 1940; Roughgarden 1975; Harper 1981; Leigh

1981; Grubb 1986). Motivating interest in this problem is

the expectation that rare species, with their small popu-

lations, are vulnerable to extinction from the natural var-

iability ubiquitous in ecological systems. A large literature

in conservation biology examines how environmental sto-

chasticity threatens rare species persistence (Leigh 1981;

Lande 1988; Boyce 1992; Menges 2000). Because of the

geometric nature of population growth, variation in de-

mographic parameters reduces long-term average growth

rates and increases the probability of extinction (Tulja-

purkar 1990; Boyce 1992; Menges 1998, 2000).

In contrast to this well-accepted principle in conser-

vation biology, a very different prediction concerning the

effects of environmental variability emerges from theory

in community ecology (Higgins et al. 2000). In what are

often called “storage effect” models (Chesson 1982, 1990,

1994; Ellner 1984, 1987; Chesson and Huntly 1989; Rees

and Long 1992), temporal variation in the environment

is essential to the coexistence of species. In these models,

different species benefit from different types of years and

have some mechanism for storing the benefits of favorable

years, such as seed banks or long-lived adults. Coexistence

is determined using invasibility conditions, meaning all

species increase when rare in stochastic environments with

their competitors at equilibrium. Thus, model predictions

directly concern rare species persistence (Higgins et al.

2000) and are contradictory to predictions from more sim-

ple population viability models.

Several differences between the conservation biology

and community ecology approaches to the effects of en-

vironmental fluctuations could explain the disparate re-

sults. Among the most obvious is the shift from a single

species to a more complex multispecies dynamical system.

In this context, storage effect models do not dispute the

mathematical arguments underlying negative effects of sto-

chasticity on geometric population growth (Efford 2001).

Rather, they suggest that in more complex systems, where
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there are species-specific responses to variation in the en-

vironment and competition, environmental stochasticity

may favor persistence. This is a significant realization be-

cause the importance of incorporating the dynamics of the

surrounding community in population viability analyses

remains unclear. Although some studies have argued that

building multispecies models may be important for un-

derstanding the viability of strongly interacting popula-

tions (Boyce 1992), few have done so. This is not to say

that current approaches ignore species interactions, be-

cause single species models parameterized in the field may

implicitly include processes such as competition. For ex-

ample, without competition from the surrounding com-

munity, vital rates measured in the field would otherwise

be greater. However, storage effect models suggest that

when the focal species and the surrounding community

respond differently to variation in the environment and

when this is explicitly modeled, very different predictions

concerning the effects of environmental fluctuations on

persistence may emerge.

One major life-history process causing plant species to

differ in their response to the environment is their seed

dormancy and germination biology (Ellner 1984, 1987;

Chesson 1990; Rees and Long 1992). Species possess wide

variation in germination rates, germination cues, and seed

longevity (Rees and Long 1992; Baskin and Baskin 2001).

Thus, dormancy and germination biology are almost cer-

tain to strongly influence whether temporal variability fa-

vors or inhibits persistence. Unfortunately, seed vital rates

can be difficult to measure (Pavlik et al. 1993; Doak et al.

2002), and our understanding of how seed banks influence

rare plant population dynamics is just developing (Doak

et al. 2002). With limited empirical evidence, models pro-

vide an excellent opportunity to explore how seed banks

modulate the effects of variability on persistence in mul-

tispecies systems. In addition, despite the large literature

on coexistence achieved through differences in germina-

tion (Ellner 1984, 1987; Chesson 1990), this work has yet

to be applied to the persistence of rare plant populations

(Higgins et al. 2000).

In this article, we explore models based on annual

plant–dominated grasslands of California to ask how tem-

poral variation in the environment influences rare plant

persistence in competitive systems. We first summarize

existing knowledge about plant life histories in the study

system and then use models to show that temporal vari-

ability should positively affect the persistence of rare an-

nuals with seedbanks in these grasslands. This prediction

is analogous to those from storage effect models but arises

from the basic biology of the system. Importantly, rather

than species specializing in different types of years as is

typical in storage effect models, we demonstrate a novel

mechanism for persistence, where specialization occurs on

different sequences of year types. We use these results to

explore the systems in which population viability models

must incorporate the dynamics of the surrounding com-

munity to accurately assess the effects of environmental

variability.

Study System

California grasslands provide ideal systems for examining

the research question because they contain a diversity of

rare annual plants persisting in a climatically variable hab-

itat dominated by exotic annual grasses (Heady et al.

1977). The annual nature of the system facilitates the de-

velopment of mathematical models that reasonably ap-

proximate population dynamics (Levine and Rees 2002).

In addition, a large body of empirical work examines the

processes important for the structure of these systems,

providing reasonable parameters for our models.

California’s Mediterranean climate is characterized by

a cool rainy season from winter through spring, followed

by a summer drought through early fall. The timing and

quantity of rainfall varies tremendously from year to year

(Heady et al. 1977). Most regions experience four- to five-

fold variation in total annual precipitation over a period

of several decades (Schonher and Nicholson 1989; Haston

and Michaelsen 1997). Years also differ markedly in the

timing of rainfall, and midseason droughts, for example,

can cause high seedling mortality (Young et al. 1981).

Parallel to these climatic fluctuations is large interannual

variation in the abundance of California grassland annuals

(Talbot et al. 1939; Heady 1958). Most species germinate

with the first major rains in fall or winter and senesce after

the rains end in late spring. Water is the dominant limiting

resource in these systems, and numerous studies have cor-

related variation in grassland composition and production

with variability in precipitation (Murphy 1970; Duncan

and Woodmansee 1975; Pitt and Heady 1978; Young et al.

1981). In large part, the temporal variability of these grass-

lands and their sensitivity to climatic fluctuations relate to

the annual life history of the common grasses, nearly all

of which are exotic. European annual grasses in the genera

Bromus, Avena, and Hordeum now dominate a habitat once

covered by native bunchgrasses and to a lesser extent

shrubs. Numerous studies have documented the ability of

the exotic grasses to uptake water at shallow depths in the

soil and shade their competitors (Holmes and Rice 1996;

Dyer and Rice 1997; Brown and Rice 2000; Carlsen et al.

2000). In fact, their invasion is thought to have driven a

large decline in native annuals (Heady et al. 1977; Dyer

and Rice 1997).

Existing within this fluctuating habitat are a wide di-

versity of annual forbs (nonleguminous dicots), many of

which are listed as rare and endangered by the California
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Native Plant Society. Among the factors believed to

threaten these species, the most prominent include the

surrounding community of exotic annual grasses and in-

terannual variation in rainfall (Hobbs and Huenneke 1992;

Pavlik et al. 1993; Carlsen et al. 2000; Parsons and Whel-

chel 2000; Seabloom et al. 2003). Nonetheless, even with

a potentially reduced range and population size, many

native annuals have persisted with exotic grasses since their

invasion in the mid-1800s. The effect of interannual fluc-

tuations in the environment on this persistence remains

poorly understood.

One of the major advantages the rare annual forbs might

have in their battle for persistence with exotic grasses is

that the forbs often have well-developed seed banks while

the grasses do not. Dormancy is a common feature of

winter annual dicots in general and documented specifi-

cally for several California forbs (Rice 1985; Pavlik et al.

1993; Vivrette 1999). It is particularly well represented in

the genera that dominate the California native annual forb

flora (Pavlik et al. 1993; Bertiller 1998; Vivrette 1999; Bas-

kin and Baskin 2001; Cavieres and Arroyo 2001; N. Huntly

and P. Chesson, unpublished manuscript) and is further

suggested by population dynamic observations where spe-

cies virtually disappear in some years, only to return to

large numbers in subsequent years (K. McEachern, un-

published data). In contrast to the forbs, the exotic grasses,

like grasses in general, have little between-year dormancy.

The most common species have flexible germination re-

quirements and germinate nearly all their seeds each grow-

ing season (Marshall and Jain 1970; Bartolome 1979; Wu

and Jain 1979; Roberts 1981; Young et al. 1981; Jain 1982;

Ewing and Menke 1983; Pavlik et al. 1993).

Annual Plant Population Models

To model the population dynamics of a rare annual forb

with a seed bank, we begin with the population model

developed by Watkinson (1980), Pacala (1986), and Rees

and Long (1992):

lgFt
F p (1 � g)(1 � d)F � , (1)t�1 t

c � gFt

where Ft is the number of seeds in an annual forb pop-

ulation at the beginning of the growing season of year t

prior to germination, g is the fraction of seeds that ger-

minate, d is the death rate of ungerminated seeds in the

soil, and l is the number of seeds produced per individual

in the absence of intraspecific competition that survive to

the start of the growing season; c is a constant influencing

the rate at which seed production changes with density

and is usually set equal to 1 (Watkinson 1980; Pacala 1986;

Ellner 1987; Chesson 1990; Levine and Rees 2002). The

first part of the sum is the number of seeds that carry over

in the seed bank—those that do not germinate or die. The

second part is the number of seeds added through ger-

mination and then reproduction divided by intraspecific

competition (the competition ). In con-coefficient p 1

trast to the age-structured matrix model approach of Kalisz

and McPeek (1993), this model makes the simplifying as-

sumption of constant seed mortality rates but has the

added complexity of density-dependent seed production.

A two-species competition model including a forb (Ft)

and a grass (Gt) follows from model (1) (Ellner 1984;

Pacala 1986; Chesson 1990; Venable et al. 1993; Rees and

Westoby 1997; all examine similar models):

l g FF F t
F p (1 � g )(1 � d )F � , (2)t�1 F F t

c � g F � a g GF t FG G t

l g GG G t
G p (1 � g )(1 � d )G � , (3)t�1 G G t

c � g G � a g FG t GF F t

where and are the competition coefficients for grassa aFG GF

effects on the forb and forb effects on the grass, and the

F and G subscripts denote the forb and grass-specific de-

mographic rates. More complex than in model (1), com-

petition in this model includes both intra- and interspecific

effects. This model forms the basis on which our simu-

lations and analyses are developed.

Persistence in Variable Environments

We examine the persistence of the forb in the most basic

variable environment, one with simply favorable and un-

favorable years (Ellner 1984; Chesson 1990; Venable et al.

1993). With respect to California grassland systems, fa-

vorable years might correspond to years of high rainfall

and unfavorable years to drought years. The specific rain-

fall pattern that makes for favorable and unfavorable years

in California grasslands can be quite complex (Talbot et

al. 1939; Heady 1958; Pitt and Heady 1978), but our model

merely requires variability in year quality and does not

specify its cause. Year quality influences dynamics via its

effects on germination and fecundity. Thus, in an envi-

ronment varying between years that are favorable (�) and

unfavorable (�) for these species, germination and fe-

cundity vary between g
�

and l
�

and g
�

and l
�

.

The existing literature on California grasslands permits

us to explore model simulations with parameters that are

generally reasonable for grasses and forbs in these systems.

Nonetheless, the different forbs and grasses that make up

these communities encompass a diversity of demographic

rates that cannot be represented by a single set of param-

eter combinations. Moreover, some parameters, such as

those involving the seed bank, are necessarily speculative.
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Thus, our approach is to use simulations to introduce the

effects of variability on forb persistence in the California

grassland environment and then use analytical solutions

to explore the wider behavior of the model. All simulations

were conducted in R version 1.8 (R Development Core

Team 2003), and the code is available in the appendix in

the online edition of the American Naturalist.

Simulations

Our model focuses specifically on those forbs with long-

lived seeds, and thus we assign their annual seed mortality

in the soil, . We assign the competition coefficientd p 0.1F

for grass effects on the forb, , and following ana p 2FG

assumption of reciprocal competition, . Witha p 0.5GF

these values, the per capita grass effect on the forb is four

times as great as the reverse effect, giving the grass a sig-

nificant competitive advantage, as documented in the lit-

erature (Talbot et al. 1939; Heady et al. 1977; Holmes and

Rice 1996; Carlsen et al. 2000). Following demographic

data collected for several California rare annual forbs and

exotic grasses in years of differing rainfall (Bartolome 1979;

Young et al. 1981; L. Fox, unpublished data; K. McEachern,

unpublished data), we assume that both the grass and the

forb produce six times the seed in favorable years as com-

pared with unfavorable years ( , ).l p 30 l p 5
� �

Our model applies to forbs that germinate most seeds

in favorable (wet) years ( ) and few seeds in un-g p 0.7F�

favorable (dry) years ( ). By contrast, we assumeg p 0.1F�

that the grass competitor germinates 90% of its seed in

all years ( ; Marshall and Jain 1970; Bar-g p g p 0.9G� G�

tolome 1979; Wu and Jain 1979; Roberts 1981; Young et

al. 1981; Pavlik et al. 1993). Grass seed mortality in the

soil is assumed to be much greater than that of the forb

( ), resulting in little interannual grass carryoverd p 0.7G

of seed, as demonstrated by numerous authors (Bartolome

1979; Roberts 1981; Young et al. 1981; Ewing and Menke

1983; Pavlik et al. 1993).

Simulating the model in equations (2) and (3) with the

above parameters shows that the forb persists with the

exotic grass in the simplest variable environment, one in

which favorable and unfavorable years occur indepen-

dently at random with an equal probability (fig. 1A). The

grass, however, dominates. Grass density ( SDmean � 1

of density over 500,000 ) is moreyears p 13.41 � 9.51

than twice as great as that of the forb ( ). More-6.29 � 5.08

over, if we look specifically at the germinated fraction of

both species (fig. 1B) or what we would measure in veg-

etation sampling, aboveground grass density (12.07 �

) is almost five times greater than that of the forb8.56

( ). This is consistent in a general sense with2.52 � 3.17

field observations of California grasslands where forbs are

sparse within the grass matrix (Dyer and Rice 1997). Den-

sity can be regarded as being measured over a -10 # 10

cm plot, roughly the area occupied by a single individual

in the absence of competition.

By comparing the variable environment results in figure

1A to those in constant environments (fig. 1C–1E), it is

apparent that environmental fluctuations are key to forb

persistence. The forb quickly drops to a density near 0 in

a constantly favorable (fig. 1C), constantly unfavorable

(fig. 1D), or constantly intermediate environment (fig. 1E).

These positive effects of temporal variability are not the

inevitable outcome of examining a two-competitor model

in a stochastic environment. Chesson and Huntly (1989)

and Chesson (1994) explain that depending on the co-

variance between the environment and competition, var-

iability can have a positive, negative, or zero effect on

coexistence in models like the one examined here. Thus,

it is the specific traits of the forb and grass and their

response to the environment that underlie our results.

The simulation results also provide clues as to why an-

nual climate fluctuations favor forb persistence. During

unfavorable years, as seen from years 19–25 in figure 1A,

the forb germinates only a small fraction of its seeds and

thus declines gradually. If this continues for many years,

as seen in the constantly unfavorable environment (fig.

1D), the forb goes extinct. More severe declines are ob-

served during consecutive favorable years, as seen in years

37–42. This is because favorable years allow grass popu-

lations to build (fig. 1A, years 37–42). Thus, in consecutive

favorable years, the forb is germinating most of its seed

into highly competitive grass environments. This intense

grass competition prevents the forb from persisting in con-

stantly favorable (fig. 1C) or intermediate (fig. 1E)

environments.

In contrast, the forb increases in the first favorable year

after an unfavorable year. Poor grass seed production in

the previous unfavorable year, coupled with little seed

bank, keeps grass density low in the current year, even if

favorable. This gives forbs the opportunity to exploit the

favorable conditions with relatively little grass competi-

tion. Thus, forb populations build when the environment

fluctuates between favorable and unfavorable years, as can

be seen in years 83–90 and to a lesser extent in years 2–

7 in figure 1A. In sum, though the forb goes extinct in a

constantly favorable or unfavorable environment, it per-

sists in an environment that fluctuates between these states

by exploiting favorable years after unfavorable years.

Invasion Condition

The simulations suggest that environmental fluctuations

may benefit the persistence of a rare forb with a seed bank

in this grassland system. To examine how different de-

mographic parameters and variable environments influ-



Figure 1: Simulations of a forb and grass competition model (eqq. [2], [3]) based on California grasslands. A, Density (germinated and ungerminated

seed) in a variable environment with an equal probability of favorable and unfavorable years and no temporal autocorrelation. B, Same simulation

as in A, except only the germinated fraction of the populations are shown. By contrast to persistence in A and B, the forb declines toward 0 in

constantly favorable (C) and unfavorable (D) environments. In all these simulations, both the grass and the forb produce six times the seed in

favorable years as compared with unfavorable years ( , ). Species differ in that the forb has a long-lived seed bank ( ) andl p 30 l p 5 d p 0.1
� � F

germinates most of its seed in favorable years ( ) and little in unfavorable years ( ). In contrast, the grass germinates nearly allg p 0.7 g p 0.1F� F�

its seed in all years ( ) and has low seed longevity ( ). The grass, however, has the advantage of being a superior competitorg p g p 0.9 d p 0.7G� G� G

( , ). We assume that . See text for parameter justification. In E, species are simulated in a constantly intermediate environmenta p 2 a p 0.5 c p 1FG GF

( for both species, ). All simulations begin with two individuals of each species.l p l p 17.5 g p 0.7
� � F
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ence forb persistence and more rigorously examine the

underlying mechanisms, we turn to analytical solutions.

We examine the special case where the germination biology

is simplified so that the grass has no seed bank (g pG�

), and the forb germinates all its seeds in favorableg p 1G�

years and none in unfavorable years ( , ).g p 1 g p 0F� F�

In addition, following empirical work examining seed pro-

duction as a function of density in annual plants (Harper

1977), we will assume . As in Ellner (1987), thisc p 0

makes analytical solutions to this model possible. The re-

sults also approximate systems where c is not 0, as long

as . Although these germination and competitionl k c
�

parameters represent a simplified version of the biology

outlined in the previous section, we will show through

simulation that the qualitative behavior of the model is

not changed when the parameters are returned to the val-

ues used in figure 1A.

With and complete germination of the grass,c p 0

equations (2) and (3) can be simplified to

l g FF, t t t
F p (1 � g )(1 � d)F � , (4)t�1 t t

g F � a Gt t FG t

l GG, t t
G p . (5)t�1

G � a g Ft GF t t

Without a grass seed bank, we drop the F and G subscripts

attached to g and d, because only the forb possesses these

parameters. We add a subscript t to fecundity and ger-

mination (l and g) to indicate their time dependence. As

in the simulations, , and both vary between l
�

l p lF, t G, t

and l
�

through time.

From equation (4), the forb’s rate of increase when rare

( ) isF K 1t

F l gt�1 F, t t
p (1 � g )(1 � d) � , (6)t

F a Gt FG t

where germination, fecundity, and grass competition all

vary with time. This can be used to calculate the condition

for forb persistence in a variable environment following

Chesson (1982) and Chesson and Ellner (1989):

Ft�1Gln H 1 0, (7)( )F tt

where A St is the temporal average. This means that on

average the forb population tends to increase when rare.

This formulation assumes that demographic stochasticity

is not important.

Equation (7) can also be regarded as the temporal av-

erage of forb population growth rates when rare in all

possible environments, weighted by the probability of each

environment. With the forb germinating no seed in un-

favorable years ( ), its rate of increase when rareg p 0
�

(eq. [6]) in an unfavorable year reduces to

Ft�1
p (1 � d). (8)

Ft

By contrast, in a favorable year ( ), it reduces tog p 1
�

F lt�1 �

p . (9)
F a Gt FG t

Grass density, Gt, is equivalent to its fecundity in the

previous year (eq. [5] becomes , with no in-G p lt�1 G, t

terspecific competition owing to the rarity of the forb

[ ]). Thus, in a favorable year preceded by an un-F p 0t

favorable year ( ), the forb rate of increase whenG p lt �

rare (eq. [9]) becomes

F lt�1 �

p , (10)
F a lt FG �

and in a favorable year preceded by a favorable year

( ), it becomesG p lt �

F l 1t�1 �

p p . (11)
F a l at FG � FG

Thus, in our simplified model, the forb can exhibit one

of three growth rates when rare, given by equations (8),

(10), and (11). These equations support our interpretation

of forb dynamics in the simulations (fig. 1). As long as

the forb suffers any mortality in the seed bank ( ), itd 1 0

declines in unfavorable years, albeit slowly (eq. [8]). More-

over, as long as it is an inferior competitor to the grass

( ), it declines in favorable years after favorable yearsa 1 1FG

(eq. [11]). Its only opportunity for positive growth is in

favorable years after unfavorable years (eq. [10]).

Given the probability of unfavorable years, favorable

years after unfavorable years, and favorable years after fa-

vorable years, we can calculate the condition for forb per-

sistence as a function of environmental and demographic

parameters. We assume changes in the environment can

be modeled by a two-state Markov chain. The properties

of this model can be characterized in terms of the sta-

tionary distribution where P is the probability of a favor-

able year and r is the temporal autocorrelation. The sta-

tionary probability of a favorable year preceded by an

unfavorable year is , and the probability(1 � P)[P(1 � r)]

of a favorable year preceded by a favorable year is

(see Caswell 2001, p. 379, for a detailedP[P(1 � r) � r]

description of this model). The invasion criteria for the
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Figure 2: Zero-growth isoclines bounding the region of forb persistence

as a function of the probability of a favorable year and the temporal

autocorrelation (eq. [13]). The forb persists in the region below the

isocline. A shows the effect of changing the ratio of fecundity in favorable

to unfavorable years, with , . B shows the effect of chang-d p 0.1 a p 2FG

ing the competitive effect of the grass on the forb, with andd p 0.1

. C shows the effect of changing the death rate of forb seedsl /l p 6
� �

in the soil, with and . Combinations of negative tem-a p 2 l /l p 6FG � �

poral autocorrelation and the probability of a favorable year below the

dashed lines are impossible.

forb (eq. [7]) can now be expressed as the average of the

forb growth rates when rare in unfavorable years, favorable

years preceded by unfavorable years, and favorable years

preceded by favorable years, all weighted by the probability

of each year type:

l
�

(1 � P) ln (1 � d) � P(1 � P)(1 � r) ln ( )a lFG �

1
� P[P(1 � r) � r] ln 1 0.( )aFG

(12)

This can be simplified to

1�r

l
� 1/P 1/(1�P)(1 � d) 1 a . (13)FG( )l
�

Thus, for the forb to have a positive growth rate when

rare, the variability in fecundity from favorable to unfa-

vorable years times survivorship in the seed bank must

exceed grass competitive effects (with all these terms dif-

ferentially weighted by the environment). These same con-

clusions also emerge in models with years that are favor-

able to the forb but unfavorable to the grasses and vice

versa, though the effects of environmental parameters (P

and r) are very different (J. Levine and M. Rees, unpub-

lished data).

Shown graphically (fig. 2), equation (13) reveals com-

plex effects of the environment on forb persistence. Con-

sistent with the result that forb persistence is maintained

by seed production in favorable years preceded by unfa-

vorable years, negative temporal autocorrelation in year

quality favors forb persistence (fig. 2). Moreover, because

consecutive favorable years are so detrimental to the forb,

owing to intense grass competition, its persistence is max-

imized in environments with a relatively low probability

of a favorable year, around 0.3. In environments with a

high probability of a favorable year and/or strongly positive

temporal autocorrelation, the forb frequently faces con-



Variability Effects on Persistence 357

secutive favorable years, with strong negative effects on its

persistence. At the other extreme, in environments with

too low a probability of a favorable year, the forb does

not have the opportunity to replenish losses in the seed

bank.

Widely varying environments that produce large vari-

ation in fecundity also favor forb persistence. In figure 2A,

the region of persistence increases with an increasing ratio

of fecundity in favorable to unfavorable years. This is be-

cause in a favorable year after an unfavorable year, forb

maximal fecundity is given by l
�

but is reduced by grass

density, l
�

(eq. [10]).

Other model parameters have predictable effects on per-

sistence. Increasing the per capita effects of grasses on the

forb from to (fig. 2B) reduces the rangea p 1.5 a p 4FG FG

of environments in which the forb can persist. Increasing

mortality rates in the seed bank also strongly reduces forb

persistence (fig. 2C). Thus, an important caveat to our

predictions is that they are only relevant to forbs with

long-lived seeds. Nonetheless, our solutions show that as

long as the forb and grass are intrinsically favored by the

same types of years and the forb possesses long-lived seeds

while the grass does not, our results concerning beneficial

effects of negative temporal autocorrelation, a low prob-

ability of a favorable year, and high variation in fecundity

are robust to variation in other model parameters. There-

fore, the type of result seen in figure 1A should also apply

to systems where the competition, fecundity, and envi-

ronmental parameters are somewhat different from those

we examined.

The Effects of Litter

One important feature of California grasslands not in-

cluded in our model is the inhibitory effects of the grass

litter. Dead grass individuals from the previous year fail

to fully decompose, creating a thatch layer in the subse-

quent year (Talbot et al. 1939; Heady 1956, 1958; Heady

et al. 1977; Bartolome et al. 1980). One would then expect

that the litter has negative effects on forb persistence. How-

ever, because grass biomass is maximized during favorable

years, litter inhibition of forb germination will be strongest

in the year after a favorable year. This could benefit forbs

in the long run by reducing their germination in favorable

years after favorable years. To explore this, we incorporated

litter into our model.

We assume that litter in the current year is entirely

produced by grass in the previous year, a simple approx-

imation for California annual grasslands (Heady 1956;

Bartolome et al. 1980). Thus the reduction in forb ger-

mination due to litter is a function of the previous years’

growing conditions only. We assign l
�

and l
�

to be the

fractional reduction in forb germination caused by litter

produced in a previously favorable and unfavorable year,

respectively. Thus, in a favorable year preceded by an un-

favorable year, the forb growth rate when rare changes

from the expression in equation (10) to

F (1 � l )lt�1 � �

p l (1 � d) � . (14)
�

F a lt FG �

In a favorable year preceded by a favorable year, the growth

rate changes from equation (11) to

F 1 � lt�1 �

p l (1 � d) � . (15)
�

F at FG

Note that litter causes the forb to now retain a fraction

(l
�

in eq. [14] and l
�

in eq. [15]) of its seeds in the seed

bank (the first part of the sum) in favorable years. We

assume that litter produced in a favorable year better in-

hibits forb germination than that produced in an unfa-

vorable year ( ), and following empirical resultsl ≥ l
� �

(Heady 1956; Bartolome et al. 1980), litter does not inhibit

grass germination or fecundity. Litter has no effect in an

unfavorable year because forb germination is already 0 in

such years.

Replacing the growth rates in equation (12) with the

litter-modified growth rates (eqq. [14], [15]) and then

simplifying yields

1�r [P/(1�P)]�r

(1 � l )l 1 � l
� � �

l (1 � d) � l (1 � d) �
� �[ ] [ ]a l aFG � FG

(1/P)

1
1 .( )1 � d

(16)

Shown graphically (fig. 3), this result illustrates how litter

tends to benefit forb persistence in environments where

consecutive favorable years are otherwise detrimental.

With litter reducing germination 25% after unfavorable

years, increasing litter effects on germination after favor-

able years from 25% to 100% significantly increases the

range of environments in which forb persistence is pos-

sible. The benefits of not germinating in the second of

consecutive favorable years and avoiding the intense grass

competition in those years outweigh the costs of litter

effects in favorable years after unfavorable years. For this

reason, litter effects allow the forb to persist in environ-

ments with a greater probability of a favorable year, ex-

panding the region of persistence in figure 3 to the right.

In sum, litter, which at first seems detrimental to persis-
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Figure 3: Effect of increasing litter inhibition of forb germination after

a favorable year (eq. [16]; , , ). Litter reducesd p 0.1 l /l p 6 a p 2F � � FG

germination 25% after an unfavorable year. The dashed line shows the

region of persistence with no inhibition of forb germination after fa-

vorable or unfavorable years. Combinations of negative temporal auto-

correlation and the probability of a favorable year below the two dotted

lines are impossible.

Figure 4: Simulated region of forb persistence based on the full model

(eqq. [2], [3]) incorporating the more realistic germination and com-

petition parameters of the figure 1 simulations (see text for methods).

Combinations of negative temporal autocorrelation and the probability

of a favorable year below the dashed lines are impossible.

tence, may ultimately favor persistence by preventing ger-

mination at times when grass competition is most severe.

Relevance to More Complex Germination Biologies

The solutions to the invasion condition presented in fig-

ures 2 and 3 were made possible by simplifying the ger-

mination of the forb ( , ) and grass (g p 1 g p 0 g p
� � �

) and also assuming . We now use simula-g p 1 c p 0
�

tions to show that the analytical results also characterize

the qualitative behavior of the model with the more com-

plex germination and competition assumed in our sim-

ulations of equations (2) and (3) in figure 1A.

For a given combination of P and r, we simulated the

environment for 50,000 years. Following the grass de-

mographic parameters in figure 1A (justified in the text),

we simulated grass dynamics alone ( ), yielding forF p 0t

each time step, year quality and grass density. We then

calculated the forb growth rate when rare at each time

step (eq. [6] with , not 0 as presented) and calculatedc p 1

the temporal average (eq. [7]). By repeating this calcula-

tion of forb growth rates for a range of environments (all

possible combinations of 26 values of P from 0 to 1 and

26 values of r from �0.5 to 0.5), we could then produce

a zero-growth isocline as a function of the environmental

parameters (fig. 4). These isoclines are analogous to those

analytically solved in figure 2.

Results show that even with more subtle germination

differences between the grass and forb, a small grass seed

bank, and competition with , persistence is maxi-c p 1

mized in environments with an intermediate probability

of favorable year and negative temporal autocorrelation.

Thus, the behavior of the model under simplified param-

eters (figs. 2, 3) is qualitatively similar to the more complex

model (fig. 4). Also similar are the effects of changing forb

and grass demographic parameters. For example, in both

the simple (fig. 2A) and more complex model (fig. 4),

increasing fecundity in favorable years relative to unfa-

vorable years increases forb persistence. Simulations also

show that the effects of litter on persistence are similar to

those shown in figure 3 (J. Levine and M. Rees, unpub-

lished data).

This same approach can also be used to assess the con-

ditions under which the better competing grass can invade

a system with the forb at its stochastic equilibrium. Using

this technique, we found that the grass can invade the

entire parameter space of figure 4 (and with all variabilities

in fecundity). Thus, regions of forb persistence in figure

4 are also regions of coexistence.
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Discussion

Our results modeled on a California grassland system dem-

onstrate that in contrast to prevailing notions in popu-

lation and conservation biology, annual fluctuations in the

environment may benefit the persistence of rare plants.

More precisely, the results of our model and those of classic

population biology are not directly contradictory, because

it is not environmental variability per se that benefits rare

forb persistence in our framework. Rather, as demon-

strated in community ecology models by Chesson and

Ellner, temporal variability gives the forb the opportunity

to avoid competition from the otherwise dominant exotic

grass. Our results thus support the application of storage

effect models to understanding the persistence of rare spe-

cies existing in competitive environments. Moreover, given

the tendency of environmental fluctuations to promote

coexistence in these models, we suggest that positive effects

of temporal variability may be underappreciated.

Also underappreciated are the benefits of seemingly un-

favorable years. In consecutive favorable years, years that

would presumably enhance rare forb persistence in our

model, forb populations decline severely owing to the

buildup of grass competitors. Thus, unfavorable years ben-

efit persistence by strongly reducing grass density while

the forb lies in the seed bank. When applied to California

grasslands, this result suggests that drought years may be

essential for forb persistence, a prediction running com-

pletely counter to the prevailing management ideas for

these plants (Parsons and Whelchel 2000; Thomas 2000).

In favorable years occurring immediately after unfa-

vorable years, rare forbs benefit from the environment

while suffering relatively little grass competition. This re-

sult bears on how we evaluate the influence of natural

variability in the California climate on persistence. Because

of the periodicity inherent in the dominant controls over

the region’s precipitation, consecutive favorable (high

rainfall) years occur with low probability. El Niño South-

ern Oscillation events, the largest control over interannual

variability in California rainfall, coincide with nearly all

high rainfall years (Schonher and Nicholson 1989). Al-

though many forbs show large population sizes during El

Niño years (Parsons and Whelchel 2000; L. Fox, unpub-

lished data; K. McEachern, unpublished data), our model

suggests that these benefits arise not just because of the

favorable rainfall regime but also because El Niños have

a periodicity of 3–8 years and thus rarely occur in con-

secutive years (Schonher and Nicholson 1989). If they did,

forb populations might suffer due to the buildup of grass.

Another counterintuitive prediction of our model is that

inhibition of forb germination by grass litter could benefit

forb persistence. By strongly inhibiting germination in the

second of consecutive favorable years, litter allows the forb

to avoid the intense grass competition characteristic of

those years. Importantly, this assumes that litter effects on

germination occur primarily in the year after the litter is

produced. Where litter decomposes much more slowly, it

would reduce germination in years that would otherwise

be beneficial, countering its positive effects.

Relation to the Storage Effect and Other Models

Model results showing potential benefits to persistence of

climate variability, unfavorable years, negative temporal

autocorrelation, and litter emphasize the importance of

considering the dynamics of the surrounding community

when attempting to understand the persistence of rare

plants in competitive environments. Each of these results

would be obscured or even missed in a single-species anal-

ysis. However, population viability analyses are often lim-

ited by available data (Morris and Doak 2002; Reed et al.

2002), and information on the surrounding community

is unlikely to be readily available. Considering the re-

sources required to collect these data, it is important to

understand when we should expect multispecies models

to yield markedly different predictions than their single

species counterparts. Understanding how our results fit

into the larger storage effect framework (Chesson 1990,

1994) sheds light on this problem.

Species differences in their response to the environment

are essential for positive effects of variability on coexistence

in storage effect models. Such differences temporally sep-

arate species and emerge in our model because of differ-

ences in germination biology between the forb and grass.

Even though both species have high fecundity in the same

years, the lack of a seed bank means that grass density in

the current year is entirely determined by the previous

year’s conditions, enabling some favorable years for the

forb to coincide with little grass competition. Had the grass

also possessed a reasonable seed bank, its density would

be much greater in favorable years after unfavorable years,

driving a more positive correlation between grass com-

petition and year quality for the forb. As Chesson and

Huntly (1989) note for storage effect models in general,

a positive correlation between environmental favorability

and interspecific competition lessens beneficial effects of

temporal variability on coexistence. Thus, including the

dynamics of the surrounding community in plant popu-

lation viability models will only change the effects of var-

iability if the interacting species respond differently to the

environment. If species respond similarly, then single-

species models incorporating vital rates obtained in the

presence of the surrounding community should reasonably

describe dynamics, even though the individual effects of

the environment and competition are not separable.

Our model also suggests new ways in which temporal
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autocorrelation can influence persistence. In traditional

storage effect models, species specialize on different annual

environments, and temporal autocorrelation is unimpor-

tant because the intensity of competition is largely a func-

tion of conditions in the current year (Chesson 1990,

1994). In contrast, in our model, grass competition de-

pends on conditions in the previous year, causing the forb

to specialize not on individual years but rather on partic-

ular sequences of years. This gives temporal autocorrela-

tion a major influence on our results.

More generally, when competition is a function of the

environment in the previous year, temporal autocorrela-

tion can be incorporated into the storage effect framework

by treating it as a control over the covariance between the

environment and competition. In our model, in an en-

vironment alternating perfectly between favorable and un-

favorable years (extreme negative autocorrelation), favor-

able years for the forb always correspond to years of weak

grass competition, while grass competition is intense in

unfavorable years. Thus, the negative temporal autocor-

relation generates strong negative covariance between en-

vironmental favorability and grass competition. Because

the forb avoids the unfavorable years with high grass com-

petition while it lies in the seed bank, this covariance

strongly benefits its persistence. Any lessening of the neg-

ative temporal autocorrelation weakens this covariance,

inhibiting beneficial storage effects. Alternatively, if com-

petition is largely a function of the environment in the

current year, but species prefer different year sequences

due to innate physiological requirements, then the tem-

poral autocorrelation simply controls the balance between

year sequences that are favorable to one species versus the

other.

In addition to the work of Chesson and of Chesson and

Huntly, our results also follow general models by Ellner

(1984, 1987) and specific models by Kalisz and McPeek

(1993). Ellner (1987) showed how a species germinating

a constantly low fraction of its seeds can coexist with a

competitor germinating a higher fraction. Our model dif-

fers somewhat because of the inclusion of variable ger-

mination and a competitor with no seed bank, but our

result can be regarded as an application of Ellner’s ideas

to rare forb persistence in California grasslands. In a more

empirical study, Kalisz and McPeek (1993) explored the

effects of a fluctuating environment on the seed bank–

producing annual Collinsia verna. In a single-species

model, they showed benefits of negative temporal auto-

correlation achieved because long runs of bad years in-

crease the probability of extinction. Although true in other

models, including ours, it was long runs of favorable years

that more severely inhibited persistence in the system stud-

ied here.

Support from California Grasslands

Unfortunately, seed bank data for rare plants are difficult

to obtain in both the field and the literature (Doak et al.

2002). Probably the most important germination biology

assumption made in our model is that forbs germinate a

high fraction of seeds in years that will ultimately be fa-

vorable for their reproduction. This assumption of “in-

telligent germination” or directed dispersal in time has

been supported in a different California grassland context

by Rice (1985) but requires further evaluation.

Although poor availability of seed bank demographics

precludes us from testing our model, seedling data for a

Bromus (exotic grass)-dominated grassland through pe-

riods of El Niño rains and droughts (1974–1978) support

our predictions concerning the dependence of grass den-

sity on rainfall in the previous year. Young et al. (1981)

found the lowest grass seedling densities in the year after

a drought year even when the current year was wet. More-

over, they found the highest seedling densities after wet

years even when the current year was dry. Even after dry

years, however, grass density was exceedingly high in an

absolute sense (2,000 per m2), a potential explanation for

why forbs did not exploit these periods (Young et al. 1981).

The lagged grass competition in our model also involves

several other important assumptions about how compe-

tition works. We are assuming that the per capita com-

petitive effects of the grasses are the same during favorable

and unfavorable years. Thus, the tendency for plants to

grow larger in favorable years does not compensate for

the reduced grass density after unfavorable years. The rea-

sonableness of this assumption depends on the mechanism

of competition. If species compete for water (Pavlik et al.

1993; Holmes and Rice 1996; Carlsen et al. 2000), then

the increased plant size in wet years will not increase the

competition coefficient because water is abundant. In fact,

the competition coefficient may be reduced in favorable

years under this scenario. In contrast, if increased grass

biomass shifts competition from water to light, then a

temporally variable coefficient would be required.

Experiments to Test Model Predictions

Our model predicts that rare annual forbs with variable

germination and dormancy may benefit from annual fluc-

tuations in the environment when competing with species

that lack seed dormancy. However, even with a long time

series of population dynamics and year quality, testing this

prediction can be difficult because so much of the forb

population dynamics occur in the seed bank. Note that

while the total forb population increases markedly in the

fluctuating series of years in figure 1A (years 83–90), if

we look specifically at the germinated fraction of the pop-
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ulation (years 83–90, fig. 1B), these increases are more

difficult to discern. A more direct approach involves ex-

perimentally imposing different sequences of year quality.

One unique prediction of our model is that consecutive

favorable years are ultimately detrimental to persistence.

Thus, for California grasslands, a watering experiment

simulating a favorable rainfall regime for three consecutive

years should cause an initial increase in the forb popu-

lation, followed by a steep decline associated with a

buildup of its grass competitor. By contrast, forb popu-

lations should be larger at experiment’s end in a treatment

where favorable rainfall is imposed only in the first and

third year of the experiment, with an unfavorable year

imposed in year two.

Testing multispecies persistence models like the one de-

veloped here may be critical for understanding the com-

plex processes underlying persistence in interactive com-

munities. We have shown that incorporating the dynamics

of exotic grasses surrounding rare annual plants can yield

counterintuitive effects of environmental fluctuations, un-

favorable years, and grass litter on rare plant persistence.

Given that exotic invaders now threaten half the imperiled

species in the United States (Wilcove et al. 1998), multi-

species approaches to modeling rare plant dynamics may

become increasingly necessary for preserving native di-

versity in exotic-dominated habitats.
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