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Abstract 

Terpene synthases typically form complex molecular scaffolds by concerted activation and 

cyclization of linear starting materials in a single enzyme active site. Here we show that iridoid 

synthase, an atypical reductive terpene synthase, catalyses the activation of its substrate 8-

oxogeranial into a reactive enol intermediate but does not catalyse the subsequent cyclisation 

into nepetalactol. This discovery led us to identify a class of nepetalactol-related short-chain 

dehydrogenase enzymes (NEPS) from catmint (Nepeta mussinii) which capture this reactive 

intermediate and catalyse the stereoselective cyclisation into distinct nepetalactol 

stereoisomers. Subsequent oxidation of nepetalactols by NEPS1 provides nepetalactones, 

metabolites that are well known for both insect-repellent activity and euphoric effect in cats. 

Structural characterisation of the NEPS3 cyclase reveals it binds to NAD+ yet does not utilise it 

chemically for a non-oxidoreductive formal [4+2] cyclisation. These discoveries will complement 

metabolic reconstructions of iridoid and monoterpene indole alkaloid biosynthesis. 

Main paper 

Nepetalactones 1 are volatile terpenoids produced by plants of the genus Nepeta, notably 

catmint (Nepeta mussinii syn racemosa) and catnip (N. cataria) (Fig. 1a)1,2. These compounds 

are responsible for the stimulatory effects these plants have on cats3–5. Moreover, certain 

insects use nepetalactones as sex pheromones, so production of these compounds by the plant 

also impacts interactions with insects6. Notably, the bridgehead stereocentres (carbons 4a and 

7a) vary between2 and within2,4,7 Nepeta species. N. mussinii individuals, for example, produce 

different ratios of cis-trans 1a, cis-cis 1b and trans-cis-nepetalactone 1c7. Variation in 

stereoisomer ratio may influence the repellence of insect herbivores8,9. While the ratio of 

stereoisomers may be responsible for important biological effects, the mechanism of 

stereocontrol in nepetalactone biosynthesis is not known. Nepetalactones are iridoids, 

compounds which are biosynthesised via a non-canonical terpene pathway. The alternative 

nepetalactone stereoisomers found in Nepeta provide an exemplary system to explore how the 

inherent chemical reactivity of a biosynthetic intermediate can be harnessed to generate 

stereochemical diversity.  

Canonical cyclic terpenoids (e.g. (-)-limonene) are biosynthesised from linear precursors by 

terpene synthases (Fig. 1b)10. These enzymes activate linear precursors either by loss of 

pyrophosphate or protonation10–12. The resulting carbocations generated cyclise rapidly to form 

an array of cyclic products13. Therefore, in canonical terpenoid biosynthesis, activation and 

cyclisation of precursors are coupled and occur in the same enzyme active site. 

In plant iridoid biosynthesis, geranyl pyrophosphate is hydrolysed and oxidised into 8-

oxogeranial 214. This precursor then undergoes a two-step activation-cyclisation process, 

analogous to canonical terpene synthesis (Fig. 1c)15. Unlike canonical terpene synthesis, 
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however, activation is achieved by reduction, and the intermediate is not a carbocation, but the

enol or enolate species 3. Cyclisation of this intermediate yields cis-trans-nepetalactol 4a along 

with iridodial side products 5 (Fig. 1c).

Figure 1: Nepetalactones and terpenoid biosynthesis. a, Nepetalactone 1 stereoisomers observed in Nepeta

species. b, Representative canonical terpene biosynthesis mechanism. Typical terpene synthases activate linear 

precursors by removal of diphosphate or protonation. The activated carbocation intermediates undergo selective 

cyclisation inside the same terpene synthase active site. Limonene synthase is depicted as an example. c, Iridoid 

biosynthesis mechanism. Iridoid synthase activates its linear precursor (8-oxogeranial 2) by reduction to form the 8-

oxocitronellyl enol/enolate intermediate 3. This then undergoes cyclisation to form a mixture of cis-trans-nepetalactol 

4a and iridodials 5. d, Biosynthetic origin of cis-trans and cis-cis-nepetalactone stereoisomers in Nepeta as reported 

in this paper. 
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The conversion of 2 to 4a and 5 is catalysed by iridoid synthase (ISY)15. ISY was first 

discovered in Catharanthus roseus (CrISY) where it forms part of the biosynthetic route to the 

anti-cancer monoterpene indole alkaloids vincristine and vinblastine15,16. Subsequent studies 

revealed ISYs from Olive (Olea europaea, OeISY)17 and Snapdragon (Antirrhinum majus, 

AmISY)18, as well as paralogous proteins in C. roseus with promiscuous ISY activity19. Recently, 

we identified ISYs from Nepeta20. 

The enzymatic control of the initial reductive activation step has been structurally characterised 

in CrISY: crystal structures with cofactor and inhibitor or substrate show binding modes 

conducive to reduction and formation of an enolate intermediate21–23. Furthermore, this 

reduction is stereoselective, as exemplified by the comparison of CrISY, which produces 7S-4a, 

with AmISY, which produces the enantiomer18. 

In contrast, it is unknown how the cyclisation that determines the stereochemistry of the 

bridgehead 4a-7a-carbons is controlled. Structures of CrISY did not provide evidence for 

enzyme catalysed cyclisation—although the protein exhibited evidence for conformational 

flexibility near the active site, the substrates bound occupied a linear conformation not 

conducive to cyclisation21–23. Furthermore, active site mutations failed to impact the product 

profile, raising the possibility that the cyclisation step is not enzyme catalysed18,21.  

We have now determined the biosynthetic route to two nepetalactone stereoisomers in N. 

mussinii, cis-trans 1a and cis-cis 1b. The discovery of these genes reveals that the reduction 

and cyclisation steps of iridoid biosynthesis in Nepeta are uncoupled and catalysed by distinct 

enzymes (Fig. 1d). This process involves the diffusion of the activated intermediate 8-

oxocitronellyl enol 3 between enzyme active sites, in contrast to canonical terpene biosynthesis, 

where generation of the activated intermediate and cyclisation occur in the same enzyme active 

site. We have discovered and characterised three cyclases (NEPS1-3) from N. mussinii that are 

responsible for the stereoselective cyclisation and subsequent oxidation of activated 

intermediate 3 into distinct nepetalactone diastereomers. We have also determined the crystal 

structure of NEPS3, providing insight into its mechanism and evolution from a reductase into a 

redox-neutral cyclase. 

Results 

The mechanism of iridoid synthase (ISY) 

Recently we hypothesised that synthesis of the different nepetalactone stereoisomers in Nepeta 

was controlled by species-specific ISYs catalysing both the reduction of 2 and the subsequent 

stereodivergent cyclisations. However, this was not the case; Nepeta ISYs produced the same 

stereoisomeric product profile as CrISY20. Therefore, an alternative mechanism for the control of 

iridoid stereochemistry was developed. 

The first step toward understanding the origin of the divergent stereochemistry of 

nepetalactones 1 was to further explore the ISY mechanism. As observed in previous 

studies15,18–20, the ISY catalysed reduction of 8-oxogeranial 2 generates a number of isomeric 

products (Fig. 2a and b, Supplementary Fig. 1). The achiral product profile of the reduction is 

largely independent of the ISY employed, despite modest sequence identities (48-65%) and 

different stereoselectivities of the reduction step (AmISY is 7R-selective, NmISY2 and CrISY are 

7S-selective) (Fig. 2b). The product profile was, however, strongly influenced by the buffer 

conditions, both its concentration (Fig. 2c) and pH (Supplementary Fig 2). This sensitivity was 
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observed across all ISYs and buffers tested (Supplementary Figs. 2, 3), and was not due to the 

decomposition of cis-trans-nepetalactol 4a in high buffer concentrations (Supplementary Fig. 

4a)24,25.  

The sensitivity of the product distribution to solvent conditions led us to hypothesise that ISY 

reduces 2 to form the activated intermediate 3 which then leaves the enzyme active site and 

diffuses into the solvent. In the solvent, 3 can quench through either cyclisation or tautomerisation 

to form a mixture of products. We propose that the buffer can act as a general acid catalyst, 

promoting tautomerisation. In MOPS buffer, this approximates to three regimes (Fig. 2c): at low 

buffer concentrations (<50 mM) two cyclisations generate the bicyclic 4a as the dominant product; 

in moderately buffered concentrations (50-500 mM) one cyclisation followed by keto-enol 

tautomerisation to form monocyclic 5a becomes favoured; at high buffer concentrations (≥500 
mM) direct keto-enol tautomerisation of 3 into 6 becomes the dominant route. The promotion of 

tautomerisation by buffer molecules mirrors simulations that have highlighted the bimolecular 

nature of tautomerisation mechanisms26,27. 

To validate that the ISY product profile was a result of the non-enzymatic cyclisation of 3, we 

aimed to form 3 in the absence of enzyme. This was achieved by incubation of S-8-oxocitronellal 

6 in unbuffered water at acidic (<2) or alkaline (>10) pHs (Supplementary Fig. 5), or in buffered 

water at pH 7.5 (Fig. 2d, Supplementary Fig. 6). Buffer or extreme pH promotes keto-enol 

tautomerisation of 6 into 3, which could then undergo cyclisation/tautomerisation in an analogous 

manner to ISY reactions. In fact, formation of 4a from 6 is an established synthetic route28. In high 

concentrations of buffer (500 mM MOPS), the product profiles of the ISY catalysed reduction of 2 

and the non-chemical cyclisation of 6 are remarkably similar, supporting the hypothesis that iridoid 

cyclisation is not enzymatically catalysed (Fig. 2d, Supplementary Fig. 6).  

Therefore, unlike canonical terpene synthases which catalyse concerted activation and 

cyclisation (Fig. 1b), ISY catalyses the activation of its linear substrate (8-oxogeranial 2 to 8-

oxocitronellyl enol 3) but does not appear to catalyse the subsequent cyclisation. Instead, we 

hypothesise that 3 diffuses out of the ISY active site into the solvent where it cyclises. This 

mechanism is supported by the ISY crystal structure which did not show substrate binding 

modes conducive to cyclisation21. The notion of free 3 raised the possibility that the iridoid 

stereochemistry may be defined by a partner cyclase enzyme, capable of accepting 3 as a 

substrate and catalysing diastereoselective cyclisation 
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Figure 2: Iridoid synthase (ISY) reaction mechanism. a, Product mixture observed in the ISY catalysed reductive 

cyclisation of 8-oxogeranial 2. b, 8-oxogeranial 2 reduction catalysed by ISYs from Antirrhinum majus (AmISY), 

Catharanthus roseus (CrISY) and N. mussinii (NmISY2). The enzymes form nearly identical product mixtures despite 

their evolutionary distance and sequence identity. *AmISY produces the opposite enantiomeric series to that depicted 

in panel a18. Reactions were incubated for 3 h. See Supplementary Fig 1 for electron ionisation (EI) spectra for 

compound identification. c, ISY catalysed reduction of 2 at different buffer concentrations and possible mechanism.

At low buffer concentrations, the main product is cis-trans-nepetalactol 4a. As buffer concentrations increase, higher 

quantities of cis-trans-iridodials 5a and then 8-oxocitronellal 6 are observed. We propose that ISY reduces 2 and then 

releases the activated 3 into the solvent, where cyclisation occurs. Buffer appears to act as a general acid catalyst, 

promoting tautomerisation in place of cyclisation. Reactions were incubated for 3 h. See Supplementary Figs 2, 3 and 

4 for further exploration of the solvent conditions. d, Buffer catalysed cyclisation of S-8-oxocitronellal 6. Non-

enzymatic formation of 4a and 5 achieved via tautomerisation and spontaneous cyclisation catalysed by buffer,

presumably acting as a general acid. The product profile at 0.5 M buffer mimics the equivalent ISY catalysed 

reduction, supporting a non enzyme catalysed cyclisation. Reactions were incubated for 16 h. See Supplementary 

Fig 5 for reactions with 6 in acidic/alkaline unbuffered water and Supplementary Fig 6 for EI spectra. All reactions are 

presented as GC-MS total ion chromatograms (TICs).
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Identification of nepetalactol related short-chain-reductases (NEPS) 

Identifying a cyclase that works in partnership with ISY presents a challenge: because this 

proposed reaction is unprecedented, it is difficult to predict what type of enzyme family would 

catalyse such a cyclisation. However, nepetalactone biosynthesis in Nepeta is localised to a 

specific plant organ, glandular trichomes7. Therefore, we could compare the proteome of 

trichomes to trichome-depleted leaves to identify genes that are selectively expressed at the site 

of nepetalactone biosynthesis, thereby considerably narrowing the pool of potential gene 

candidates. 

We obtained proteomes for Nepeta mussinii trichomes, leaves and trichome-depleted leaves 

(Supplementary Fig. 7a, Supplementary Data). Comparison of these proteomes enabled 

identification of trichome enriched proteins. This approach was validated by the identification of 

trichome enriched enzymes from upstream isoprenoid biosynthesis (the 2-C-methylerythritol 4-

phosphate (MEP) pathway) and iridoid biosynthesis (Supplementary Fig. 7b,c). 

As a starting point, we initially used these proteomes to identify the enzyme that converts 

nepetalactol 4 to nepetalactone 1, an NAD+ dependent enzyme. An enzyme with such activity 

had previously been isolated from the trichomes of Nepeta mussinii but its sequence was not 

identified29. Six trichome enriched dehydrogenase genes were cloned and recombinantly 

expressed in E. coli (Supplementary Fig. 7d, Supplementary Table 1). Of these, one 

demonstrated cis-trans-nepetalactol 4a dehydrogenase activity (Supplementary Fig. 7e).  

The active enzyme is a short-chain reductase (SDR), part of the SDR110C family, a large and 

diverse family of NAD-dependent dehydrogenases often associated with plant secondary 

metabolism30. Consequently, it was named Nepetalactol-related SDR 1 (NEPS1). NEPS1 could 

catalyse the NAD+-dependent dehydrogenation of either cis-trans-nepetalactol 4a or cis-cis-

nepetalactol 4b to the corresponding nepetalactones 1a and 1b (Fig. 3a-c, Supplementary Fig. 

8a, Supplementary Table 2). The observed activities were in accordance with characterisation of 

the native enzyme29.  

Sequence analysis of NEPS1 and the remaining dehydrogenase candidates revealed two 

additional trichome enriched paralogs of NEPS1, NEPS2 and NEP3 (Supplementary Fig. 9a,b). 

Phylogenetic analysis revealed that these three proteins have a close evolutionary relationship 

and are found uniquely within the Nepeta lineage (Supplementary Fig. 9c). Therefore, we 

hypothesised that NEPS2 and NEP3 also play a role in nepetalactone biosynthesis. 

Consequently, NEPS1-3 enzymes were assayed with a variety of nepetalactone related 

compounds and precursors such as nepetalactol 4, iridodials 5 and 8-oxogeranial 2 

(Supplementary Fig. 10). However, besides the NEPS1 activities described above, no other 

notable activities were observed for NEPS1-3. 

NEPS activities in conjunction with ISY 

As described above, mechanistic investigations of ISY led us to hypothesise that a separate 

cyclase enzyme may act on the activated intermediate 3 that is generated by ISY. To test whether 

NEPS act as such cyclases, we performed one-pot cascade reactions combining NEPS enzymes 

with the ISY catalysed reduction of 8-oxogeranial 2 (Fig. 3a, d, e). As anticipated, addition of 

NEPS1 and excess NAD+ led to the formation of cis-trans-nepetalactone 1a (Fig. 3d, 

Supplementary Fig. 8b), though unexpectedly ISY iridodial side products 5 were diminished. 

Remarkably, addition of NEPS3 to ISY and 8-oxogeranial 2 led to the formation of cis-cis-
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nepetalactol 4b. A combination of NEPS1 and NEPS3 led to the production of cis-cis-

nepetalactone 1b. Adjusting enzyme and cofactor concentrations revealed that NEPS1 and 

NEPS2 promoted the formation of cis-trans-nepetalactol 4a at the expense of iridodial 5 (Fig. 3e).  

The products observed indicated that the NEPS enzymes are cyclases (Fig. 3a), capable of 

accepting 3, the product of ISY, and cyclising it to 4a (NEPS1 and 2) or 4b (NEPS3). NEPS1 can 

then oxidise 4a and 4b into 1a and 1b respectively. The activities of NEPS enzymes did not 

appear to differ when tested with CrISY or NmISY2, suggesting that protein-protein interactions 

between ISYs and NEPS do not play a role in the system (Supplementary Fig. 11a). The cascade 

can operate at a range of total enzyme concentrations (Supplementary Fig. 11b). NEPS2 and 

NEPS3 show no notable oxidation activity with NAD+, NADP+ or at different pHs (Supplementary 

Fig. 11c,d).  

The cyclisation of 3 into 4 is a non-oxidoreductive net [4+2] cycloaddition. The cyclase activities 

of NEPS also do not appear to be oxidoreductive. Investigation into the co-factor dependence of 

the ISY-NEPS3 reactions demonstrated this: NAD+ concentrations were not limiting to overall 

reaction conversions, suggesting that NAD+ was not consumed (Supplementary Fig. 12). 

Furthermore, NEPS3 was active in the absence of supplemented NAD+, though addition did 

improve activity. It appeared that although NAD+ is not turned over by NEPS3 during cyclisation 

it may promote the enzyme’s catalytic ability, perhaps through stabilisation of the protein structure. 

NEPS activities with S-8-oxocitronellal 

To verify the NEPS activities, reactions were conducted with S-8-oxocitronellal 6 and without ISY 

(Fig. 4). High concentrations of buffer were employed to promote the formation of 3, the proposed 

NEPS substrate, from 6. In these conditions, the previously observed activities of NEPS were 

recapitulated (compare Fig. 4b to Fig. 3d). 

Neither NEPS1 nor NEPS3 were active when incubated with 6 in the absence of buffer (Fig. 4c). 

Buffer was necessary for activity, supporting the notion that that 6 is not the key substrate, but 

the tautomer 3 is. Further evidence for this was obtained by adding CrISY to reactions containing 

NEPS and 6—the pattern of products observed implied NEPS were binding to 6 without turning it 

over (Supplementary Fig. 13). 

Support for the non-oxidoreductive nature of the NEPS3 cyclisation came from incubating NEPS3 

with 6 and buffer in the absence of supplemented NAD+ or NADPH: formation of cis-cis-

nepetalactol 4b was still observed (Fig. 4d). As noted above, addition of NAD+ does promote the 

reaction, though it is not necessary for activity. Interestingly, at high NAD+ concentrations, trace 

quantities of 1b are observed (Fig. 4d, also Fig. 3d). Overall, NEPS reactions with 6 support the 

notion of 3 as the substrate and add further evidence the for a non-oxidoreductive cyclisation (Fig. 

4a). 
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Figure 3: Formation of nepetalactones by NEPS enzymes. a, Summary of NEPS enzyme activities described in this 

figure. b, Cis-trans-nepetalactol dehydrogenase activity of NEPS1. NEPS1 catalyses the NAD+-dependent 

dehydrogenation of cis-trans-nepetalactol 4a to cis-trans-nepetalactone 1a. c, Cis-cis-nepetalactol dehydrogenase 

activity of NEPS1. NEPS1 catalyses the NAD+-dependent dehydrogenation of cis-cis-nepetalactol 4b to cis-trans-

nepetalactone 1b. d, Combined activities of ISY and NEPS enzymes. Incubation of 8-oxogeranial 2, CrISY, NEPS 

and cofactors enables the production of: cis-trans-nepetalactol 4a (no NEPS or NEPS2), cis-trans-nepetalactone 1a

(NEPS1), cis-cis-nepetalactol 4b (NEPS3) or cis-cis-nepetalactone 1b (NEPS1 and NEPS3). See Supplementary Fig 

11 for comparison of NEPS cascades with NmISY2 and CrISY. See Supplementary Fig 12 for further analysis of the 

NEPS3 cyclisation reaction. e, NEPS-catalysed formation of cis-trans-nepetalactol 4a. Adjusting the NAD+ and/or 

NEPS concentrations reveals NEPS1 and NEPS2 can promote the formation of cis-trans-nepetalactol 4a. All 

reactions were incubated for 3 h and are presented as GC-MS TICs. See Supplementary Fig 8 for EI spectra.
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Figure 4: NEPS activities explored with S-8-oxocitronellal 6. a, Summary of NEPS enzyme activities described in this 
figure. b, NEPS activities with S-8-oxocitronellal 6, buffer and NAD+, presented as GC-MS TICs. The panel largely 

recapitulates observations of Figure 3b, but in the absence of ISY. Unknown side products are formed by NEPS1. 

See Supplementary Fig 13 for reactions with 6, NEPS and CrISY. c, Buffer dependence of NEPS activity with S-8-

oxocitronellal 6. In the absence of buffer, NEPS1 and NEPS3 have no detectable activity; addition of buffer reveals 
enzyme activities. Buffer-catalysed tautomerisation of 6 appears to be necessary for enzyme activity, supporting the 

hypothesis that the activated 8-oxocitronellyl enol 3 and not S-8-oxo-citronellal 6 is the key NEPS substrate. d, 
NEPS3 catalysed cyclisation. The addition of NAD+ is not required for NEPS3 cyclisation activity, though addition 

does promote the reaction. We hypothesise that the cyclisation is not oxidoreductive, but NAD+ acts in a non-

chemical manner (i.e. protein stabilisation). All reactions were incubated for 16 h (in contrast to 3 h for Fig. 3) and are 

presented as GC-MS TICs. 
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Structure and mechanism of NEPS enzymes

Figure 5: Structure of NEPS enzymes. X-ray crystal structure of NEPS3 (6F9Q) and homology model structures of 

NEPS1 and NEPS2. Active site NAD+ and residues are depicted as sticks. Dashed lines represent proposed H-

bonds. The NEPS3 active site lacks the characteristic Ser/Thr of the SDR catalytic tetrad (G152). It also features a 

chloride bound to S154 and H-bonding between S153 and P190. S154 is replaced by leucine in NEPS1 (L156) and 

NEPS2 (L152). The role of residues in bold and underlined have been analysed by mutation. See Supplementary Fig 

14 for further analysis of the NEPS3 crystal structure.

To understand the mechanism of the NEPS3 cis-cis cyclisation reaction, we obtained an X-ray 

crystal structure of NEPS3 bound to NAD+ (6F9Q, Supplementary Table 3). In common with 

structural homologs, it forms a homotetramer with 222 symmetry, with the four active centres 

contained entirely within individual protomers (Supplementary Fig. 14a). Efforts to generate an

apo or ligand bound structure were unsuccessful, as were efforts to crystallise NEPS1. Despite 

the fact that NEPS3 appears to function primarily as a non-oxidoreductive cyclase, its structure

is characteristic of classical SDRs, with NAD+ bound in the typical fashion (Supplementary Fig.

14b,c). Although evidence suggests NAD+ is not turned over by NEPS3 during cyclisation, the 

co-factor appears important for the enzyme structure as it was required for crystallisation and it 

is bound by multiple H-bonds by the protein.

Homology models of NEPS1 and NEPS2, based on the NEPS3 structure, were generated to

enable comparison of the enzyme active sites (Fig. 5). Whilst NEPS1 and NEPS2 have a typical 

SDR catalytic tetrad (N-Y-K-T/S), NEPS3 lacks the theronine/serine and instead has a glycine 

(G152). In addition, NEPS3 features H-bonding between active site residues S153 and P190, 

absent from both NEPS1 and NEPS2 due to the presence of a proline in place of the serine.

Interestingly, the NEPS3 structure appeared to feature a chloride anion bound to the amide NH 

and side chain of S154. Based on the presence of the chloride, and the similarity to the 

substrate oxyanion binding site in CrISY, this position may be a substrate oxyanion binding site

(Supplementary Fig. 14c). This site appears to be absent in NEPS1 and 2 due to the steric 

hindrance of the leucine side chain present in the equivalent position.

Active site residue roles in NEPS1 and NEPS3 were probed via mutational screens

(Supplementary Table 4). NEPS3 was especially sensitive to mutation, with several active site 

substitutions abolishing detectable soluble expression (A151T, G152T, S153P, Y165F). These 

mutations may have disrupted the H-bonding network in the active site, reducing protein

stability. Of the mutations yielding soluble protein, only N150T maintained native levels of 

activity, whilst S154L, K169M and M196S had a severe reduction or complete loss of activity
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(Supplementary Fig. 15a). Several NEPS1 variants had no detectable formation of 1a, signifying 

that these may be functionally important residues (T152N, L156S, Y167F, K171M, S198M, 

T202A, Supplementary Fig. 15b). Near-WT levels of 1a were identified in samples with the 

variants T153A and V199A, whilst trace quantities of 1a was identified with N125A and P155S 

(Supplementary Fig. 15c). Most interesting were variants containing the T154G substitution, 

which produced considerably greater quantities of 4a than WT (Supplementary Fig. 15d). 

The role of the NEPS3 S154 putative oxyanion binding site was examined by further 

characterisation of NEPS3-S154L and the complementary NEPS1-L156S variant. NEPS3-

S154L (2 µM) demonstrated no detectable cis-cis cyclase activity, though at higher enzyme 

concentrations (10 µM), the variant appeared to promote the formation of cis-trans-nepetalactol 

4a (Fig. 6a). The complementary substitution in NEPS1, L156S, reduced dehydrogenase 

activity but failed to increase the formation of cis-cis-nepetalactol 4b or lactone 1b (Fig. 6a). The 

NEPS3-S154 oxyanion binding site therefore appears necessary for cis-cis cyclisation in 

NEPS3 but its introduction into NEPS1 is not sufficient to establish cis-cis cyclisation activity. In 

contrast, the removal of S154 from NEPS3 appears to switch the cyclisation selectivity from cis-

cis to cis-trans.  

The NEPS1-T154G variant was also characterised further. Compared to NEPS1-WT, the 

variant accumulated 4a and showed impaired formation of 1a (Fig. 6b, Supplementary Fig. 16a). 

This loss of dehydrogenase activity appears to be a result of a 150-fold increase in Km for 4a 

caused by the T154G substitution (Supplementary Table 2). This result indicates that T154 

interacts with 4a during or prior to the dehydrogenation step; a putative binding mode is 

provided by docking calculations (Fig. 6c). Interestingly, the variant appears to have slightly 

enhanced cyclisation activity: reactions with T154G show minimal formation of cis-trans-iridodial 

5a side products (Supplementary Fig. 16a) and the variant is also able to form detectable levels 

of 4a from 6 in buffer without supplemented cofactors (Supplementary Fig. 16b). This improved 

cyclisation may be a consequence of poor 4a binding—if 4a is released rapidly then there is 

more available enzyme to bind 3 and catalyse its cyclisation (Fig. 6d). 
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Figure 6: NEPS variants. a, Coupled assay with 8-oxogeranial 2, ISY and NEPS variants, presented as GC-MS TICs. 

The product profile was measured after 3 h. The substitution S154L in NEPS3 appears to remove the cis-cis cyclase 

activity (absence of 4b), but with 10 µM enzyme the formation of cis-trans-nepetalactol 4a appears to be promoted

relative to iridodials 5. The L156S substitution in NEPS1 largely removes dehydrogenase activity of NEPS1 (less cis-

trans-nepetalactone 1a) but no increase in cis-cis-nepetalactol 4b is observed. b, Time course of coupled assay with 

8-oxogeranial 2, ISY and NEPS1 WT or T154G. Quantities of cis-trans-nepetalactol 4a (blue) and cis-trans-

nepetalactone 1a (orange) measured over the course of the reaction. Product proportions described as GC-MS TIC 

peak areas as a percent proportion of total product peak area. NEPS1-WT oxidises 4a into 1a rapidly whilst NEPS1-

T154G oxidises 4a with less efficiency. See Supplementary Fig 16 for all TICs of time course, and Supplementary 

Table 2 for kinetic analysis. c, Putative binding mode of cis-trans-nepetalactol 4a in the NEPS1 active site. Binding 

mode generated by computational docking calculations using the NEPS1 homology model. The putative H-bond 

interaction between the lactol and T154 is highlighted with a dotted line. The depicted binding mode was ranked third 

of ten predicted binding modes (rank 1 score = -6.4 kcal.mol-1, depicted rank 3 energy = -6.3 kcal.mol-1). d, Scheme 

of NEPS1 activities and interactions. NEPS1 appears to have two distinct activities—cyclisation and 

dehydrogenation. The behaviour of the mutant T154G suggests that T154 is involved in dehydrogenation. The two 

activities appear distinct and may even involve different active site interactions. The slightly improved cyclase activity 

of T154G may be due to poor binding of 4a which frees more enzyme for binding and cyclising 3 into 4a.
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Discussion  

Here we demonstrate how a mechanistic analysis of ISY led to the hypothesis that a separate 

cyclase is responsible for setting the stereochemistry of the iridoid framework. A comparative 

proteomic analysis allowed discovery of these cryptic enzymes. These NEPS enzymes 

demonstrate the plasticity and innovation characteristic of plant secondary metabolism 

enzymes31. NEPS3, for example, is an SDR by structure and sequence yet its primary catalytic 

activity is non-oxidoreductive; NAD+ is utilised not as a co-substrate but as a protein structural 

scaffold. Interestingly, at very high NAD+ concentrations NEPS3 can catalyse dehydrogenation 

with low catalytic efficiency, a phenomenon that may be a glimpse into its evolutionary past. 

Due to its inherent reactivity, in situ generation of the substrate 3 was required to reveal the 

activity of the NEPS enzymes. Reactive non-isolable substrates appear elsewhere in plant 

specialised metabolism, including monoterpene indole alkaloid32 and lignan biosynthesis33,34. 

NEPS are reminiscent of dirigent proteins, proteins in lignan biosynthesis that control the 

stereoselective cyclisation of a reactive intermediate that is generated by a separate 

enzyme33,34. There may be similar undiscovered steps in other metabolic pathways; these 

cannot be revealed in simple one substrate, one enzyme assays, but require multi-enzyme 

cascade strategies, making discovery of such enzymes challenging. 

Based on the structural and mutant data, we propose that NEPS1/2 and NEPS3 catalyse 

cyclisation in different fashions. NEPS1/2 appear to allow the enol 3 to proceed down a default 

‘uncatalysed’ path, forming the same product as formed in water (Fig. 2). Their key role in the 

cyclisation appears to be to protect the intermediate from general acid catalysed 

tautomerisation; there is no evidence to suggest that NEPS1/2 mechanisms do not mirror the 

stepwise Michael addition seen in solution35. NEPS3, on the other hand, has specific 7S-cis-cis-

nepetalactol cyclase activity, binding to 3 possibly via S154 and exerting steric and/or 

electrostatic influence to enable formation of the cis-cis stereochemistry. Further analysis is 

required to determine whether NEPS3 catalyses the [4+2] cyclisation in a stepwise or concerted 

manner (i.e. Michaelase or Diels-Alderase). The contrast between the ‘passive’ NEPS1/2 and 

‘active’ NEPS3 mechanisms mirrors the of dichotomy of intrinsic substrate reactivity versus 

enzyme influence in canonical terpene synthase mechanisms13. 

Phylogenetic analysis suggests the NEPS enzymes are unique to Nepeta. Yet ISYs from other 

organisms also do not catalyse iridoid cyclisation. Thus, it is likely that different cyclases, 

unrelated to NEPS, are operating in other iridoid producing species. The absence of such 

cyclases from iridoid pathways reconstituted in microbial organisms may have negatively 

impacted yields36–38. The NEPS cyclases described here, especially NEPS2, a dedicated cis-

trans cyclase, can be incorporated into such systems to improve yield. 

This article describes of how nepetalactone isomers can be formed in vitro by ISY and NEPS. 

The in planta roles of these enzymes in nepetalactone biosynthesis is suggested by their in vitro 

activities, trichome enrichment and phylogenetic distribution. However, whilst we have 

demonstrated the exquisite sensitivity of the in vitro enzyme cascades to conditions such as 

enzyme concentration and pH, we do not know the equivalent in planta conditions, nor if other 

proteins are involved. Accordingly, further work is being conducted to understand the in planta 

biosynthesis, with a focus on how the nepetalactone stereochemistry is controlled and how the 

pathway has evolved. 
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We have revealed the enzymatic origin of cis-trans and cis-cis-nepetalactone, compounds in 

Nepeta responsible for cat attraction and insect repellence. In doing so we have discovered 

three novel enzymes: two dedicated cyclases and one multifunctional cyclase-dehydrogenase. 

The structure of one of these enzymes reveals it has re-purposed a dehydrogenase structure for 

a different catalytic function. We have shown that iridoid biosynthesis involves uncoupled 

activation and cyclisation: a reactive, non-isolable enol is formed by reduction and cyclised by 

separate enzymes. Such findings will contribute to synthetic biology metabolic reconstructions 

and inform the de novo design of (bio)synthetic pathways; they also highlight the dynamic and 

innovative nature of plant natural product biosynthesis.   
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Data availability 

The sequences of N. mussinii NEPS enzyme have been deposited in GenBank/EMBL/DDBJ 

with the accession codes: MG677124 (NmNEPS1), MG677125 (NmNEPS2) and MG677126 

(NmNEPS3). The NAD+ bound NmNEPS3 (7S-cis-cis-nepetalactol cyclase) X-ray structure has 

been deposited in the PDB with the accession code 6F9Q. The mass spectrometry proteomics 

data have been deposited to the ProteomeXchange Consortium via the PRIDE39 partner 

repository with the dataset identifier PXD008704. Detailed experimental procedures and can be 

found in the supplementary information. The authors declare that all other data supporting the 

findings of this study are available within this Article and its Supplementary Information or from 

the authors upon reasonable request. 
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