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Abstract 1 

A route map for modelling pharmaceutical manufacturing processes utilising morphological 2 

population balance (MPB) is presented in terms of understanding and controlling of particle shape 3 

and size for optimising the efficiency of both the manufacturing process and final properties of the 4 

formulated drugs. This is applied to batch cooling crystallisation of the pharmaceutical compound, 5 

ibuprofen, from supersaturated ethanolic solutions in which the MPB is combined the known crystal 6 

morphology and associated face-specific growth kinetics (Nguyen et al., CrystEngComm, 2014, 16, 7 

4568-4586) to predict the temporal evolution of the shape and size distributions of all crystals. The 8 

MPB simulations capture the temporal evolution of the size and shape of ibuprofen crystals and their 9 

distributions at each time instance during the crystallisation processes. The volume equivalent 10 

spherical diameter and crystal size distribution converted from MPB simulation are validated against 11 

the experimentally studies on the 1 litre scale size (Rashid et al., Chem Eng Res & Des, 2012, 90, 12 

158-161), confirming the promise of this approach as a powerful simulation, optimisation and control 13 

tool for the digital design of precision pharmaceutical processes and products with the desirable 14 

properties, with potential applications in crystallisation design for personalised medicines. 15 

 16 

Keywords: Morphological Population Balance (MPB), Pharmaceutical Manufacture, Morphological 17 

Modelling, Batch Crystallisation, Ethanolic Solutions, Crystal Shape Distribution, Crystal Size 18 

Distribution, Ibuprofen 19 

 20 

 21 
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1. INTRODUCTION 1 

A typical pharmaceutical manufacturing process for solid form drug products comprises primary 2 

stage whereby the target active pharmaceutical ingredient (API) is synthesised and crystallised into a 3 

highly crystalline product of high purity. This is then subsequently formulated through the addition 4 

of excipients via a number of secondary processing stages (filtration, drying, milling, blending, 5 

granulation, compaction and tableting) to produce practical dosage forms containing various API 6 

strengths (Figure 1). The overall life cycle of drug particles spans from solute to primary and 7 

secondary processes, then dissolution process for efficient drug delivery to patients. When the 8 

pharmaceutical materials progress through these manufacturing/delivery processes, they can be 9 

subject to phase changes (crystallisation or dissolution) and often particle size/shape modifications 10 

due to the mechanical action of the different unit operations. Therefore, it is important to predict, 11 

optimise and control the performance and interconnectivity of the unit operations involved in the 12 

overall processes flow diagram with the aim to produce the desired final products and the performance 13 

of drug delivery. The schematic (Figure 1) and accompanying narrative highlight the complexity of 14 

the manufacturing chain for pharmaceuticals. Although this study focuses on crystallisation 15 

processes, the modelling methodology is quite applicable to the other unit operations used in drug 16 

manufacture. For example, inter-crystal aggregation is important in the blending, granulation and 17 

compaction processes. 18 

Population balance (PB) modelling (for example1-10) has proved to be an excellent simulation tool for 19 

predicting the evolution of crystal size distributions for many practical processes. However, 20 

crystalline materials in their processing environment are inherently rarely spherical in terms of their 21 

external particle morphology. Indeed their inherent crystallographic structural motifs gives rise to a 22 

polyhedral morphologies with each crystal face {hkl} displaying different surface chemistry and 23 

hence different physical and chemical properties. Hence, to effectively simulate such systems, full 24 

consideration of both particle size and shape is an obvious pre-requisite. The particle manufacturing 25 

industries, in particular, pharmaceuticals and fine chemicals, need to predict and control both size and 26 

shape distributions of crystalline products and hence the capability of PB models has recently been 27 

extended to encompass the crystal shape anisotropy. This has been done by directly integrating the 28 

crystal morphological related information (indexed morphology plus face-specific growth kinetics) 29 

with PB for designing the manufacture of high purity crystals which have the desirable size and shape 30 

distributions and also the desirable surface properties of individual faces, i.e., a morphological 31 

population balance (MPB) model11-20. MPB models are formulated based upon particle number 32 

density conservation and involve a population of particles which undergo changes in size and shape 33 

during processing. The well-established morphology prediction tools for single crystals, such as 34 
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HABIT 21, 22, can provide the exact crystal shape and , based on this, MPB models can be developed 1 

according to the growth rates of the individual crystal faces and their normal distances from the crystal 2 

centre11. 3 

For different unit operations during the pharmaceutical manufacture processes, the MPB models may 4 

include a few or all of the following terms, nucleation kinetics, faceted crystal growth mechanisms, 5 

faceted agglomeration and breakage kernels (Figure 1), which directly controls the final size/shape 6 

distributions. For primary processes, all of the four terms can be important, but overall faceted crystal 7 

growth can be expected to be more dominant. For secondary processes, the face-specific 8 

agglomeration and breakage can also be important, in particular when the processes do not involve 9 

in high amount of solvents or binders. For dissolution process, the de-aggregation, de-agglomeration 10 

and face-specific dissolution mechanisms can control the effective and accurate release of API for 11 

precision drug delivery. Furthermore, the MPB models can be used for well-mixed systems and also 12 

hydrodynamic systems having inhomogeneous property distribution in the manufacturing units via 13 

either multi-zonal modelling techniques (e.g. 23-25) or fully coupling methods23, 26, 27. 14 

In this paper, the development and application of MPB modelling methodology for pharmaceutical 15 

crystallisation processes is presented as a key component of an overall process route map based upon 16 

the first-principles predictive models that can be used for the digital design and control of 17 

pharmaceutical manufacturing processes28 and, through this, for the more effective and personalised 18 

delivery of medicines to patients. Its relevance to pharmaceutical processes is highlighted through the 19 

application to crystallisation processes integrating crystal morphology and growth kinetics with the 20 

population balance through the MPB. Despite some studies11, 12, 14, 16-18, 24, 29, 30 employing MPB 21 

method (or similar concept) to simulate crystal shape/size, only a few of them have applied MPB to 22 

organic materials. A new search method is developed to systematically search the face-based crystal 23 

size distribution (CSD) space with multiple parameters based on the volume-equivalent experimental 24 

data, hence obtaining face-based seeds size distributions and facet growth rates for MPB simulation. 25 

This study is also the first to fully integrate the face specific {hkl} growth rate data into the MPB 26 

including the incorporation of the effect of both interface kinetics and mass transfer on the growth 27 

rates and face-specific mechanisms. The MPB application to pharmaceutical crystallisation processes 28 

is illustrated through a case study of ibuprofen crystallised from ethanol in seeded batch crystallisers 29 

to predict the evolution of crystal shape/size distributions and compare with measurements. To our 30 

knowledge, this is also the first attempt to validate MPB simulation results against experimentally 31 

determined data. 32 
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 1 

Figure 1. Schematic highlighting the morphological population balance modelling methodology 2 

and its wider applicability. 3 

 4 

2. APPLICATION OF MORPHOLOGICAL POPULATION BALANCE FOR 5 

CRYSTALLISATION PROCESS MODELLING 6 

Crystallisation is a very important unit operation for the separation and purification of many speciality 7 

pharmaceutical compounds, hence producing crystals with the facet linking properties in the first 8 

stage during the pharmaceutical manufacturing processes. Reflecting their crystallographic 9 

structures, many APIs exhibit needle-like or plate-like morphologies and the influence of these 10 

crystals on the downstream processes such as washing, drying, filtration, blending, granulation, 11 

compaction etc. have attracted much more attention. In order to produce the required crystal 12 

properties including shape/size distribution, the first principles-based digital design of crystallisation 13 

processes using MPB modelling techniques is attractive (Figure 2). An important feature of MPB 14 

models is their ability to predict the full shape distribution of crystals (shape and the corresponding 15 

number of crystals), i.e., the shape of each crystal in a crystalliser is predicted during the 16 

crystallisation processes. This provides much more powerful manipulation methods to effectively 17 

control both the crystal shape and size during and at the end of the crystallisation processes. In this, 18 

parameters related to nucleation, crystal growth, agglomeration and breakage, together with solute 19 
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and solvent properties are needed. These should be measured, predicted or be parameters identified 1 

within the MPB models31.  2 

Classical nucleation theory32-34 can lead to several empirical or semi-empirical methods to determine 3 

nucleus interfacial tension and nucleus size through induction time, supersaturation. Recently, KBHR 4 

(Kashchiev, Borissova, Hammond, Roberts) developed an analytical approach35, 36 to determine key 5 

nucleation parameters and also classify nucleation mechanisms by differentiating between 6 

instantaneous and progressive nucleation processes. In addition, secondary nucleation in 7 

crystallisation processes can affect the final product properties, leading to a broadening of the size 8 

and shape distributions. Shiau and Lu37 studied solute clustering in the diffusion layer around a 9 

growing crystal by using PB to simulate the evolution of the cluster size distribution due to the 10 

simultaneous aggregation and breakage of solute molecules in the diffusion layer around a growing 11 

crystals in a stirred solution. Kitamura and Hayashi38 studies secondary nucleation behaviour and 12 

mechanism in antisolvent crystallisation of thiazole derivative polymorphs. This kind of nucleation 13 

kinetics/mechanisms could provide further information of nucleus structure (size/shape), nucleation 14 

rate, nuclei distribution, hence linking with MPB modelling.  15 

Generally there are several growth mechanisms (e.g. 4, 39, 40) including screw dislocation (BCF), birth 16 

and spread (B&S) and rough interface (RIG). The face specific growth mechanism is affected by 17 

surface chemistry, solid-solution interface, etc., which can link with process operating conditions. 18 

Using optical microscopy and an appropriate growth cell, the growth behaviour (rate) of some 19 

individual crystal faces can be directly measured41 under static conditions and as a function of 20 

operating conditions and analysed using growth kinetic methods to identify and obtain the 21 

corresponding growth mechanisms/kinetics and their parameters. For molecular materials such as 22 

pharmaceutical compounds, the growth process can be quite complex with series resistances 23 

emulating from both the mass transfer between the bulk solution and the crystals, and from the 24 

absorption process at the growth interface. Often the latter can dominate and hence the role of reactor 25 

hydrodynamics in facilitating mass transfer is not as significant as one intuitively would expect with 26 

the energetics of interfacial surface absorption/step migration process often being the sole rate 27 

determining step.  Indeed, based on the recent study42, the measured facet growth rates from single 28 

growth-cell experiments were found to comparable with those measured within a real crystalliser. 29 

Agglomeration and breakage in crystallisation processes can be very complicated and overall poorly 30 

investigated. Traditionally, agglomeration process in solution is assumed to be controlled by particle 31 

collision frequency and agglomeration efficiency, forms the agglomeration kernel by the product of 32 

these two terms. Ochsenbein et al.43 attempted to extend the traditional agglomeration kernel to 33 
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address the agglomeration of needle-like crystals in suspension by introducing two characteristic 1 

sizes, representing a needle-like crystal as a cylinder, into the collision frequency and agglomeration 2 

efficiency terms to replace the single characteristic size, the diameter of a sphere. Eisenschmidt et 3 

al.44 estimated the aggregation kernel by the use of Laurent polynomials with in-silico experimental 4 

data. For crystal breakage, generally all particles are treated as equivalent spheres with the same 5 

volumes, and a spherical mother particle will break into two daughter spheres with equal half volume 6 

of the mother sphere for each.  7 

Grof et al.45 developed a method to investigate needle-shaped crystal breakage by firstly using a DEM 8 

of needle-shaped particles to find out the appropriate types of the breakage kernel and the daughter 9 

distribution functions, then forming and solving a PB model of breakage with experimental data to 10 

determine the material-specific parameters appearing in the breakage functions. There rarely exists 11 

any attempt to integrate crystal agglomeration and/or breakage mechanisms on the basis of individual 12 

faces with the MPB modelling techniques. For seeding crystallisation processes, the widely used 13 

practice for preparing seeds is to mill and/or sieve crystals, hence most of the seeds prepared are 14 

broken crystals with the desired size distribution. In literature, again there has been no significant 15 

attempt to take into account of the broken crystals as seeds for the simulation of seeded crystallisation 16 

processes. 17 

In crystallisation processes, supersaturation, S (= solute concentration / solubility), is the driving force 18 

for crystal growth. It determines the facet growth rates based on their inherent interfacial growth 19 

mechanisms. As different crystal faces have different growth mechanisms, the facet growth rates as 20 

a function of supersaturation can be fast or slow for individual faces, hence resulting in the 21 

corresponding faces to grow at various speeds. This leads to crystal shape (and size) evolution during 22 

the crystallisation processes, hence potentially achieving process optimisation and control. Cooling 23 

(or heating) rate is a very effective tool to change supersaturation, then growth rates, crystal shape. 24 

Besides this, seeds conditions (loading, size/shape) and seeding temperature may also be used to 25 

optimise and control a crystallisation process to achieve the required properties including crystal 26 

shape. 27 

 28 

 29 

 30 

 31 
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 1 

Figure 2. Schematic of MPB for pharmaceutical crystallisation processes and examples of modelling 2 

outputs (top right: evolution of crystal size distributions during crystallisation times (t1, t2, t3, …, tn) 3 

with any point on the distribution representing one crystal shape and its corresponding number of 4 

crystals having the same shape; middle right: evolution of crystal mean size/shape during 5 

crystallisation process; bottom right: solute concentration and crystal yield against crystallisation 6 

time). 7 

 8 

2.1 Population Balance Modelling 9 

Like the conservation of mass or energy in a system, the PB follows the conservation law on particles 10 

(or discrete objects) to describe their evolution during a process. This generally involves both the 11 

motion of particles in the system through their defined domains and their birth/death process that can 12 

both terminate existing particles and produce new particles. The generic equation of multi-13 

dimensional population balance model governing number density of particles includes the 14 

accumulation of particle number density, the convection due to the motion of particles in the spatial 15 

space (external coordinates), the convection due to particle growth (or dissolution) in the internal 16 

space of particles (such as shape, size, volume, porosity, etc.), particle nucleation, the agglomeration 17 

and breakage of particles, and also the net change of particle number density due to the inlet and 18 

outlet flows of the system. Therefore PB models are (m + 3) dimensional with 3 representing three 19 

external dimensions for the locations of particles in a system and m being the internal variables of 20 
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particles and particle properties such as porosity, surface energy etc. Further detail on PB modelling 1 

can be found in literature 9, 11, 31, 46, 47. 2 

As shown in Figure 3, crystals have shape and size. Strictly speaking, crystal size and its distribution 3 

cannot be accurately predicted without accurate prediction of the shape and its distribution. For a 4 

population of crystals (dissolving or crystallising) in a crystalliser to manufacture pharmaceutical 5 

materials, the evolution of these crystals in terms of both size and shape is not well investigated using 6 

PB techniques. Traditionally, PB methods treat faceted crystals as their volume equivalent spheres 7 

with volume equivalent diameters (e.g., 1-8, 10), regardless of their actual shapes (cubic-like, plate-like, 8 

or needle-like ...). Therefore the shape information, hence face-specified properties, is lost by the 9 

simplification11. For needle-like particles such as hydroquinone, potassium dihydrogen phosphate, ȕ-10 

form L-glutamic acid and some pharmaceutical crystals (see for example, 15, 46, 48-54), researchers 11 

usually simplify the shape into two-dimensional system, i.e. length and width, with the width 12 

equalling to depth.  13 

 14 

Figure 3. (a) Schematic crystal morphology highlighting the definitions of the three independent 15 

dimension variables (x, y, z) for MPB modelling in relation to the crystal morphology defined by e.g. 16 

3 forms ({h1k1l1}, ({h 2k2l2}, ({h 3k3l3}) ; (b) The ibuprofen crystal shape and its three variables, x, y 17 

and z, representing the normal distances of faces {001}, {100} and {011}, respectively. 18 

 19 

2.2 Morphological Population Balance Modelling 20 

The MPB models identify the individual crystal faces with the help of crystal morphology 21 

predications, then define the corresponding normal distances from these faces to the centre of the 22 
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crystal as individual dimensions for forming multi-dimensional, morphological based PB equations11, 1 
16, 18, 29-31, 55-58. The solution of these equations simulates the dynamic evolution of these normal 2 

distances for a population of crystals during a crystallisation process, and with the known crystal 3 

morphology, the dynamic crystal shape and size distributions can be established from these normal 4 

distances. Researches were also carried out to extend and generalise the MPB concepts for different 5 

cases including the simulation of a population of asymmetric crystals, inclusion of face appearance 6 

and disappearance, the influence of crystal growth modifiers, modelling investigation of protein 7 

crystallisation processes etc.12, 55-57, 59-63. Two-dimensional PB was applied to simulate the 8 

crystallisation of potash dihydrogen phosphate (KDP) with high resolution algorithms15. The KDP 9 

crystals was treated as a rectangular prism i.e. one dimension for length and another dimension for 10 

width with width equalling to depth. The real morphology of crystals is still not directly integrated 11 

with PB modelling, though the modelling results should be more accurate and representative than 12 

one-dimensional (1D), i.e. volume equivalent diameter, with spherical assumption. Ma et al.11 and 13 

Wan et al.18 focused on the initial methodology development of the MPB which, for the first time, 14 

directly integrated the real morphology with PB modelling. However, it was only applied to inorganic 15 

materials such as potash alum for demonstration. Singh and Ramkrishna17  presented a generalised 16 

framework for dynamics of single crystal morphology and morphology distributions with an 17 

application of MPB to a needle-like crystal system of potassium hydrogen phthalate. Borchert and 18 

Sundmacher14  used a meshing algorithm to develop an efficient numerical solution technique based 19 

on the method of characteristics. The projections of three-dimensional (3D) crystals were combined 20 

with experimental microscopy images for the generation of a look-up table to reconstruct 3D shape 21 

from the images. 22 

In pharmaceutical industry, to ensure product quality, crystallisation processes tend to be designed to 23 

operate at lower supersaturation with seeding (as suggested in 64) to suppress secondary nucleation 24 

and agglomeration/breakage, therefore in this context the growth process tends to be the dominant 25 

one. For a seeded cooling crystallisation processes in a well-mixed batch crystalliser, the effect of 26 

nucleation, agglomeration and breakage may be neglected to simplify the application of the MPB to 27 

pharmaceutical crystallisation. Therefore the corresponding PB equation can be written as9, 11, 31, 46: 28 

 
డటሺࢄǡ௧ሻడ௧ ൅ σ డడ௫೔ே௜ୀଵ ሾ߰ሺࢄǡ ǡࢄ௜ሺܩ ሻݐ ሻሿݐ ൌ Ͳ        (1) 29 

where X is the internal vector with N components, which can be variables related to crystal size, 30 

shape, and other properties, ȥ is the number population density function of crystals, Gi is the growth 31 

rate, t is the processing time. 32 
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In this study, as the N components in X are normal distances, one initial condition for Eq. (1) will be 1 

the size/shape distribution as a function of the N components at the time of zero: Ȳሺܺǡ ሻȁ௧ୀ௢ݐ . 2 

Similarly, the N boundary conditions will be the size/shape distribution with the starting (0) and 3 

finishing (F) values of the N components (i.e. normal distances), i.e. ߖሺܺǡ ሻȁ௑ୀ௑బݐ ൌ ሺܺ଴ǡߖ  ሺܺǡߖ ሻ and 4ݐ ሻȁ௑ୀ௑ಷݐ ൌ ሺܺிǡߖ   ሻ. For batch crystallisation processes, there is no crystal passing through the 5ݐ

boundaries, hence, ߖሺܺǡ ሻȁ௑ୀ௑బݐ ൌ  Ͳ and ߖሺܺǡ ሻȁ௑ୀ௑ಷݐ ൌ  Ͳ. 6 

For MPB models, the internal variable should include the variables which can accurately represent 7 

(and re-construct) particles shape, such as the normal distances of individual faces of crystals (Figure 8 

3). By applying the MPB methodology, the normal distances from faces {h1k1l1}, {h 2k2l2} and 9 

{h3k3l3} to the crystal centre can be defined as three independent dimension variables (x, y, z), 10 

respectively, as shown in Figure 3a. It is worth to note that three dimensions (x, y, z) are not Cartesian 11 

coordinates, hence they are not perpendicular to each other. The developed MPB equation for seeded 12 

cooling crystallisation process in a well-mixed batch crystalliser with negligible agglomeration, 13 

breakage and nucleation can be re-written from Eq. (1) as: 14 

ଵ௏೅ሺ௧ሻ డడ௧ ሾ߰ሺݔǡ ǡݕ ǡݖ ்ܸ ሻݐ ሺݐሻሿ ൅ డడ௫ ሾܩ௫ሺݔǡ ǡݔሻ ߰ሺݐ ǡݕ ǡݖ ሻሿݐ ൅ డడ௬ ǡݕ௬ሺܩൣ ǡݔሻ ߰ሺݐ ǡݕ ǡݖ ሻ൧ݐ ൅15 డడ௭ ሾܩ௭ሺݖǡ ǡݔሻ ߰ሺݐ ǡݕ ǡݖ ሻሿݐ ൌ Ͳ                     (2) 16 

where VT is the total volume; x, y, z three independent dimension variables; Gx, Gy, Gz growth rates in x, y, z 17 

directions. The corresponding boundary conditions for Eq. (2) will be ߖሺݔǡ ǡݕ ǡݖ ሻȁ௫ୀ௫೔ݐ ൌ  Ͳǡ 18 ߖሺݔǡ ǡݕ ǡݖ ሻȁ௬ୀ௬೔ݐ ൌ  Ͳǡ ǡݔሺߖ ǡݕ ǡݖ ሻȁ௭ୀ௭೔ݐ ൌ  Ͳ  (i = 0 or F) with the one initial condition 19 

beingߖሺݔǡ ǡݕ ǡݖ  ሻȁ௧ୀ௢. Note that the assumption of negligible agglomeration, breakage and nucleation 20ݐ

is generally applicable only under some typical conditions such as low superstation, low agitation 21 

rate, and seeded processes. 22 

 23 

 24 

3. MATERIALS AND COMPUTATIONAL MEHTODS 25 

3.1 Crystal Morphology, face-specific growth rates and growth mechanisms 26 

In this study, solute-solvent system of pharmaceutical compound, ibuprofen, crystallised from ethanol 27 

was used. Ibuprofen can be crystallised from a mixture solvents of 95%ethanol and 5%water (case 28 

study 1) and water-free ethanol (case study 2) in seeded batch crystallisers. The obtained crystal as 29 

the one shown in Figure 3b has 2 {100}, 2 {001} and 4 {011} faces with a monoclinic crystal structure 30 

in a P21/c space group41. Further detail of the system can be found in literature41, 64-66. 31 
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During crystallisation processes, facet crystal growth rate is generally a two-step kinetic process 1 

encompassing a balance between the incorporation of growth units onto the crystal surface and the 2 

diffusion by mass transfer of the growth units within the bulk of the solution67. The growth kinetics 3 

can be classified as a number of well-known models including power law4, birth & spread (B&S) and 4 

Burton-Cabrera-Frank (BCF) models39. Therefore, the kinetics of a defined crystal growth interface 5 

as a function of supersaturation can be modelled as follows67: 6 ܩ௣௢௪௘௥ ൌ ௌିௌ೎ೝ೔೟ഐೞೖಾ೅ ಴כಾೈೞା భೖಸ൫ೄషೄ೎ೝ೔೟൯ೝషభ        (3) 7 

஻Ƭௌܩ ൌ ௌିௌ೎ೝ೔೟ഐೞೖಾ೅ ಴כಾೈೞା భೖಸ൫ೄషೄ೎ೝ೔೟൯షభȀల೐ೣ೛ቀಲభȀ൫ೄషೄ೎ೝ೔೟൯ቁ      (4) 8 

஻஼ிܩ ൌ ௌିௌ೎ೝ೔೟ഐೞೖಾ೅ ಴כಾೈೞା భೖಸ൫ೄషೄ೎ೝ೔೟൯೟ೌ೙೓ቀಲమȀ൫ೄషೄ೎ೝ೔೟൯ቁ       (5) 9 

where S is supersaturation defined by the ratio between the solute concentration at a solution 10 

temperature and the solubility at the same temperature, Scrit is a critical value of supersaturation, kG 11 

is the growth rate constant, r is the growth exponent, A1 and A2 are the thermodynamic parameters, 12 

s is the solute density, kMT is the coefficient of mass transfer within the bulk of the solution, 13 

MWs is the solute molecular weight, C* is the equilibrium concentration (solubility). The term 14 ௞ಾ೅ ஼כெௐೞఘೞ  ሺൌ ݇ெ்ᇱ ሻ in Eqs. (3 – 5) can be treated as a fitting parameter. In Eq. (3), if r = 1, it 15 

corresponds to a rough interface growth (RIG) mechanism40. 16 

 In this work, the facet growth rates of the {001 and {011} habit planes of ibuprofen crystals growing 17 

in 95%ethanol/5%water were measured in a 0.5 ml UV cuvette cell with optical microscopy41, 66. The 18 

growth rates in the face directions of {011} and {001} as a function of supersaturation are given in67. 19 

These data were used to characterise the growth mechanisms as incorporated with the MPB 20 

framework. 21 

 22 

3.2 Computational Details  23 

The solubility of ibuprofen in a solvent (95%ethanol / 5%water) and the faceted growth rates in the 24 

x, y and z face directions of ibuprofen crystals growing from the solvent were obtained from 25 

literature41. The solubility equation is as follows: 26 כܥ ൌ ݁ቀషయళమళ೅ ାଵଵǤ଴ଷ଺ቁ          (6) 27 

where C* is the solubility (kg/kg solvent), T is the solution temperature (oC). 28 
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With the obtained solubility and faceted growth rates, the developed three dimensional MPB model 1 

was then solved with the following operating conditions for case study 1: cooling rate (CR) of 2 

0.5oC/min, saturation concentration of 1.601 kg/kg (saturated temperature of 35oC), seeding point of 3 

20oC with the corresponding supersaturation, S, of 1.85, seeds loading of 0.5%, and seeds mean x, y 4 

and z of 22.9, 25.7 and 44.6 m. 5 

There is an enormous shortage of experimental data for practical crystallisation processes in general 6 

and more pertinently, with regard to this study, relating to the 3D (3 normal distances) morphological 7 

related growth rates and crystal size/shape and their distributions. Hence, in case study 2, we have 8 

simply validated the 3D MPB simulation results against 1D (volume equivalent diameter) published 9 

data. In this, the simulated 3D data were back modelled into its 1D (volume equivalent diameter) 10 

form simply to compare and the outcome highlights good agreement.  11 

In case study 2, ibuprofen crystals were grown from water-free ethanol in a 1 L crystalliser64. The 12 

solubility used is from literature64, 65 as follows: 13 

כܥ  ൌ  ͲǤͶͻ͹ ൅ ͳǤͲʹ͸ ൈ ͳͲିଷ  ൈ ሺܶ െ ʹ͹͵Ǥͳͷሻଶ      (7) 14 

At each crystallisation time, a set of 3D mean distances (x, y, z) can be generated by systematically 15 

searching through the domains of mean distances (x, y, z), with the ratio of attachment energies of the 16 

three crystal faces66 as a constraint to mean distances (x, y, z). Each set of mean distances (x, y, z) 17 

then is converted into 1D sphere-based mean size, volume equivalent diameter (deq). The deq obtained 18 

from the conversion is compared against the measured deq 64 to produce the best fitting mean distances 19 

(x, y, z) at that crystallisation time. Then the crystal growth rates of ibuprofen in the {100}, {001} 20 

and {011} faces can be obtained with the supersaturation and the fitted 3D mean size values as a 21 

function of time. 22 

The seeds distributions in the three faces (normal distances x, y and z) were fitted by assuming that 23 

their distributions have a Gaussian form with 6 variables, i.e. 3 mean values and 3 standard deviations. 24 

With systematic search of these 6 parameters, the 3D size/shape distribution of each search was 25 

converted into 1D distribution based on volume equivalent diameter. Then the obtained 1D 26 

distribution was compared with the experimentally obtained volume equivalent size distribution64 and 27 

the ratios among the 3 normal distances based on their attachment energies. The 3D size/shape 28 

distribution with the least difference is the best fitted one and subsequently used for MPB simulations, 29 

in this study, as seeds size/shape distribution (initial condition). The obtained seeds facet distributions 30 

in x, y and z directions for MPB modelling were listed as 7.6, 15.2 and 15.2 m for mean x, y and z 31 

and 6, 19 and 60 m for their corresponding standard deviations. The ibuprofen crystals were 32 

crystallised from water-free ethanol in a 1L batch crystalliser with seeding. The process started at a 33 
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supersaturation of 1.07 with 0.75L solution and a fixed solution temperature of 25oC, and 1.4 g seeds. 1 

The detail operating conditions can be found in64. 2 

For transformation from simulated 3D size/shape distribution to 1D size distribution, the actual 3 

volume of each set of xi, yj, zk (i = 1, Ni, j =1, Nj, k = 1, Nk) can be calculated based on the morphology, 4 

then the corresponding volume equivalent diameter. With the known number of crystals for the set 5 

of xi, yj, zk, the 1D size distribution can be obtained for comparison with the measured one. 6 

PB equations, in particular when including the processes of nucleation, growth, agglomeration and 7 

breakage, can be very complicated partial-integral differential equations, which present practical 8 

challenges to solve these equations68. Actually, it can only be possible to solve them analytically for 9 

a few very simple cases. Therefore, a number of various numerical algorithms has been developed in 10 

last few decades, including the method of moments, method of characteristics, Monte Carlo 11 

techniques, discretisation methods, cell average methods, hierarchical solution strategy, method of 12 

classes, finite difference/volume methods etc. (see for example31, 47, 69 for more detail). In this study, 13 

the discretisation method, moment of classes (e.g. 11, 31, 49, 51), was used to discretise the formed partial 14 

differential MPB equation (Eq. (2)) into ordinal differential equations (ODEs).  The computational 15 

domain of normal distances (x, y, z) was discretised into (n1, n2, n3) classes, in the current case, (70, 16 

70, 70) classes over the size ranges of three normal distances of (100, 120, 160 µm), hence generating 17 

70×70×70 ODEs for numerical solution. With the help of a Gaussian-type shape/size distribution for 18 

seeds crystals and other operating conditions, the discretised MPB equations were solved using the 19 

Runge-Kutta-Fehlbergh 4th/5th-order solver70 with automatic time-step control to obtain the evolution 20 

of normal distances in three face directions. Further details can be found in literature (e.g. 11, 16, 31, 49, 21 
51, 52, 70). The typical seeds distributions for ibuprofen cooling crystallisation in this work are shown 22 

in Figure 4. 23 
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 1 

Figure 4. Typical seeds size/shape distributions for ibuprofen crystallisation at the mean normal 2 

distances of faces {100}  and {001} , i.e. x and y. The grey, blue and green coloured faces of ibuprofen 3 

crystals are {100}, {001} and {011} faces, respectively. The red coloured numbers are number of crystals 4 

and the values in the brackets represent the normal distances of faces {100} , {001}  and {011} . 5 

 6 

4. RESULTS AND DISCUSSION  7 

4.1 Case Study 1: Ibuprofen Crystallised from 95%Ethanol/5%Water 8 

By applying the method from67 and using Eqs. (3 – 5), the growth rate in the face direction of {011} 9 

as a function of supersaturation was found to have the best fit of BCF mechanism with the 10 

experimental data41. The corresponding facet growth rate, Gz (µm/min), is as follows: 11 

௭ܩ  ൌ ௌିଵǤହଷଷǤ଼ହൈଵ଴షమା భరǤభళൈభబయൈሺೄషభǤఱయሻൈ೟ೌ೙೓ቀ మలǤవవೄషభǤఱయቁ       (8) 12 

The fitting of the {001} face growth rate, Gy (µm/min), as a function of supersaturation, also 13 

corresponds to a BCF growth mechanism with the following equation: 14 

ϯ 
;ϮϮ͕ Ϯϱ͕ ϮϬͿ 

ϱϱϲϱϱϬ 
;ϮϮ͕ Ϯϱ͕ ϯϬͿ 

ϳϮϴϮϮϬϬ 
;ϮϮ͕ Ϯϱ͕ ϯϯͿ 

ϰϱϳϬϯϬϬϬ 
;ϮϮ͕ Ϯϱ͕ ϯϳͿ 

ϭϯϳϱϴϬϬϬϬ 
;ϮϮ͕ Ϯϱ͕ ϰϬͿ 

ϭϵϴϲϱϬϬϬϬ 
;ϮϮ͕ Ϯϱ͕ ϰϰͿ 

ϭϯϳϱϴϬϬϬϬ 
;ϮϮ͕ Ϯϱ͕ ϰϳͿ 

ϰϱϳϬϯϬϬϬ 
;ϮϮ͕ Ϯϱ͕ ϱϭͿ 

ϳϮϴϮϮϬϬ 
;ϮϮ͕ Ϯϱ͕ ϱϰͿ 

ϯ 
;ϮϮ͕ Ϯϱ͕ ϲϴͿ 
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௬ܩ  ൌ ௌିଵǤଷଷଷǤ଼ହൈଵ଴షమା భభǤళൈభబమൈሺೄషభǤయయሻൈ೟ೌ೙೓ቀ ఱబೄషభǤయయቁ      (9) 1 

Although the crystal growth mechanisms for both faces {011} and {001} are BCF, it was found that 2 

the term related to mass transfer has a value of 3.85  10-2 which is about one magnitude higher than 3 

that of the surface integration term (see Eq. (8)), hence the growth of face {011} is a diffusion limited 4 

process, whilst both terms have very similar values as shown in Eq. (9), which means that the growth 5 

of face {001} is controlled by both diffusion (mass transfer) and surface molecule integration 6 

processes. 7 

As the growth in the {100} direction of ibuprofen crystals was found to be very slow, the growth rate 8 

in the {100} face direction, Gx (µm/min), was estimated as a proportion (10%)71 of Gy. 9 

The predicted solution temperature, supersaturation, crystal concentration, mean normal distances 10 

ҧݔ) ǡ തǡݕ ҧ) for faces {100}ݖ , {001}, {011} , and the corresponding faceted growth rates with a cooling 11 

rate of 0.5oC/min are plotted in Figure 5. Under this cooling rate, the supersaturation of ibuprofen 12 

solution increased with time when solution temperature was reduced (Figure 5a). During the cooling 13 

crystallisation process, the change of supersaturation is the result of competition between the decrease 14 

of solute concentration caused by the consumption of solute due to solute molecules growing onto 15 

crystal surfaces and the reduction of solubility due to the decrease of solution temperature. In the 16 

current case, the solubility decrease of ibuprofen in the mixture of 95%ethanol/5%water is faster than 17 

the decrease of ibuprofen concentration due to slow solute consumption by crystal growth. Therefore, 18 

the supersaturation was found to increase, which lead to the increase of faceted growth rates (Figure 19 

5c) with time. Figure 5b showed that the mean normal distance for face {011} increased rapidly with 20 

time, while less growth happened in x direction as the face {011}  is the fastest growing face from 21 

previous studies 41, 71. 22 

      23 

Figure 5. Simulation results of ibuprofen crystallised from %95ethanol/5%water (case study 1) using 24 

MPB with CR = 0.5oC/min: (a) solution temperature (T), supersaturation (S), crystal concentration 25 

  (b)   (c)   (a) 
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(Cs), (b) evolution of mean normal distances (x, y, z), and (c) facet growth rates in x, y, z face 1 

directions. 2 

 3 

Figure 6. Typical size/shape distribution of ibuprofen crystals at a fixed normal distance, x, of 56 m 4 

with other two normal distances (y, z) varying from (213 m, 388 m) to (312 m, 506 m), and also 5 

random points of normal distances (x, y, z) with their corresponding crystal shapes. The grey, blue 6 

and green coloured faces of ibuprofen crystals are {100}, {001} and {011} faces, respectively. The 7 

red coloured numbers are number of crystals and the values in the brackets represent the normal 8 

distances of faces {100}, {001} and {011}. 9 

 10 
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Some crystal mean shapes at different processing times are plotted in Figure 6. Overall, face {011}  1 

grew faster than face {001} as shown in Figure 7. The increase speed of both growth rates against 2 

crystallisation time is very similar (Figure 5c). As both faces have grown much faster than face {100}, 3 

the ibuprofen crystals were observed to become more and more plate-like (Figure 7). To be consistent 4 

with current practice, Z is the mean in long axis, which can be calculated based on mean normal 5 

distance in z direction and the crystal morphology of ibuprofen. Y and X are as same as mean normal 6 

distances in y and x directions in this case. The mean aspect ratio of Z/X and Y/X was found to increase 7 

slightly from 2.4 (seeds) to 2.7, then reduce very slowly to 2.6. Note that the use of aspect ratio to 8 

demonstrate crystal shape evolution is only one of the results visualisation methods as aspect ratio is 9 

widely used in academic and industrial communities. However, for accurate and comprehensive 10 

presentation of face-based modelling and measurement data, other methods for visualising and 11 

disseminating shape information should be explored and developed for the wide application of MPB. 12 

The mean surface area evolution of different faces and the percentages of contribution during the 13 

ibuprofen crystallisation process are plotted in Figure 8, with the spherical area, converted from MPB 14 

results based on the volume equivalent assumption, being in dotted black line. The areas of both faces 15 

{011}  and {001}  increased very slowly, while face {100}  enlarged dramatically (Figure 8a). This 16 

demonstrates that face {100}  dominates the surface evolution of ibuprofen crystals due to its slowest 17 

growth, which contributes 44 ~ 75% (0 ~ 1300 s of crystallisation time) of the total surface area, but 18 

faces {011}  and {001}  only accounts for 27 ~ 12% and 29 ~ 13%, respectively (Figure 8b). 19 

Comparing with the evolution of the actual surface area (black line in Figure 8b) based on MPB 20 

modelling, the spherical surface area can only reach 78 ~ 84% which is smaller than the real total 21 

surface area of the three faces. 22 
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 1 

Figure 7. Simulated mean shape evolution of ibuprofen crystallised from a mixture of 2 

95%ethanol/5%water (case study 1) with CR = 0.5oC/min (Aspect ratios:  - Z/Y;  - Z/X; - 3 

Y/X). The grey, blue and green coloured faces are {100}, {001} and {011} ibuprofen faces, 4 

respectively. 5 

 6 

 7 

  Figure 8. (a) Mean surface area evolution of different faces and (b) the area percentage of individual 8 

faces and total surface area during crystallisation of ibuprofen crystals from a mixture of 9 

95%ethanol/5%water (case study 1) with CR = 0.5oC/min as predicted with the MPB technique. 10 

(a)  (b)  
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4.2 Case Study 2: Ibuprofen Crystallised from Water-Free Ethanol 1 

The obtained facet growth rates of three faces {011}, {001} and {100} via fitting the volume 2 

equivalent growth (converted from the facet growth) with the measured growth64 are as follows: 3 

௭ܩ  ൌ ͹ǤͻͲͲͷ ൈ ሺܵ െ ͳሻ        (10) 4 

௬ܩ  ൌ ͹ǤͲʹʹ͸ ൈ ሺܵ െ ͳሻ        (11) 5 

௫ܩ  ൌ ͳǤͳ͹ͲͶ ൈ ሺܵ െ ͳሻ        (12) 6 

and also shown in Figure 9. The {100} face growth rate is around 6 ~ 7 times lower than the {001} 7 

face, which is similar to the estimation in literature71. 8 

 9 

Figure 9. Growth rates vs. relative supersaturation ( = S-1). Blue solid dots – growth rate based on 10 

equivalent diameter from experimental data64; Open symbols – face-based fittings to the experimental 11 

data for {011} face (black), {001} face (green) and {100} face (red); Lines – fitting results for growth 12 

rate based on equivalent diameter (blue), {011} face (black), {001} face (green) and {100} face (red). 13 

Note that the experimental data points for the growth rate based on equivalent diameter were 14 

calculated using the corresponding data points of equivalent diameter, as a function of time, as 15 

extracted from the paper by Rashid et al.64. The corresponding data points of supersaturation as a 16 

function of time were also extracted from64. Combining the calculated experimental growth rate and 17 

extracted supersaturation provided the dataset for the experimental growth rates based on equivalent 18 

diameter (Blue solid dots) and the associated fitted regression line (Blue line). 19 

 20 

The evolution of normal distances simulated using MPB and the corresponding volume equivalent 21 

spherical diameter converted from the simulated normal distances are plotted in Figure 10, together 22 

with the face-based growth rates and the corresponding one-dimensional growth rate based on volume 23 
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equivalent spherical diameter. The spherical-based diameter and growth rate obtained directly from 1 

experimental measurements64 are also plotted in Figure 10 for comparison. It can be seen that the face 2 

{100}  grew much slower than other two faces {011}  and {001}  as expected. The evolution of 3 

diameter and growth rates based on volume equivalent spheres are in generally good agreement with 4 

the experimental data64. The MPB results show that the crystals in the crystalliser barely had any 5 

growth after 400 min, while the experiment produced the similar trend after 400min but with some 6 

growth towards the end of the process at 1200 min.   7 

 8 
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Figure 10. Simulation and measurement results of ibuprofen crystallised from ethanol (case study 2) 1 

using MPB. (a) evolution of mean normal distances (x, y, z) and volume equivalent diameter (deq); 2 

(b) facet growth rates (Gx, Gy, Gz) in x, y, z face directions and growth rate based on volume equivalent 3 

diameter (Geq): Solid, dash, dot lines – (x, y, z) or (Gx, Gy, Gz); Dash and dot line – deq or Geq converted 4 

from the simulated normal distances, diamonds - deq or Geq measured by experiment. 5 

 6 

Figure 11 shows the predicted supersaturation and crystal volume equivalent diameter with the 7 

corresponding experimental data from64. Overall the simulated supersaturation and equivalent 8 

diameter generally well reproduced the experimental data. The slower growth of volume equivalent 9 

diameter led to the slower consumption of solute (as the experiment was performed at a constant 10 

solution temperature of 25oC), hence the slower decrease of supersaturation. Note that the input data 11 

such as initial size distribution and growth rates in three face directions for the MPB simulation were 12 

estimated from volume equivalent ones, not direct measurements. Therefore their values may not be 13 

accurate for MPB modelling and validation. 14 

 15 

Figure 11. Simulated and measured relative supersaturation and crystal volume equivalent spherical 16 

diameter during crystallisation process of ibuprofen (case study 2). (Solid line – predicted 17 

supersaturation; Dash line – predicted equivalent diameter; Circles – measured supersaturation with 18 

error bars; Triangles – measured equivalent diameter with error bars. 19 
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The mean shape evolution of ibuprofen crystallised from pure ethanol at a constant solution 1 

temperature of 25oC is plotted in Figure 12, with the aspect ratios between three directions. It can be 2 

seen that the crystals grew bigger at the first 400 min, then the growth became much slower. This 3 

corresponds to the variation of supersaturation during the process as shown in Figure 11. The shape 4 

of ibuprofen crystals becomes more flat, i.e. the aspect ratios between faces {011} and {100} 5 

increased from 1.4 at 1 min (seeds) to 3.6 at 400 min and then 3.8 at 1100 min, even at such a low 6 

supersaturation range (S < 1.1) of the whole process. At higher operating supersaturation, the shape 7 

evolution and aspect ratio can be expected to be more significant.  8 

Figure 13 shows the MPB predicted surface area evolution of individual faces and corresponding 9 

contributions of individual faces to total crystal area when crystallising ibuprofen from pure ethanol 10 

with a fixed temperature of 25oC. The spherical area and its contribution, based on volume equivalent 11 

assumption and converted from MPB modelling results, are also plotted in Figure 13. The area of 12 

face {100} increases rapidly, reaching over 70% of the total crystal area, while other two faces, {011} 13 

and {001}, had a slower increase of surface areas with < 20% and < 10% contributions to the total 14 

area. The spherical based surface area (black dash line in Figure 13) has a contribution of 82 - 92%. 15 

However, the predicted surface areas of individual faces, together with their surface properties, will 16 

provide accurate digital design of the crystallisation process and also downstream processes. 17 

 18 
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Figure 12. Mean shape evolution of ibuprofen crystallised from pure ethanol (case study 2) with a 1 

constant solution temperature of 25oC (Aspect ratios:  - Z/Y;  - Z/X; - Y/X). The grey, blue 2 

and green coloured faces are {100}, {001} and {011} ibuprofen faces, respectively. 3 

 4 

  5 

Figure 13. MPB predicted (a) surface area evolution of different faces and (b) area percentage of 6 

individual faces and total surface area when crystallising ibuprofen crystals from pure ethanol (case 7 

study 2) with a fixed temperature of 25oC. 8 

 9 

Figure 14 shows the evolution of crystal size distribution (CSD) at six crystallisation times (30, 60, 10 

180, 300, 420 and 1200 min). As the face {100}  grew very slow, the mean values of the face {100}  11 

normal distance were fixed at 9.9, 11.6, 17.6, 20.1, 20.9 and 21 m in Figure 14. The left (coloured 12 

as red) projections in Figure 14(a-f) represent the size distributions of face {011}  with the normal 13 

distances of faces {100}  and {001} , (x, y), being fixed at their mean values of (9.9, 30 m), (11.6, 14 

40.3 m), (17.6, 79.7 m), (20.1, 96.9 m), (21, 103.7 m) and (21, 103.7 m) for the six 15 

crystallisation times. Similarly, The right (coloured as blue) projections in Figure 14(a-f) show the 16 

size distributions of face {001}  at the six crystallisation times with the mean (x, z) values of (9.9, 30 17 

m), (11.6, 43 m), (17.6, 84.9 m), (20.1, 105.4 m), (21, 110.6 m) and (21, 112.3 m). Based on 18 

the ibuprofen morphology as shown in Figure 3b, each set of normal distances (x, y, z) at a 19 

crystallisation time can be used to reconstruct the shape of the ibuprofen crystals. Together with the 20 

corresponding number of crystals and their associated normal distances as a function of time, the 21 

(a)  (b)  
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ibuprofen shape distributions can be obtained for any crystallisation time. This capability provides 1 

important information for precision product design not only regarding crystallisation processes but 2 

also those related to downstream processes where particle shape and surface chemistry plays a role, 3 

e.g. filtration, drying, blending, compaction etc.  4 

   5 

   6 

(a) (b) 

(d) (c) 
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   1 

Figure 14. Evolution of some typical crystal size distributions (green) in (y, z) plane with x being 2 

fixed at its mean values from MPB simulation results at various crystallisation times (case study 2): 3 

(a) 30 min, (b) 60 min, (c) 180 min, (d) 300 min, (e) 420 min and (f) 1200 min. The left (red) and 4 

right (blue) projections are the size distributions of face {011}  at mean (x, y) values and face {001}  5 

at mean (x, z) values, respectively. 6 

 7 

To compare the CSD from MPB modelling with experimental data64, the simulated CSD values using 8 

MPB were converted to one-dimensional CSD based on volume equivalent spherical diameters, 9 

which are plotted in Figure 15, together with the experimental determined CSD. At the early stages 10 

(< 180 min), the agreement between the measured CSDs and converted ones from MPB modelling 11 

results is considerably good. However, the standard deviations of converted CSDs become much 12 

smaller than the measured CSDs at the later stages, though their mean sizes are very similar at 13 

different crystallisation times. As mentioned before, the input data for the MPB simulation in this 14 

case study, including initial face-based CSD and facet growth rates were estimated from volume 15 

equivalent experimental data, which, together with the volume equivalent experimental data (as the 16 

crystals are needle-like),  can most possibly contribute to these discrepancies. Therefore the accurate 17 

measurements of crystallisation kinetics and crystal properties (facet growth, size/shape and 18 

distributions etc.), and also the process data collection and analysis are equally important for MPB 19 

model development/validation, and its optimisation/control of crystallisation processes. Further 20 

studies in these areas are underway with the advancements to be reported later. 21 

(e) (f) 
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 1 

   2 

 3 

Figure 15. Comparison between the experimentally measured CSD (symbols) and converted CSD 4 

(solid line) based on volume equivalent spherical diameters using MPB simulated results at various 5 

crystallisation times of 0 (seeding), 30, 60, 180, 300, 420 and 1200 min (case study 2). 6 

 7 

5. CONCLUSIONS 8 

The application of the MPB modelling methodology for using in pharmaceutical R&D and 9 

manufacture has been reviewed, with the utility of the models demonstrated through two case studies 10 

based on previously published experimental data41, 64 on the crystallisation of ibuprofen from 11 

ethanolic solution under seeded batch operating conditions. The MPB modelling, fully integrating 12 

with face-specific growth kinetics including the effect of both interface kinetics and mass transfer on 13 

the growth rates, was found to capture the crystallisation processes behaviour with the temporal 14 

evolution of the crystal shape and size distributions and also the evolution of surface areas with the 15 

respective contributions of individual faces. This was achieved by accurately quantifying the crystal 16 
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shape/size and their distributions at every crystallisation time point after re-constructing the actual 1 

shape of all crystals based on the simulated individual normal distances of crystal faces and 2 

morphology information. The volume equivalent spherical diameter and crystal size distribution 3 

converted from MPB simulations were compared, for the first time, with the experimentally measured 4 

ones64, and reasonably good agreement was reached. The new search method developed is highly 5 

applicable to industrial situation when applying the MPB approach with only limited experimental 6 

data, such as 1D volume-equivalent data, being available. It also enables the extraction of some 7 

important face-based information from the more representative volume-equivalent experimental data 8 

of a type which are generally more widely available within the pharmaceutical industry. 9 

The development of first-principle nucleation kinetics/mechanisms and facet agglomeration and 10 

breakage kernels will involve in crystal morphology, surface chemistry, solid/solution interface, 11 

molecular modelling, hydrodynamics surrounding crystals etc. With these first-principle kinetics and 12 

kernels, MPB modelling techniques can be expected to be powerful process development tools for 13 

the digital design of the crystallisation processes used in the precision manufacture of crystals which 14 

have desirable properties including shape and size for personalised medicines. Further development 15 

of MPB with its application to crystallisation and other processes including filtration, drying, milling, 16 

blending, granulation, tableting etc. will be the planned future work. 17 
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