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ABSTRACT  

This work studies the advantageous features of the fluid inerter device for optimised structural 

control of buildings. Experimental data are first presented to characterise the fluid inerter 

dynamics, and validate the simplified analytical formulations. Building on these observations, 

the device is modelled as an inerter in parallel with a nonlinear dashpot representing a power 

law damping term. The latter dissipative effects are mainly induced by the pressure drops 

occurring in helical channels due to the fluid viscosity and density. Then, novel passive 

vibration control schemes are implemented for the earthquake protection of base-isolated 

buildings by combining the fluid inerter with a tuned mass damper system. To account for the 

uncertain nature of the earthquake input, the base acceleration is modelled as a Kanai-Tajimi 

filtered stationary random process. The optimal fluid inerter parameters, namely inertance and 

damping, are identified numerically by minimising stochastic performance indices relevant to 

displacement, acceleration, and energy-based measures of the structural response. The 

nonlinear damping behaviour of the fluid inerter is fully incorporated in the optimal design 

procedure via the statistical linearization technique. Nonlinear response history analysis under 

an ensemble of 44 natural earthquake ground motions is carried out to assess the seismic 

performance of the system. Since inertance and damping are coupled characteristics in a real 

fluid inerter, design guidelines are finally outlined to determine the actual geometrical and 

mechanical properties of the device to achieve targeted parameters resulting from the 

optimisation procedure. 
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1. INTRODUCTION 

Since the Smith’s [1] pioneering contribution in 2002, the inerter has become a popular 

mechanical device studied and used in different fields, from improved suspension systems in 

automotive engineering [2]-[6], to steering compensators for high-performance motorcycles 

[7], suspensions in railway engineering [8]-[10], mitigation of liquid sloshing in storage tanks 

[11], vibration suppression of optical tables [12] and even aircrafts landing gears [13].  

The inerter can be usefully employed for the passive vibration control of civil engineering 

structures, particularly in structural dynamics applications [14], [15]. Furthermore, the 

beneficial mass amplification effect of the inerter can improve the seismic performance of 

conventional tuned mass damper (TMD) systems, thereby promoting the development of more 

effective vibration absorbers for earthquake engineering applications. Lower-mass and more 

effective alternatives to the traditional TMD can be developed through the inerter, namely the 

tuned mass damper inerter (TMDI) [16]-[19] and the tuned inerter damper (TID) [20]-[24]: in 

the first case the inertance replaces the TMD mass partly, instead in the second case it entirely 

substitutes the TMD mass.  

Typical realizations of the inerter employ rack-and-pinion mechanisms [1], ball screw 

mechanisms [25], electromagnetic devices [26], and hydraulic devices [27]. The helical fluid 

inerter dealt with in this paper belongs to the latter class and was recently patented by Smith 

and collaborators [28], [29]. However, hydraulic engine mounts exploit the same inertial effect 

using rotating fluid, and were developed much earlier [30]. Specifically, the design of these 

mounts was based on the lever arm model of the Dynamic Anti-resonant Vibration Isolator 

(DAVI) concept, first patented in 1967 by Flannelly [31], which is also an inerter. More recent 

studies of the application of these mounts can be found in [32]-[34]. Devices that exploit 

relative acceleration to produce inertial force for civil engineering applications were also being 
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developed as modifications to viscous dampers in the late 1990s – see the tuned viscous mass 

damper (TVMD) described in [35] and references therein.  

In certain circumstances, the hydraulic mechanism underlying the fluid inerter offers certain 

advantages over both the flywheel-based and mechanical ball screw inerter devices: for 

instance, it may reduce ratcheting, backlash and friction phenomena that are more pronounced 

in mechanical devices [36]. Additionally, one more advantageous feature of the fluid inerter is 

related to its inherent damping that results from the pressure drops occurring in helical channels 

due to the fluid viscosity and density.  

The recent literature on the fluid inerter has mainly focused on the identification and 

modelling of this device based on some available experiments [27], [37]-[41]. Nevertheless, to 

the authors’ best knowledge, with regard to the implementation of the fluid inerter in civil 

engineering applications to date there are just a couple of preliminary studies [42], [43], 

although we note that the TVMD described in [35] is a hybrid between fluid and mechanical 

inerter, the inertance being provided by a mechanical flywheel. Thus, while the rack-and-pinion 

inerter and the ball-screw inerter were extensively studied in several structural control layouts, 

see for example [44]-[48] along with the recent overview in [49], the more specific application 

of the fluid inerter to structural control of buildings is still at a preliminary stage of research, 

which has motivated the present research work.  

1.1. Goal of the paper and research significance 

The goal of this paper is to investigate the advantageous features of the fluid inerter in 

earthquake engineering applications, for optimised structural control of base-isolated (BI) 

buildings. The motivation for this study is related to some drawbacks typically suffered from 

BI buildings, mainly the large displacements concentrated at the isolation level (that may be an 

issue for the risk of pounding) and the vulnerability to long-period ground motions [50]. These 
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shortcomings were partly overcome through some hybrid control strategies, by placing a TMD 

below the isolation floor of the building [51], [52], see in this regard the recent practical case 

study in [53]. More effective structural control systems can be obtained by coupling the inerter 

with the TMD [54]. Thus, to complete the previous research work [19], we here expand the 

investigation by considering the fluid inerter in place of the rack-and-pinion inerter in such an 

enhanced structural control layout. Building on previous design methods [27] and some 

experimental observations [38], the fluid inerter is modelled as an inerter in parallel with a 

nonlinear dashpot representing a power law damping term for the fluid damping. Following 

this, novel passive vibration control schemes are studied via different combinations of the fluid 

inerter in conjunction with vibration absorbers. The optimal parameters of the fluid inerter, 

namely inertance and nonlinear damping, are identified numerically through the minimization 

of specific objective functions arising from the stochastic dynamic analysis of the system, by 

modelling the earthquake-induced acceleration as a random process. The nonlinear damping 

features of the fluid inerter are incorporated in the optimal design procedure through the 

statistical linearization technique. Then, the seismic performance is assessed via nonlinear 

response history analysis (RHA) under an ensemble of 44 earthquake ground motions. 

Strategies to simultaneously convert the targeted inertance and damping parameters resulting 

from the above optimisation procedure, which are two coupled terms in a real fluid inerter, into 

actual geometrical and mechanical properties of the device are finally discussed. 

2. HELICAL FLUID INERTER MODELLING  

The working principle of the helical fluid inerter was described in [27], [28] and is here 

briefly recalled for completeness and supplemented by some additional experimental 

observations [38]. The sketch of the device is shown in Figure 1, while the symbol 

nomenclature is listed in Table 1. The device consists of a piston moving within a cylinder that 
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contains a fluid. When the piston moves from one side to the other, it forces the fluid to flow 

through a helical coil. This flow generates an inertial force due to the moving fluid mass. A 

part of the resistive force is proportional to the relative acceleration between the two terminals 

of the device, that is 

 

2

1

2inertance

241 / 2

hel
m A

x bx
Ah r

F


  
   

   
 (1) 

where the b constant, representing the term within square brackets, has the dimensions of mass 

[kg] and is called inertance, and x denotes the relative displacement of the terminals.  

The inertance is related to the mass of liquid in the helical channel 2hel f
m A . From Eq. 

(1) it is noted that the b value can be adjusted by simply scaling the ratio 1 2/A A  (piston area 

to channel area), and this makes it potentially possible to achieve large inertance values with 

simple geometrical considerations. However, we note that (i) Eq. (1) is an idealised formula 

based on very simple assumptions and (ii) damping and inertance are coupled (via the 

geometry) and cannot be designed independently from one another as better clarified next.  

 

Figure 1 Schematic of the helical fluid inerter: longitudinal section (left); cross section (right) 
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Table 1 Nomenclature for geometrical dimensions and physical properties of the helical fluid inerter 

Symbol [units] Meaning 

1  [m]r  Radius of the piston 

2  [m]r   Inner radius of the cylinder 

3  [m]r  Inner radius of the helical channel 

4  [m]r  Radius of the helix 

 [m]h  Pitch of the helix 

 [-]tn  Number of turns in the helix 

 [m]L  Inner length of the cylinder 

2 2
4(2 )  [m]tn h r   Length of the helical channel 

 [ ]bR m   Bend radius of the helical channel 
2 2 2

1 2 1( ) [m ]A r r   Cross-sectional area of the cylinder 

2 2
2 3  [m ]A r  Cross-sectional area of the helical channel 

 [cSt]f   Kinematic viscosity of the fluid at reference temperature 

 [Pa s]f 1 Dynamic viscosity of the fluid at reference temperature 

3 [kg/m ]f  Mass density of the fluid at reference temperature 

1 the dynamic viscosity in [cSt] and the dynamic viscosity in [Pa s] are related to each other through the 

mass density expressed in [kg/m3] according to 
61= 0f f f      

The ideal inerter would only have its force proportional to relative acceleration. As said above, 

some deviations from the ideal behaviour caused by friction, backlash etc. can be minimised 

in the fluid inerter device as compared to mechanical alternatives. There are, however, other 

nonlinear damping contributions to the total resistive force of the fluid inerter that cause 

deviations from the ideal behaviour in Eq. (1) for large piston velocities. These dissipative 

effects are related to the intrinsic viscosity of the fluid inducing pressure drops that cannot be 

eliminated as they are part of the working principle of this hydraulic device. Thus, these 

nonlinear damping contributions should be incorporated in a proper modelling of the fluid 

inerter. Among these contributions, the most important term is related to the pressure drop 

helicalp  due to the viscous effects in the helical channel. Some simplified modelling 

assumptions can be introduced in this regard. According to Darcy’s formula for turbulent 

conditions, for a smooth pipe such pressure drop is expressed as [28] 

0.25 2

helical 2

3

1
0.079 Re

f f
p v

r
   (2) 
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wherein fv  is the mean velocity of the fluid in the helical channel, which can be related to the 

piston velocity x  through the volume conservation law 1 2/
f

v Ax A , and 3Re 2 /
f f f
v r   

is the Reynolds number. From Eq. (2), the damping force to maintain a steady velocity is 

1.750.25 0.75

1
helical helical 1 1.25

1 1.75 1.75

f1

3 2

0.0664 f f

d

A
F p A

r A

A
x c x

 


 
  


 


 (3) 

where f1c  is a coefficient that depends on physical properties of the fluid and the geometry of 

the device. A slightly different formulation was proposed in [27] where other effects like the 

secondary flow due to the centrifugal force in the curved helical channel were considered  

2

1 1
helical2 heli

1 12 2

f 2cal2 1 2

2 3 23

f 3

2 2
0.03426 17.54

(2 )2

f f

d

b

A A
F p A

A r A

A A
x x c

R
x

r
c x

 


   
      


 

  
 (4) 

which consists of a linear term plus a squared term whose coefficients f 2 f 3,c c  depend on the 

physical and geometrical properties of the fluid inerter. The two formulations in Eqns. (3) and 

(4) for the helical tube damping force lead to rather different values for high velocities. In 

particular, the formulation of Eq. (4), which accounts for the secondary flow effects due to 

channel curvatures, overestimates the damping force as compared to Eq. (3), which instead 

explicitly incorporates turbulent flow conditions but based on an underlying straight pipe 

assumption. We do not claim that either of these two formulations should be considered as 

definitive, or as superior over the other, but they are included here and presented alongside one 

another so that they may be applied in the appropriate modelling circumstance. 

Other small energy losses occur at either end of the channel (inlet and outlet), where flow 

transition between the main cylinder and the narrow channel occurs; other effects are due to 

friction at the side of the piston. These forces, inletd
F  , outletd

F   and shearF , respectively, can be 

approximated using the expressions reported by Swift et al. [27]. The summation of all the 

force contributions generates the total resisting force of the fluid inerter device as  
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 

2

1 1.7

total inertance helical inlet outlet shear inertance total

1.7

5 21

2

5 20.25 0.75

21 1
11.25

3 2 224

( )

0.0664 2
0.7

1 / 2
5h

d d d d

f f fe
f

l

F F F F F F F F

r LA AA
A
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m A
x x x x

Ah r





  


         

    
     
  

    
       




 (5) 

from which we note that the force consists of a part inertanceF  proportional to the relative 

acceleration (related to the ideal inerter) and another part totald
F  , dependent on the relative 

velocity, induced by the parasitic damping caused by the pressure drops and fluid friction 

losses.  

 

Figure 2 Force time histories (left) and hysteretic loops (right) of the fluid inerter described in [28] 

subject to a sinusoidal displacement input with frequency 1.5Hz and amplitude 50mm 

In an attempt to present the hysteretic characteristics of a fluid inerter device, in Figure 2 the 

force time histories and the corresponding force-displacement loops are shown for the fluid 

inerter parameters described in the patent document [28] subject to a sinusoidal displacement 

input with frequency 1.5Hz and amplitude 50mm. It is noted that the hysteretic characteristics 

of this idealised device are well captured by only considering the sum of the helical tube 

damping and the inertance force, i.e., total inertance helicald
F F F  . This suggests that a simplified 

model of the fluid inerter could well be justified for many applications. This simplified model 

would incorporate an ideal inerter in parallel with a nonlinear dashpot representing the parasitic 

damping (viscosity-related) effects via a power law damping term, as shown schematically in 
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Figure 3. Throughout this paper the first modelling assumption for the pressure drops helicald
F   

as per Eq. (3) is adopted, with a power law damping in the form 
NL
pc x


 with 1.75   

according to the patent formula [28]. 

 

Figure 3 Simplified model of fluid inerter through an inerter in parallel with a nonlinear dashpot 

representing a power law damping term (inerter + parasitic damping) 

It is worth noting that all the expressions proposed for the evaluation of the pressure drops due 

to the fluid viscosity were for steady flow with no end effects. Nevertheless, in a real fluid 

inerter device the flow will be unsteady, oscillatory and subject to end effects. One immediate 

issue is that, due to reversals in velocity during oscillations, the flow velocity will be crossing 

the transition between laminar and turbulent multiple times during every cycle. This means that 

all the above relationships, valid for steady flow in a straight pipe, should be interpreted as 

preliminary approximations of the more complex behaviour of the fluid inerter, which requires 

more sophisticated computational tools than just a single, simplified analytical formula. 

2.1. Some additional considerations from experiments 

In this subsection, some experimental results from [38] are compared with the analytical 

result using Eq. (5). The main parameters of the fluid inerter prototype are listed in Table 2, 

while other details of the experimental setup were reported in [38] and are here omitted for 

brevity. Assuming the total force is the sum of inertial and damping force in parallel, the 

comparison of analytical and experimental total force time histories is given in Figure 4 for a 

typical sinusoidal excitation. The amplitude of the predicted total force is 400N but in the 

experiment this is 1000N. Closer inspection of the time history, and consideration of the 
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damper design, suggests that the forces in the experiment are strongly influenced by friction, 

which was neglected in the simulation. To fit the experimental force amplitude, a friction force 

of friction n( )sg xF f  is included, where f=550N and ẋ is relative velocity between the piston 

ends. Including this friction force provides a close fit between experimental force and 

simulation, as seen in Figure 4.  

Table 2 Geometrical and physical parameters of the tested fluid inerter device 

Symbol [units] Value 

1  [m]r  0.014 

2  [m]r  0.025 

2  [m]r  0.006 

4  [m]r  0.120 

 [m]h  0.030 

 [-]tn  7 
3 [kg/m ]f  802 

 [Pa s]f  0.00168 

 

 

Figure 4 Analytical vs experimental force (sinusoidal excitation, amplitude 17.5mm, frequency 3Hz) 

In this regard, Shen et al. [39] suggested that this friction force could be associated with the 

interaction between the piston and cylinder of the fluid inerter. The prototype used in the 

present study [38] also had significant friction from the piston shaft seals. However, Shen et 

al. [39] reported that the friction force becomes less significant at higher excitation frequencies, 

and when the relative motion is higher. In general, the friction force is reduced with the 
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increasing of force and relative velocity between the piston ends (i.e. the Stribeck effect). In 

earthquake engineering applications, it is expected that the force being applied to the device is 

very large (hundreds of kN as confirmed in the below numerical examples and design 

considerations later on in this paper). Consequently, in earthquake engineering applications it 

is expected that friction contributions in the range of 0.5-1 kN can be neglected in the 

preliminary sizing and optimisation of the device design, and that the simplified model 

sketched in Figure 3 of inerter in parallel with nonlinear dashpot can be resorted to. 
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Figure 5 Sketch of the structural systems analysed: a) base-isolated (BI) building; b) BI building with TMD and grounded fluid-inerter, also termed TMDI with 

parasitic damping (TMDI-PD); c) BI building with fluid-inerter-based TMD (FIB-TMD)  
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3. NOVEL FLUID INERTER BASED TMD SYSTEMS FOR BASE-ISOLATED 

BUILDINGS 

In this section some novel fluid-inerter-based TMD systems are introduced to improve the 

structural control of BI buildings. Reference is made to the simple sketches illustrated in Figure 

5 where a shear-type planar model of n-story BI building is assumed, having mass lumped at 

each floor. The mass, damping and stiffness matrix of the superstructure (in its fixed-base 

configuration) are denoted as s s s, ,M C K  respectively. The base isolators are featured by a 

strong nonlinear behaviour that may be dependent upon velocity, temperature, and axial force 

in a very intricate manner [55]. Nevertheless, in a preliminary model the base-isolation system 

can be modelled as an additional single-degree-of-freedom (SDOF) system through its linear 

effective stiffness and equivalent viscous damping characteristics b b,k c  that can be determined 

from real-scale experiments as described in [56]. The basement mass is denoted as bm .  

The multi-degree-of-freedom (MDOF) systems shown in Figure 5 include a TMD at 

basement in conjunction with the fluid inerter device and, thus, complete the previous overview 

in [49] where, instead, only rack-and-pinion (flywheel-based) inerter devices were considered 

for the analysis of simple SDOF structural systems. In line with the nomenclature adopted in 

[19], for a better comprehension of the structural systems the spring and damping properties of 

the TMD system t t,k c  are associated with an auxiliary set of isolators that are introduced in 

addition to the above conventional isolators (featured by b b,k c ). From a structural dynamics 

viewpoint, the fluid inerter is easily incorporated in the equations of motion via the simplified 

model displayed in Figure 3. Two different configurations are presented in Figure 5 depending 

on the fluid inerter placement: 1) a grounded fluid inerter gives rise to a so-called TMDI with 

parasitic damping (TMDI-PD), which is an enhanced variant of the TMDI first presented in 

[16] with an additional power law damping term due to the fluid damping; 2) a so-called fluid-
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inerter-based TMD (FIB-TMD) system in which the fluid inerter is located in between the 

TMD mass and the base-isolation floor, which, apart from the nonlinearity of the damping 

behaviour of the device, shows some similarities to a model proposed by Saitoh in a different 

context [46]. These two dynamic layouts are just two examples of suspension configurations 

incorporating the fluid inerter based on two structural control systems earlier proposed in the 

literature. However, many other schemes might be developed, which is beyond the main scope 

of the present paper. These two systems have N=n+2 DOFs, represented by the n displacements 

of the superstructure stories s s1 s[ , , ]Tnu u u , the displacement of the conventional isolators 

bu  and that of the TMD tu , all meant relative to the ground. For convenience, it is useful to 

introduce the displacements of the superstructure relative to the base-isolation floor 

sr s s bu u u τ  with sτ  a 1n  vector of ones. The equations of motions for the two systems 

subject to a horizontal ground motion acceleration gu  at their base, and are presented separately 

in the following subsection. Only the horizontal earthquake-induced excitation has been 

considered for simplicity, while analysis of the vertical excitation certainly deserves further 

investigation as proposed by Lu et al. [57]. 

3.1. Governing equations of motion 

Applying the D’Alembert’s principle to the TMDI-PD system in Figure 5b) leads to: 

 g bs sr s sr s sr s s

b b b b b s1,b aux-iso1 b g

t t aux-iso 1 g

b

1 FI t

m

u u

u c u k u f f m u

m u f f m u



     

   

   M u C u K u M τ

 (6) 

where s1,b 1 sr1 1 sr1f c u k u   is the force transmitted from the first floor of the superstructure to 

the base-isolation floor, aux-iso1 t tbr t tbrf c u k u   (with tbr t bu u u   denoting the displacement of 

the TMD relative to the base-isolation system) is the force transmitted from the TMD to the 
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base-isolation floor through the auxiliary isolators, and 
1.75

FI1 t t tsgn( )NL

p
f bu c u u   is the 

nonlinear resistive force of the fluid inerter that is grounded in this configuration, where sgn( )  

is the signum function. Introducing the signum function in the correct definition of the power 

law damping term is useful to prevent inconsistencies for negative velocities. Thus, the fluid 

inerter force depends upon the acceleration tu  and the velocity tu  relative to the ground.  

Applying the D’Alembert’s principle to the FIB-TMD system in Figure 5c) leads to: 

 g b

b b b b b s1,b FI2 b g

t t

s sr s sr s s

a

r s s

ux-iso2 FI

b

2 t g

u u

u c u k u f f m u

m u f f m u

m



     

  

   



M u C u K u M τ

 (7) 

where in this case the force of the auxiliary isolators is aux-iso2 t t t tf c u k u  , whereas the 

nonlinear resistive force of the fluid inerter, placed in between the TMD and the base-isolation 

floor, assumes the shape 
1.75

FI2 tbr tbr tbrsgn( )NL

p
f bu c u u  , thus depending upon the relative 

acceleration and velocity between TMD and base-isolation system.  

3.2. Earthquake ground motion representation 

The seismic input is affected by a large degree of uncertainty in space, size, time and 

attenuation. Modelling this with deterministic approaches, for instance via harmonic 

excitations, cannot take into account the intrinsic random nature of the real problem. A 

simplified way to consider some aspects of the stochastic nature of the seismic excitation is to 

model the earthquake-induced base acceleration gu  as the realization of a stationary zero-mean 

Gaussian random process. The effects of transient phenomena induced by more accurate 

models of non-stationary stochastic excitations were investigated in the relevant literature for 

both SDOF [58] and MDOF systems [59] with inerters. In order to incorporate the frequency 

content of the earthquake excitation, the Kanai-Tajimi power spectral density (PSD) function 
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is assumed in this paper, with a second filter in series as proposed by Clough and Penzien [60] 

to eliminate the inconsistencies observed in the vanishing frequency regime:  

   g

4 2 2 2 4
g g g

2 2
2 2 2 2 2 2 2 2 2 2

g g g f f f

4
( )

4 4
u w

S S
    

         




   
 (8) 

where g g f f, , ,     are filter parameters that influence the frequency content and can be related 

to the engineering site (e.g., soil characteristics [61]), while the white-noise intensity level w
S  

is related to the bedrock peak ground acceleration (PGA) g0u  by the formula  

2

g g0

2

g g

0.141
.

1 4
w

u
S



 



 (9) 

3.3. Stochastic response through the statistical linearization technique (SLT) 

Since the equations of motion (6) and (7) contain nonlinear terms induced by the fluid inerter 

power law damping, linear random vibration theory is not applicable to determine the 

stochastic response of the system. One of the most effective tools to deal with nonlinearities in 

the stochastic dynamic analysis framework is the statistical linearization technique (SLT) [62]. 

The SLT enables the replacement of the nonlinear power law damping terms entering the 

differential equations of motion with equivalent linear viscous damping ones as follows 

1.75

,eq t tbr
after SLT

sgn( )            (  in TMDI-PD;  in FIB-TMD)NL

p p
c x x c x x u x u    (10) 

which implies the introduction of a linearization coefficient ,eqp
c . This coefficient is defined so 

as to be “equivalent”, in statistical sense, to the nonlinear damping coefficient NL

p
c . Indeed, it 

is determined by minimising, in a mean-square sense, the error/difference between the 

nonlinear and linearized damping force, which yields [62] 
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2.75

,eq 2

[ ]

[ ]

NL

p p

E x
c c

E x
  (11) 

where ][E   denotes the expectation operator. To compute the expected value of the above terms 

in Eq. (11), one should know the probability density function (PDF) of the system response 

beforehand, which is obviously an unknown at this stage. Thus, a reasonable assumption for 

the PDF ( )xp x  should be introduced a priori to explicitly determine the linearization 

coefficient ,eqp
c  in (11). For a zero-mean Gaussian excitation and linear behaviour of the 

system, ( )xp x  would be zero-mean Gaussian too by virtue of the Central Limit Theorem. This 

is also rather acceptable for the nonlinear system at hand, although it is not exactly true as the 

power law damping terms produce a non-Gaussian response process even if the seismic 

excitation is Gaussian [62]. Avoiding more complicated non-Gaussian variants of the SLT that 

are beyond the scope of the present paper [63], the classical Gaussian SLT is here resorted to, 

which results in the following expression for the linearization coefficient in (11)  

1.375
0.75 0.75

,eq

2 (1.875)
1.3952 NL NL

p p x p xc c c 



   (12) 

where )(   is the gamma function and x
  is the standard deviation of x . Since x

  is unknown 

and is inherently related to ,eqp
c , the determination of ,eqp

c  is performed iteratively, exploiting 

input-output relationships in the frequency domain [62] until convergence is met.  

Once the differential equations of motion (6) and (7) are linearized through the SLT, they 

can be re-written in the following matrix-vector compact form 

( ) ( ) ( ) ( )
g

t t t u t   M C Ku u u τ  (13) 

with sr b t( ) [ , , ]T
t u uu u  the displacements vector, s s tot t[ , , ]T

M mτ M τ , with 

tot s,tot bM M m   the total mass of the BI building and s,tot s s s
T

M  τ M τ  the superstructure 
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mass, while the overall mass, damping and stiffness matrices in the TMDI-PD system are 

s s s s s

s s tot b t t b t t

t t t ,eq t t

0 ; ;

0

T T

T T T

T

p

M c c c k k k

m b c c c k k

    
              
           

0 0 0 0M M τ C K
M τ

0

0 0

0

C

0

M

0

K  (14) 

and the corresponding matrices in the FIB-TMD system are 

s s s s s

tot b ,eq ,eq b

t ,eq

s

t q

s

,e t

; ; 0 .

0

T T

p p

T T T

p p

T
M b b c c c k

b m b c c c k

    
              
           

0 0 0 0 0

0 0

M M τ C K
M τ M C

0

K

0 0

 (15) 

From Eq. (13), the random vibration theory produces the following set of covariance matrices 

(collecting the mean square response quantities under a zero-mean stochastic seismic input) of 

the displacement, velocity and absolute acceleration response of the system 

g

g

A A gA A
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U U

2 *

U U
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A A U U

E[ ] ( )S ( ) ( ) d
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u
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   

    
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Σ uu H H

Σ uu H H

Σ u u H H

 (16) 

in which *( ) T  is the complex conjugate transpose. U ( )H  is the system displacement transfer 

function vector such that U g( ) ( ) ( )U  U H , with ( )U  and g ( )U   denoting the Fourier 

transform of ( )tu  and ( )
g

u t , respectively, and 
AU
( )H  is the corresponding transfer function 

vector of the absolute accelerations A ( )tu , such that 
A

A gU
( ) ( ) ( )U  U H . Based on Eq. 

(13), the vectors U ( )H  and 
AU
( )H  have the following shape, respectively 

A

1
2

U

2

UU

s

( ) i

0

( ) ( )     with    0 1 0

0 0 1

n

  

  


      

 
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H M C K τ
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τ
τ

H AH A
 (17) 
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where i= 1  is the imaginary unit, n
I  the identity matrix of order n, and the matrix A  is such 

that A ( ) ( ) ( )
g

t tt u u Au τ  and has been introduced because of the difference between sru  

(relative to the base-isolation floor) and su  (relative to the ground). All the response statistics 

are defined by the matrices in (16) that, as said above, depend upon the linearization coefficient 

,eqp
c  and, thus, can be determined through an iterative numerical procedure [62].  

4. OPTIMAL DESIGN OF THE FLUID INERTER 

The fluid inerter device can be optimally designed by minimising an objective function 

viewed as a representative indicator of the system response. Considering the stochastic nature 

of the earthquake excitation, a set of so-called stochastic performance indices (SPIs) are 

introduced in this paper on the basis of elements of the covariance matrices of the system 

response presented in the previous section. This is in line with other studies from the relevant 

literature dealing with SDOF systems equipped with inerter-based devices [64], [65].  

For a given BI building, for a given TMD mass and a given set of auxiliary isolators of the 

TMD, and for a given earthquake probabilistic characterisation in terms of frequency content 

and intensity as described by the PSD function (8), the goal is to find the best parameters b  

and 
NL
pc  of the fluid inerter device (according to the modelling assumption sketched in Figure 

3) that minimise a selected SPI. The PSD function (8) is defined by g 15rad/ s  , g 0.6  , 

f 1.5rad/ s  , f 0.6  , PGA g0 0.3gu   (g denoting the acceleration of gravity), which may 

be associated with firm soil conditions [61]. To obtain a preliminary estimate of the system 

response in the optimal design procedure, we assume that the superstructure vibrates in its first 

(fixed-base) mode. Consequently, the building is described by the dynamic characteristics of 

the fundamental mode of vibration, namely natural frequency s , damping ratio s , and 

effective modal mass sm , the latter being assumed coincident with the total mass of the 
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building ss ,totMm  . The base-isolation system is characterised by natural frequency 

b b tot/k M   and damping ratio b b tot b/ 2c M  . To account for the distribution of the 

mass in the BI building, a mass ratio s,tot tos t/ 1M M   is introduced. The mass ratio 

characterising the TMD is t t tot/m M  . Based on Eq. (16), the corresponding covariance 

matrices of this simplified 3-DOF system are 

sr sr b sr t sr sr b sr t srA srA bA srA tA

sr b b b t sr b b b t A A srA bA b

sr t b t t sr t b t t

2 2 2

2 2

2 2

; ;

u u u u u u u u u u u u u u u

u u u u u u u u u u u u u

u u u u u u u u u u

        

       

     

   
   

    
   
   

 uu uu u uΣ Σ Σ
A bA tA

srA tA bA tA tA
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.
u u

u u u u u



  

 
 
 
 
 

 (18) 

A five-story building is considered with fundamental period s s2 / 0.5sT    , and damping 

ratio s 0.02  , while the mass at each floor is assumed constant and coincident with the 

underlying basement mass bm , so that the mass ratio s 5 / 6  . This building is seismically 

isolated at its base. The conventional isolators of the base-isolation system are assumed as low-

damping rubber bearings with effective damping ratio b 0.1   and natural period 

b b2 / 3sT    . The auxiliary isolators of the TMD, associated with a reasonable mass ratio 

t 0.1  , are varied within a wide parametric study, by examining a family of stiffness ratios 

t b/ kk  , and dissipation ratios t b/c c   in order to identify the range of optimal 

characteristics that achieve the best structural control. For each combination of parameters, the 

optimal inertance ratio tot/b M  , related to the apparent mass produced by the fluid inerter 

device, and the optimal dissipation ratio b/NL
pc c   (or eq ,eq b/pc c  ), related to the 

nonlinear power law damping term of the fluid damping, are identified numerically via the 

minimisation of a selected SPI. In mathematical terms, this turns out to be a nonlinear multi-

variable single-objective constrained optimisation problem 
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lb ubminSPI( ) such  that  
θ

θ θ θ θ  (19) 

where [ , ] θ  is the vector of fluid inerter design variables and lbθ  and ubθ  denote possible 

lower and upper bound vectors introduced to ensure a physically consistent solution (for 

example, lb [0,0]θ  guarantees positive   and   coefficients).  

Four different SPIs are analysed for an overall structural control of both the BI building and 

the TMD system. The first SPI represents the displacement demand of the BI building, assumed 

as the displacement variance of the structure  

s s0

2 2

1SPI /     displacement performance index
u u

   (20) 

where 
r ss s r bb

2 2 2 2
u u uu u

      . The 1SPI  is presented in a dimensionless format, normalised 

by the corresponding variance in the BI building without TMD 
s0

2

u
 , in order to clearly assess 

the beneficial effects induced by the fluid inerter based TMD system (values 1SPI 1  indicate 

performance improvement as compared to the uncontrolled BI building). The second SPI 

represents the variance of the total acceleration of the structure 

As As0

2 2

2SPI /     acceleration performance index
u u

   (21) 

where As sr b gu u u u    and 
As sr sr

2 2 2 4

s

2

sAs s

2 2[ ] 4
u u u

uE        . The 2SPI  is also presented in 

a dimensionless format, normalised by the corresponding variance in the uncontrolled BI 

building 
As0

2

u
 . Additionally, in [19] an energy-based SPI called filtered energy index (FEI) was 

introduced to assess the effectiveness of the TMDI structural control system from the 

perspective of the equation of relative energy balance. The FEI represents the portion of the 

global seismic input energy that is not dissipated by the TMD system and, thus, penetrates into 

the BI building. As a result, this SPI is a useful indicator of the overall structural performance. 

Without going into details of the derivations for brevity, following the same rationale explained 
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in [19] for the FEI definition, but adapted here to the novel equations of motion of this paper, 

the FEI for the TMDI-PD and for the FIB-TMD has the following expressions, respectively 

tbr t

b tbr t

t tbr

b tbr t
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2 2

b b eq

2 2 2 2
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 (22) 

where 
tbr t b b t

2 2 2 2
u u u u u

      . It is noted that the FEI (SPI3) is a dimensionless quantity: it 

assumes a unitary value for the system without TMD ( eq 0   ), and decreases with 

increasing dissipation capability of the vibration absorber. Finally, the fourth and last SPI is 

related to the displacement demand of the TMD system, which should not become 

disproportionately large in order to ensure feasibility and cost-effectiveness of the TMD 

implementation in practical cases 

tbr b0

2 2

4SPI /     TMD stroke index
u u

   (23) 

where 
tbr t b b t

2 2 2 2
u u u u u

      . The 4SPI  is related to the stroke of the TMD and, in line with 

the previous indicators, is presented in a dimensionless format, normalised by the displacement 

variance of the base-isolation system in the uncontrolled configuration 
b0

2

u
 .  

In Figure 6 the optimal design parameters of the fluid inerter opt opt( , )   of the TMDI-PD 

system that minimise the SPI1 are reported along with the performance evaluation of the 

optimised system through the four SPIs introduced above. Analogous results are shown in 

Figure 7 for the FIB-TMD system. By careful inspection of the reported graphs the following 

general remarks can be drawn:  

i) the optimal inertance ratio opt  is not particularly sensitive to variations of the stiffness 

ratio   of the auxiliary isolators, but is moderately affected by the dissipation ratio   
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as it increases with increasing   in the range [0.1-2]; 

ii) in an opposite manner, the optimal dissipation ratio opt  is strongly influenced by the 

stiffness ratio   as it increases with increasing   in the range [0.3-1.2], but is not 

particularly affected by the dissipation ratio   of the auxiliary isolators; 

iii) the stiffness ratio   has a different impact on the considered response indicators, as the 

displacement demand and the energy-based indicators SPI1, SPI3 and SPI4 decrease with 

increasing  , but the acceleration index SPI2 slightly increase with increasing   in the 

range [0.4-1.2]; 

iv) increasing the damping features of the auxiliary isolators will always lead to 

improvements of the overall structural control of the BI building, as all the considered 

SPIs decrease with increasing  ; 

v) both the optimal fluid inerter optimal parameters opt opt( , )   are slightly higher for the 

TMDI-PD system than for the FIB-TMD; 

vi) for equal parameters of the auxiliary isolators ( , )  , the performance of the TMDI-PD 

system is better than that of the FIB-TMD system except for the TMD stroke, as the 

response indicators SPI1-SPI3 are lower in the TMDI-PD case than in the FIB-TMD case 

of 10-30% but SPI4 is higher. 

From the above general remarks, it emerges that an optimal design strategy to improve the 

structural control of BI building is based on the TMDI-PD system with the following 

parameters: 2  , 0.8  , opt 1.5  , opt 6  . Indeed, this combination of parameters 

results in values of the SPIs well below the unity, meaning an effective vibration reduction as 

compared to the BI building. If the displacement demand of the secondary (TMD-related) mass 

is also of major importance, the FIB-TMD system would be preferable to the TMDI-PD system 

provided a slight degradation of the system performance can be accepted.  
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Figure 6 Optimal fluid inerter design graphs and performance evaluation: BI building with TMDI-PD 

( t b/ kk  , t b/c c   represent the stiffness and damping ratio of the TMD) 

 

Figure 7 Optimal fluid inerter design graphs and performance evaluation: BI building with FIB-TMD 

( t b/ kk  , t b/c c   represent the stiffness and damping ratio of the TMD) 

5. NONLINEAR RESPONSE HISTORY ANALYSIS AND SEISMIC 

PERFORMANCE 

The seismic performance of the proposed fluid inerter based tuned mass damper systems 
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when applied to BI buildings is here investigated via nonlinear RHA. A shear-type model of a 

five-story structure with uniform mass 50000kgm   for each story, and uniform stiffness 

97MN/mk   is considered, which results in a fundamental natural period of the superstructure 

s s2 / 0.5sT    . The damping matrix sC  is assumed such that the modal damping ratio s  

is equal to 0.02 for all the vibration modes of the building. The basement mass is assumed as 

b 50000kgm  . The above data lead to tot 300000kgM   and s 5 / 6  . The conventional 

isolators of the base-isolation system are low-damping rubber bearings with b 0.1   and 

natural period b b2 / 3sT    , which corresponds to effective lateral stiffness of the isolation 

floor b 1.3159MN/mk  . The TMD mass ratio is assumed as t 0.1   and the auxiliary 

isolators have a slightly lower stiffness than the conventional ones, and medium-to-high 

damping characteristics: 0.8   and 2  . All these input data are purposely chosen to be 

consistent with the parameters adopted in Section 4 for the optimisation procedure. Therefore, 

the design graphs can be resorted to for the selection of the optimal fluid inerter parameters 

opt opt( , )   that are specifically ( ,5.1.5079 8709) . Considering the above data, this results in 

452380[kg]b   and 
1.75737760[N(s / m) ]NL

pc  . 

To consider a realistic earthquake input, an ensemble of 44 historically recorded ground 

motions belonging to the FEMA P695 far-field record set [66] has been assumed as seismic 

excitation at the base of the BI buildings. This is a benchmark set of ground motions widely 

adopted in the literature by various authors to investigate the behaviour of other TMD-like 

systems [67]. The ground motions components in the FEMA P695 are extracted from the PEER 

NGA database and are pertinent to site class C (soft rock/very dense soil) or D (stiff soil). This 

is consistent with the assumption of firm soil conditions in the Kanai-Tajimi PSD function (8) 

to develop the optimal design graphs in Figure 6 and Figure 7, on which the above-mentioned 

fluid inerter parameters are based. The RHA serves to validate the optimal design procedure 
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discussed in section 4 and to assess the actual seismic performance of the proposed structural 

control strategies for a realistic earthquake scenario characterised by non-stationary seismic 

input and including the nonlinearity of the fluid inerter device.  

 

Figure 8 Pseudo-acceleration elastic response spectra for the 44 natural ground motions of the FEMA 

P695 far-field record set [66]: a) unscaled records; b) scaled records to a PGA=0.3 g 

Considering the nonlinear character of the system response, it is important to assume a 

consistent intensity level for the earthquake excitation. Thus, the 44 individual ground motions, 

having a PGA ranging from 0.21 g to 0.82 g, have all been scaled to a common PGA of 0.3 g, 

in line with the assumption made in the optimal design procedure. The median response spectra 

of the unscaled and scaled records for a 0.05 damping ratio are reported in Figure 8. The time-

history response is computed for each seismic event by direct integration of the nonlinear 

equations of motion (6) and (7) via a fourth-order Runge-Kutta algorithm. Then, the seismic 

performance is evaluated in statistical terms (in line with the probabilistic framework adopted 

for the seismic input) as average (on the 44 responses) absolute peak (MAX) and average root-

mean-square (RMS) of a set of response indicators iy  calculated according to 

   44 44

1 1

1 1
average MAX( ) max ( ) ; average RMS( ) rms ( ) .

44 44
i i i ij jt t

y y t y y t
 

    (24) 
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Figure 9 Seismic performance (in terms of average RMS and MAX values of displacement and floor 

absolute acceleration) of proposed fluid inerter based TMD systems compared to traditional BI building 

(without TMD) and fixed-base building under the FEMA P695 far-field record set  

The seismic performance of the proposed fluid inerter based TMD systems in terms of average 

RMS and MAX values of displacement and floor absolute acceleration is illustrated in Figure 

9. It is seen that both the TMDI-PD and FIB-TMD systems lead to a considerable reduction of 

the displacement demand (the acronym “IF” on the vertical axis denotes the “isolation floor”) 

and also of the absolute floor acceleration (the latter is less evident because of the scale of the 

plot) in comparison with the BI building. The average reductions achieved by the TMDI-PD in 

terms of RMS and MAX values of the last-floor displacement (compared to the BI building) 

are 51% and 41%, respectively; those achieved by the FIB-TMD are 49% and 37%, 

respectively. The average reductions achieved by the TMDI-PD in terms of RMS and MAX 

values of the last-floor absolute acceleration (compared to the BI building) are 49% and 45%, 

respectively; those achieved by the FIB-TMD are 48% and 46%, respectively.  

The performance of the fixed-base building is also illustrated in Figure 9 for comparative 

purposes: as expected, since the fixed-base building is stiffer than all the other base-isolated 
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configurations (with and without TMD), the displacement demand is lower, but the 

acceleration is considerably higher. This is consistent with the above-reported pseudo-

acceleration response spectra. The performance of the TMDI-PD is slightly better than that of 

the FIB-TMD in terms of displacement reduction, but is rather comparable with regard to 

absolute floor accelerations. All these results are in reasonable agreement with the design 

graphs developed in section 4. 

As an example of earthquake response, the time histories of the last-floor displacement s5u  

and of the stroke of the isolators ( tbru  for the systems with TMD, bu  for the BI building without 

TMD) are reported in Figure 10. The results are pertinent to one (arbitrarily) selected ground 

motion among the 44 considered of the FEMA P695 record set, namely a component of the 

Imperial Valley 1979 seismic event. Results for other samples are qualitatively similar and are 

not reported for brevity. The displacement response is effectively damped by both the proposed 

fluid inerter based systems to a rather comparable extent for this ground motion, and the stroke 

is reduced more in the FIB-TMD system than in the TMDI-PD. This is consistent with the 

design graphs developed in section 4 and with the above discussions.  
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Figure 10 Time histories and structural control performance of proposed fluid inerter based TMD 

systems compared to traditional BI building (without TMD) for the Imperial Valley 1979 earthquake 

 

Figure 11 Comparison of hysteretic force-versus-displacement loops of seismic isolators in BI building 

with and without fluid inerter based TMD systems for Imperial Valley 1979 earthquake: a) TMDI-PD; 

b) FIB-TMD 

Since the working principle of the TMD is to absorb the greatest amount of energy from the 

earthquake excitation, it is interesting to quantify the remaining amount of energy that needs 

to be dissipated by the BI building. This estimation is line with the definition of the FEI 

indicator introduced in section 4. The energy dissipated by the BI building is mainly 

concentrated at the isolation level, where the seismic isolators undergo large displacement and 

experience large hysteretic loops. The force-versus-displacement loops of the seismic isolators 
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corresponding to the Imperial Valley 1979 earthquake are depicted in Figure 11. It is seen that 

hysteretic loops corresponding to the systems with fluid inerter (either in the form of TMDI-

PD or FIB-TMD) are considerably narrower than those of the BI building for the same ground 

motion acceleration. This confirms that, as anticipated above, part of the earthquake input 

energy is effectively dissipated by the TMD systems, and that the fluid inerter systems enable 

an improved structural control of the BI building. In principle, narrower hysteretic loops imply 

the potential use of smaller isolators. Thus, the possibility of adopting smaller isolation devices 

could compensate for the additional cost related to the implementation of the (slightly more 

involved) fluid inerter based TMD strategies proposed in this paper.  

6. DESIGN CONSIDERATIONS ON COUPLED INERTANCE AND DAMPING 

The goal of this section is to design the fluid inerter device used for the previous numerical 

examples, such that 452380[kg]b   and 
1.75737760[N(s / m) ]NL

pc  . The design of fluid 

inerter dimensions involves coupled inertance and damping given in Eq. (1) and (3). Both 

equations are the function of seven parameters: 1 2 3 4, , , , , , ,d f fr r r r r L    where dr  is the space 

between the cylinder and the helical channel given by 4 2 3( )dr r r r   . Previous works by the 

authors in [42] described an ad-hoc approach to choose these parameters, so that the fluid 

inerter achieves the targeted values of inertance and damping resulting from the optimisation 

procedure. The approach relied on the fact that the damping and inertance are insensitive to 

changes in some parameters. Consequently these parameters can be chosen based upon 

practical design considerations, so that the number of unknown parameters in Eq. (1) and (3) 

can be reduced. In this study, two parameters were selected as free variables: 2r  and 3r . This 

is because these two parameters were found to be the most sensitive to the changing of b  and 

NL
pc  values. The other parameters were fixed to reasonable values given in Table 3.  
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Table 3 Fixed parameters of the fluid inerter device to design 

Symbol [units] Value 

1r  [m] 0.1 

dr  [m] 0.06 

L  [m] 1.0 

f  [kg/m3] 1000 

f  [Pa s] 0.001 

 

With reference to Table 3, the diameter of the piston 1r  must be large enough that the piston 

is strong enough to resist the stresses due to large forces being applied at the piston ends. 

Assuming, as a very extreme scenario, the maximum force at the maximum relative velocity 

between the piston ends of 1m/s is 5000kN, the stress at the piston ends is 159.15Mpa. Using 

steel (S355JR) with yield stress of 355Mpa for the piston material, this 1r  value is sufficient. 

In reality, the actual relative velocities experienced by the device are well below these extreme 

values: the average maximum velocity computed from the nonlinear RHA is around 0.4m/s, 

thus there is a large safety factor against collapse.  

Figure 12 Design parameters identification via parametric approach: a) nonlinear damping coefficient 

vs 2r  for a family of 3r  curves; b) inertance vs 2r  for a family of 3r  curves 

Fixing those parameters in Table 3, both Eq. (1) and (3) now can be written as functions of 

2r  and 3r  only. The number of turns of the helical channel was set as a function of 3r  given by 

3 3( 2 ) / 2 rtn L r  . The helical pitch h  was assumed equal to 32r . Having only two free 
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parameters, 2r  and 3r  now can be determined via an iteration process. Given the targeted 

optimum design parameters of 452380[kg]b   and 
1.75737760[N(s / m) ]NL

pc  , the obtained 

values for 2r  and 3r  are 0.357m and 0.05m, respectively. Figure 12a) and b) show how the 

damping coefficient and inertance relate to 2r  and 3r , respectively. As can be seen from Figure 

12, both the 2r  and 3r  parameters significantly affect the system performance. These two 

parameters are directly related to the dimensions of the fluid inerter device – inner radius of 

the cylinder and inner radius of the helical channel. As such, it is expected that these parameters 

can easily be realized in practical applications by current manufacturing skills. An earlier 

investigation of some of the authors of the present paper [42] has shown that the other 

geometrical parameters play a less important role in the definition of the targeted values of 

inertance and damping.  It can be seen that 2 0.357r   intersect at line 3 0.05r   for the given 

optimum b  and 
NL
pc 𝑐𝑁𝐿 values in both graphs. The actual b  and 

NL
pc  values given from the 

actual dimensions of the fluid inerter are 457505kg and 729940
1.75N(s / m) .  

 

Figure 13 Force vs velocity curve for the fluid inerter with the design parameters compared to the 

optimal (target) parameters 
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Figure 14 Fluid inerter dimensions based on the target parameters from the optimisation procedure 

(unit in mm) 

Figure 13 compares the force-vs-velocity relationship between the design and actual values of 

the fluid inerter. Both total force and damping force from the actual fluid inerter are very close 

to the design specifications with percentage of errors around 1%. By inspection of the forces 

involved in the designed fluid inerter, it is evident that friction contributions in the range 0.5-

1kN, which may be significant for lower forces and small velocity testing, can justifiably be 

neglected for earthquake engineering applications where the forces involved are much larger. 

A schematic design drawing with the assumed dimensions of the fluid inerter is displayed in 

Figure 14. 

7. CONCLUDING REMARKS 

The advantages of fluid inerters for optimised structural control of buildings have been 

investigated, with particular emphasis on earthquake loading. The helical fluid inerter presents 

some peculiar hysteretic characteristics as compared to the rack-and-pinion inerter and to the 

ball-screw inerter, which have been more widely studied in the literature for structural vibration 

suppression purposes. Building on some analytical and experimental studies, the device has 

been modelled as an inerter in parallel with a nonlinear dashpot, the latter incorporating the 

fluid damping effects due to pressure drops. This simplified model is appropriate in the 

preliminary sizing and optimisation of the device design for earthquake engineering 

applications.  
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Based on this idealised model, two novel structural control schemes based on the fluid 

inerter have been proposed for improving the earthquake resilience of BI buildings. These 

strategies exploit the mass amplification effect and the damping properties of the fluid inerter 

to enhance the seismic performance of TMD systems. Considering the random nature of the 

earthquake excitation, the optimised parameters of the fluid inerter have been preliminarily 

identified via the stochastic dynamic analysis of the system, by incorporating the nonlinear 

behaviour of the device through the statistical linearization technique.  

The seismic performance of the proposed structural control schemes based on the fluid 

inerter has been assessed via nonlinear RHA, considering a five-story BI building. To 

incorporate a realistic earthquake input, an ensemble of 44 historically recorded ground 

motions have been assumed as base acceleration, which fully accounts for the record-to-record 

variability and for the non-stationary character of actual seismic events. Excellent seismic 

performance of the proposed schemes has been observed, with reductions of displacements and 

of absolute floor accelerations of nearly 40-45% with regard to MAX values, and around 50% 

with regard to RMS values. 

Finally, an ad-hoc approach to design the fluid inerter in such a way as to achieve the 

targeted values of inertance and nonlinear damping resulting from the optimisation procedure 

has been discussed. This approach is not trivial as the inertance and damping are coupled 

characteristics in a real fluid inerter. Some simple considerations and practical design 

guidelines simplify the procedure to convert the optimised fluid inerter parameters into actual 

device dimensions with just two free geometrical parameters among a larger set of unknowns.  

Future work will deal with shake table testing of the proposed structural control schemes 

implemented on a 1:5 scale model for an appropriate validation of the numerical investigation 

carried out in this paper.  
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