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Summary

Powell-Sabin B-splines, which are based on triangles, are employed to model

cohesive crack propagationwithout a predefined interface. Themethod removes

limitations that adhere to isogeometric analysis regarding discrete crack analy-

sis. Isogeometric analysis requires that the initial mesh be aligned a priori with

the final crack path to a certain extent. These restrictions are partly related to

the fact that in isogeometric analysis, the crack is introduced in the parameter

domain by meshline insertions. Herein, the crack is introduced directly in the

physical domain. Because of the use of triangles, remeshing and tracking the

real crack path in the physical domain is relatively standard. The method can be

implemented in existing finite element programmes in a straightforward man-

ner through the use of Bézier extraction. The accuracy of the approach to model

free crack propagation is demonstrated by several numerical examples, includ-

ing discrete crack modelling in an L-shaped beam and the Nooru-Mohamed

tension-shear test.

KEYWORDS

Bézier extraction, cohesive zone model, fracture, Powell-Sabin B-splines

1 INTRODUCTION

Discrete crackmodels are important for understanding and predicting fracture in quasi-brittle materials such as concrete,

rocks, and ceramics.1-3 For this class ofmaterials, the failure process takes place over a finite zonewhere normal and shear

tractions are transferred across the crack surface due to interlocking and friction. The cohesive zone model, introduced

by Dugdale4 and Barenblatt,5 is commonly employed to model the process zone. In this model, the traction in the fracture

process zone is related to the crack opening by a traction-opening law.6,7 The cohesive zone model can be incorporated

in the finite element method, and different approaches have been proposed, for instance, using interface elements,8-10

remeshing11,12 or extended finite element methods.13-15 More recently, isogeometric analysis has also been introduced in

the context of crack propagation analysis.16-23

In isogeometric analysis, a crack segment is represented by Non-uniform rational basis spline (NURBS) or T-spline

basis functions.24 An advantage of themethod is that the local stress field is smoother andmore accurate than when using

standard finite elements. However, NURBS and T-splines have some limitations whenmodelling (cohesive) fracture, and

a proper discrete representation of a discontinuity may not be feasible in some situations. Experience shows that when

using NURBS or T-splines the initial mesh must be sufficiently aligned with the final crack path a priori, see Section 8

in a previous study.23 Furthermore, the higher-order continuity of the basis functions in isogeometric analysis, which is
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626 CHEN AND DE BORST

so appealing and leads to vastly improved stress predictions, fails near crack tips and only 0-continuity remains. The
former restriction is due to the insertion of the crack segment in the parameter domain and the reparameterisation in the

physical domain, see Section 8 in a previous study.23

In this contribution, we employ Powell-Sabin B-splines25 for cohesive crack modelling without a predefined interface.

Powell-Sabin B-splines are based on triangles, which allows a straightforward introduction of the crack path in the phys-

ical domain. Also, remeshing is standard since established algorithms for remeshing of triangles in the physical domain

can be exploited. Moreover, the 1 continuity of Powell-Sabin B-splines26,27 does not break down at a crack tip, leading
to stresses, which are smooth around the crack tip. Consequently, the stress field can be employed directly in a criterion

for crack nucleation. Powell-Sabin B-splines are not isogeometric in the strict sense that the geometry can always be cap-

tured exactly, but they share with NURBS and T-splines the property that they can exploit standard finite element data

structures by using Bézier extraction.

We start with a brief introduction of the cohesive zonemodel and a review of basic properties of Powell-Sabin B-splines.

Section 3 discusses some implementation aspects. Next, we discuss the algorithm to insert a new crack segment, includ-

ing the algorithm for remeshing after insertion of a crack segment. In Section 4, numerical examples are given, which

demonstrate the versatility and accuracy of the method.

2 GALERKIN APPROXIMATION OF COHESIVE ZONE MODEL

In a cohesive-zone model, a crack is considered to be an interface Γc in the physical domain Ω, see Figure 1. The model

relates tractions on Γc to the crack opening and sliding across it. Infinitesimal strains and linear elastic material behaviour

are assumed. We use Powell-Sabin B-splines for the trial functions in the solution space, and they are also used for the

geometry parametrisation.

2.1 Cohesive zone formulation

The crack opening ⟦u⟧ is given in the global coordinate system (x1, x2). The crack sliding and opening in the local

coordinate system (s, n) (Figure 1) are derived as:

⟦v⟧ = (⟦vs⟧, ⟦vn⟧)T = R⟦u⟧ = R
(⟦ux1⟧, ⟦ux2⟧

)T
, (1)

with R as the rotation matrix, eg.17 The traction crack-opening relation,

td = td (⟦v⟧) , (2)

sets the relation between the traction acting at Γc and the displacement jump across it. In the global coordinate system

(x1, x2), the traction t is obtained from td following a standard transformation as follows:

t = RTtd. (3)

The strong form of the equilibrium equations and the boundary conditions read as follows:

⎧
⎪⎨⎪⎩

∇ · � = 0 on Ω
u = û on Γu
� · n = t̂ on Γt
� · n = t (⟦u⟧) on Γc

, (4)

FIGURE 1 A solid body � with an internal discontinuity Γc. Γc is an interface boundary with positive and negative sides, Γ
+
c , and Γ

−
c ,

respectively [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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in which û and t̂ represent prescribed displacements and tractions, respectively. n denotes the normal vector at the

boundaries, and the Cauchy stress tensor � relates to the infinitesimal strain � as

� = D ∶ �, (5)

with D the fourth-order elastic stiffness tensor.

2.2 Powell-Sabin B-splines

We now give a concise description of Powell-Sabin B-splines. Reference is made to a previous study28 for a more in-depth

elaboration. We consider a triangulation  with e = 1, 2, · · · ,E triangles and Nv vertices, which is denoted by thick

black lines in Figure 2A. To construct Powell-Sabin B-splines, which are 1-continuous, each triangle e is split into six
(n = 1, 2, · · · , 6) mini-triangles, cf. Figure 2B. This leads to the Powell-Sabin refinement  ∗. For each vertex k of the

triangulation  , Powell-Sabin points are given in green as the vertex itself and points lying at the centre of the edges of
 ∗. A Powell-Sabin triangle, drawn in red, is then defined for each vertex k. In order to obtain positive basis functions, the

Powell-Sabin triangle is required to contain all the Powell-Sabin points. Herein, we employ the algorithm of a previous

study29 to find the minimum area triangle, which encloses the convex polygon defined by the Powell-Sabin points. For

(A)

(B) (C)

FIGURE 2 Example of a triangulation  (thick black lines), Powell-Sabin refinement  ∗ (thin black lines) of  , Powell-Sabin triangles
(red) and Powell-Sabin points (green). In B, each triangle e is subdivided into six mini-triangles. In C, each mini-triangle has a barycentric

coordinate system �̄ [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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the Powell-Sabin triangles on the boundary, we will consider the following constraints: A, for an angle � < 180◦, two

sides of the Powell-Sabin triangle must be aligned with the two boundary edges; B, for an angle � = 180◦, one side of the

Powell-Sabin triangle must be aligned with the boundary edge, see Figure 2A.

Each triangle e of the triangulation  must be subdivided into sixmini-triangles (n = 1, 2, · · · , 6), Figure 2B. This yields

the Powell-Sabin refinement  ∗. Each mini-triangle n has a barycentric coordinate system �̄ =
[
�̄1 �̄2 �̄3

]T
and Bézier

ordinates br,s,t, cf. Figure 2C. Three Powell-Sabin B-splines N
�

k
, j = 1, 2, 3, are defined on each vertex k with coordinate

Vk =
(
xk1 , x

k
2

)
, ie, one for each corner of the Powell-Sabin triangle of vertex k. The Powell-Sabin B-splines N�

k
over each

mini-triangle, Figure 2C, can then be expressed using the Bézier ordinates br,s,t as

N�

k
(�̄) =

∑
r+s+t=2

br,s,tB
2
r,s,t (�̄) , (6)

where B2r,s,t (�̄) represent the Bernstein polynomials

B2r,s,t (�̄) =
2!

r!s!t!
�̄r1�̄

s
2�̄

t
3. (7)

The Bézier ordinates br,s,t are obtained by first considering the following properties:

N�

k
(V l) = 0,

�

�x1
N�

k
(V l) = 0,

�

�x2
N�

k
(V l) = 0, (8)

for any vertex Vk ≠ Vl, and we denote

N�

k
(Vk) = �

�

k
,

�

�x1
N�

k
(Vk) = �

�

k
,

�

�x2
N�

k
(Vk) = �

�

k
. (9)

To form a partition of unity on the domain, we must require

3∑
�=1

�
�

k
= 1,

3∑
�=1

�
�

k
= 0,

3∑
�=1

�
�

k
= 0, (10)

and the coefficients ��

k
, ��

k
, and ��

k
are subsequently obtained by solving the linear system

⎡
⎢⎢⎢⎣

�1
k
�2
k
�3
k

�1
k
�2
k
�3
k

�1
k
�2
k
�3
k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xk,11 xk,1
2

1

xk,21 xk,2
2

1

xk,31 xk,3
2

1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎣

xk1 x
k
2
1

1 0 0
0 1 0

⎤
⎥⎥⎦

(11)

in which, Q�

k
=

(
xk,�1 , xk,�

2

)
are coordinates of the Powell-Sabin triangle corners associated with each vertex k. Having

obtained the coefficients ��

k
, ��

k
, and ��

k
we can compute the Bézier ordinates of each mini-triangle n in element e.

We next arrange the Bézier ordinates in a matrix form Ce
n and denote the Powell-Sabin B-splines associated with each

mini-triangle n in element e by Ne
n. To implement the method in existing finite element codes, Bézier extraction is used

as follows:

Ne
n = Ce

nB, (12)

over each mini-triangle n in element e with six Bernstein polynomials, contained in the vector B.28 Figure 3 gives an

example of three Powell Sabin B-splines associated with vertexm in Figure 2A.

FIGURE 3 Example of three Powell-Sabin B-splines associated with vertexm in Figure 2A [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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2.3 Finite element discretisation

We employ Powell-Sabin B-splines for the description of the geometry as well as for the interpolation of the displacement

field as follows:

x =

Nv∑
k=1

3∑
�=1

N�

k
X

�

k
, u =

Nv∑
k=1

3∑
�=1

N�

k
U

�

k
, (13)

where X �

k
represents the coordinates of the Powell-Sabin triangle corners, Q�

k
; U�

k
denotes the degrees of freedom at Q�

k
,

and Nv is the total number of vertices.

To solve the equilibrium equation, Equation 4, it is cast in a weak form as follows:

∫
Ω

�� ∶ �dΩ + ∫
Γc

�⟦u⟧ · t (⟦u⟧) dΓ = ∫
Γt

�u · t̂dΓ ∀�u ∈ �0, (14)

where ��, �u, and �⟦u⟧ are the virtual strain, the virtual displacement, and the virtual relative displacement fields,
respectively, and �0 =

{
v ∶ vi ∈ H1 (Ω) , vi|ΓD = 0

}
; H1 is denoting the first-order Sobolev space.

Using small-strain kinematics and considering the Powell-Sabin approximation Equation 13, the weak form

Equation 14 yields:

fint (u) = fext, (15)

with

fint (u) = ∫
Ω

BT�dΩ + ∫
Γc

HTt (⟦u⟧) dΓ fext = ∫
Γt

NTt̂dΓ. (16)

The matricesN, B, andH contain shape functions, their derivatives, and relative displacements, respectively.21

Linearisation gives the tangential stiffness matrix as follows:

Ktan = ∫
Ω

BTDBdΩ + ∫
Γc

HTRTTdRHdΓ, (17)

where Td is the tangent stiffness of traction-opening law at the interface17

Td =
�td
�⟦v⟧ . (18)

3 NUMERICAL IMPLEMENTATION

We now outline some relevant implementation aspects. First, we introduce the refinement procedure for cohesive crack

growth. After the insertion of a crack segment, elements with bad aspect ratios may be generated in the vicinity of the

new crack tip. Below, we propose a remeshing algorithm for a domain, which contains such elements. This is followed

by a discussion on how to map the displacement vector and the history variables onto the new mesh.

3.1 Adaptive analysis for cohesive crack growth

By virtue of the 1-continuity of Powell-Sabin B-splines at the crack tip, one can check the crack initiation criterion at this
point (A in Figure 4A), which in this case means directly compare the major principal stress �1 with the tensile strength

tu. When the initiation criterion is violated, a crack is inserted through the entire element e0, see Figure 4B. The new

crack tip is now at C. Due to lack of information about the possible curvature of the crack, it is introduced as a straight

line within the element.

While the stress computation is more accurate when using Powell-Sabin B-splines, the direction of crack propagation

is very sensitive, and the quality of the prediction of the direction of crack propagation can be improved further by an

averaging procedure.23 An averaged stress tensor is computed using a Gaussian weight function13

w =
1

(2�)
3

2 l3
exp

(
−
r2

2l2

)
, (19)
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(A) intial crack (B) crack propagation

FIGURE 4 Crack path after crack propagation. The mesh is shown before remeshing in the deformed configuration. The blue curve

denotes the crack interface Γc. Point A denotes the old crack tip, while point C is the new crack tip [Colour figure can be viewed at

wileyonlinelibrary.com]

(A) crack propagation (B) element adjustment

FIGURE 5 Element adjustment after crack propagation for the case of either a small or a large line ratio � . The mesh is shown before

(black solid lines) and after (red dotted lines) remeshing. The blue curve denotes the crack Γc. Point A locates the old crack tip, while point C

is the new crack tip [Colour figure can be viewed at wileyonlinelibrary.com]

with l is a smoothing length, typically taken around three times a representative element size, and r is the distance to

the crack tip. The normal vector to the crack n1 is subsequently computed on the basis of this averaged stress tensor, see

Figure 4B.

Upon insertion of a new crack segment, element e0 is divided into two triangles e1 and e2, see Figure 4B. Because of the

insertion of a new crack tip, C, the triangular element e3 has four vertices. This is not allowed for Powell-Sabin B-splines25

and we need to remesh, see Figures 5B and 6B. Herein, we consider two cases of element reconstruction, depending on

the ratio � = |BC| ∕ |CD|, see Figures 5 and 6. |BC| and |CD| are the lengths of the line segments BC andCD, respectively.
Case 1: If � is too small or large, � < 0.5 or � > 2, point C will be close to either point B or point D. This renders

either element e1 or e2 with a bad aspect ratio. To remedy this, wemerge pointCwith the closest point between

points B and D. In Figure 5B, we attach point D to point C to match the crack path. Elements e1 and e3 are

then unchanged. Because of the movement of point D, we must remesh� in order to avoid elements with bad

aspect ratios, which will be treated next, Section 3.2. The meshes in the deformed configuration are denoted by

solid and dotted lines, respectively, in Figure 5B before and after remeshing.

Case 2: If the ratio � is moderate, 0.5 ≤ � ≤ 2, point C will be in the central part between points B and D. Elements

e1 and e2 will then have similar aspect ratios. Consequently, the elements e1 and e2 should be kept, Figure 6B.

To eliminate the element with four vertices, ie, element e3 in Figure 6A, we subdivide it into two subelements:

elements e4 and e5 in Figure 6B. After crack insertion, newly generated elements, such as e1, e2, e4, and e5,

usually do not have a good aspect ratio, eg, Figure 6B. Tomake them suitable for analysis,�must be remeshed,

as will be discussed next. The dotted lines in Figure 6B show the mesh after remeshing.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) crack propagation (B) element adjustment

FIGURE 6 Element adjustment after crack propagation for the case of moderate line ratio � . Here, the meshes in the deformed

configuration before (black solid lines) and after (red dotted lines) remeshing are shown. The blue solid curve denotes the crack interface Γc.

Point A denotes the old crack tip, while point C is the new crack tip location [Colour figure can be viewed at wileyonlinelibrary.com]

(A) crack propagation (B) element adjustment (C) domain remesh

FIGURE 7 Mesh in the deformed configuration before and after remeshing. The blue solid curve denotes the crack interface Γc. Point A

gives the old crack tip, while point C denotes the new crack tip. Segment AC represents the new crack interface [Colour figure can be viewed

at wileyonlinelibrary.com]

3.2 Remeshing of a body after crack insertion

After the insertion of a crack segment, the aspect ratio of triangular elements near the new crack tip has generally changed,

Figures 5 and 6. This requires remeshing to arrive at all elements having an analysis-suitable aspect ratio, while not

changing the vertices along the crack path. There aremainly two approaches for remeshing:mesh adaptation strategies30,31

and parametrisation techniques.23,32-34 Mesh adaptation strategies employ local mesh modifications to adapt the mesh to

a given mesh size criterion and to improve the input mesh quality. In parametrisation techniques, the input mesh serves

as a support for building a continuous parametrisation of the surface. The initial surface is parametrised onto a surface,

which is meshed using any standard planar mesh generation procedure. Then, the new triangulation is mapped back to

the original surface.35 In this study, the mesh adaptation strategy will be followed.

Inserting a new crack segment affects only elements around the crack tip, but will not influence the domain away from

the crack tip. As an example, only the area ΩR inside the red polygon of Figure 7 needs to be remeshed. Vertices on and

outside the red polygon and the crack tips will not move. Herein, the area ΩR to be remeshed is determined as follows: It

starts at the element with the newly inserted crack segment (the grey element e1 in Figure 7), and then a radial marching

is done until three elements have been crossed in all directions, see Figure 7. Next, we exclude the elements along one

side of the crack interface. In Figure 7, this applies to the elements along the lower side of the crack interface.

To remesh ΩR, in the example of Figure 7, the area inside the red polygon, we must fix the vertices on the polygon and

along the crack path. Herein, the vertices are set by requiring that the minimum interior angle �1
min

be maximised of all

triangles inside ΩR as follows:
max �1min

subject to: �i
k
≥ �1min and �1min ≥ �∕6,

(20)

where �i
k
is the ith interior angle (i = 1, 2, 3) of triangle k, see Figure 7B. In this study, the MATLAB function fmincon is

used to find the optimum in Equation 20.36 Alternatively, one can use optimisation packages like MOSEK37 or ALGLIB,38

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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which may provide a better efficiency for large-scale problems. After obtaining the minimum interior angle �1
min

, we can

further remesh by using Equation 20 to maximise the second minimum interior angle �2
min

of all triangles insideΩR. This

procedure can be repeated until all interior angles have attained a maximum value.

3.3 Update of the displacement vector and the history variables

During crack propagation, new elements and vertices are introduced, and after the insertion of a new crack segment,

remeshing of ΩR is necessary to ensure that elements have a suitable aspect ratio. This evidently results in modifying

the mesh in ΩR. As a consequence, Powell-Sabin B-spline functions must be computed on the new triangles and the

displacements tU from previous time step t have to be transferred to provide the initial values t+Δt0 Ur at time step t + Δt.U

and Ur are displacements associated with the mesh before and after remeshing ΩR, respectively. Herein, a least-squares

fit is employed to carry out the mapping of tU to t+Δt
0 Ur. This is achieved by minimising

� = ∫ΩR

‖‖t+Δt0 ur−
tu‖‖ dΩ = ∫ΩR

‖‖t+ΔtNr
t+Δt
0 Ur−

tu‖‖ dΩ, (21)

in which u and ur are displacements, and t+ΔtNr denotes the basis functions associated with the domain after remeshing

ΩR at time step t + Δt. Minimising Equation 21 with respect to t+Δt
0 Ur yields

M t+Δt
0 Ur = p, (22)

with

M = ∫ΩR

(
t+ΔtNr

)Tt+ΔtNrdΩ, (23)

which is obtained directly by Gaussian quadrature at each element on the domain after remeshingΩR at time step t + Δt,

and

p = ∫ΩR

(
t+ΔtNr

)
TtudΩ = ∫ΩR

(
t+ΔtNr

)T(tN)t
UdΩ, (24)

where the integration is carried out at each element on the domain before remeshingΩR at time step t. tN represents basis

functions associated with the domain before remeshing ΩR.

4 NUMERICAL EXAMPLES

Below, we will consider three examples. While the last two examples demonstrate the ability of the method to analyse the

propagation of curved cracks, the first example is used to assess the accuracy and convergence of the adaptive remeshing

needed for the crack propagation. To this end, a Poisson problem is considered for which an analytical solution exists.39

4.1 Poisson problem on an L-shaped domain

The Poisson problem is solved on an L-shaped domain, Figure 8A. The L-shaped domain is defined as ΩL =

{(−1, 1) × (−1, 1)} ⧵ {(0, 1) × (0, 1)}. The problem is defined by the following governing equation and boundary

conditions:

△u = 0,
�ū

�n
= g on ΓN , ū = 0 on ΓD, (25)

with u as a scalar variable, eg, the temperature. The exact solution is given by

u = r
2

3 sin
2� − �

3
, � = (0, 2�] , (26)

The domain is modelled by a single 1 continuous Powell-Sabin B-spline patch, Figure 8B. To impose the Dirich-

let boundary condition for the Powell-Sabin triangles, the algorithm proposed in a previous study40 is employed. The

Neumann condition is imposed implicitly. To locally refine the triangulation we use the method of another study,41 see
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(A) (B)

FIGURE 8 Poisson problem on an L-shaped domain: problem definition and initial triangulation [Colour figure can be viewed at

wileyonlinelibrary.com]

(A) (B)

FIGURE 9 Poisson problem on an L-shaped domain: L2 error norm and mesh after adaptive refinement [Colour figure can be viewed at

wileyonlinelibrary.com]

Figure 9B. The error indicator of each element is computed using the L2 error norm ‖u − ū‖L2(Ωe), where u stands for

the exact solution and ū denotes the approximate solution . The relative error �e of each element, needed for marking

elements for refinement, is computed as42-44

�e =
‖u − ū‖L2(Ωe)√(∫

Ωe
uT · udΩ

) . (27)

Because of the singularity at the re-entrant corner (x1, x2) = (0, 0), the rate of convergence k in the L2 normwith respect

to the total number of degrees of freedom is governed by the angle � (� = �∕2) of the re-entrant corner45

k = −min

(
p,

�

2� − �

)
= −min

(
p,
2

3

)
= −

2

3
(28)

Elements are marked for adaptive refinement through quantile marking (� = 0.2).46 After adaptive refinement, we

obtain the triangulation in Figure 9B. The error indicator has clearly identified the corner singularity.46 In Figure 9A,

we compare the error norm for uniform and adaptive refinement. For uniform refinement, the corresponding rate of

convergence is k = −2∕3. The optimal rate of convergence, k = −2, can be recovered by adaptive refinement. In the

end of the convergence plot, the convergence rate is even higher than –2, see Figure 9A. It shows that the error level

http://wileyonlinelibrary.com
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for adaptive refinement is smaller than that for uniform refinement. This is because adaptive refinement smoothens the

gradient around the re-entrant corner, Figure 9B.

4.2 L-shaped beam peeling test

In the next two examples, a linear isotropicmaterial law is used for the bulkmaterial. An exponential decohesion relation13

is used for the constitutive behaviour in the crack{
tn = tu exp

(
−

tu
c �

)

ts = dint exp (hs�) ⟦vs⟧.
(29)

The history parameter � is set through a loading function f = f(⟦vn⟧, ⟦vs⟧, �), which evolves according to Kuhn-Tucker
conditions.16

� = ⟦vn⟧or⟦vs⟧ − � ⩽ 0 �̇ ⩾ 0 �̇� = 0. (30)

In the case of unloading ( f < 0), the tractions are obtained from a secant relation, as is customary in damage mechanics.

To avoid interpenetration, a penalty stiffness kp = 105MPa/mm is specified in the normal direction.

An L-shaped concrete panel is considered first. A vertical concentrated load is applied on the panel, see Figure 10A. The

test has been reported in a previous study47 and numerical simulations of crack propagation were presented in another

study.48 The following values for the material parameters were adopted: Young's modulus E = 20GPa, Poisson's ratio

� = 0.18, tensile strength tu = 2.5MPa, and fracture energy c = 0.13 N/mm. Here, we only consider mode-I fracture, ie,

dint = 0 in Equation 29. Plane-stress conditions are assumed. Displacement control has been adopted to fully track the

load-displacement path with steps of 0.01mm. Initially, the beam has been discretised by the triangulation presented in

Figure 10B. The Powell-Sabin B-splines are employed to describe the geometry and to interpolate the displacements. The

Dirichlet boundary condition is imposed using linear constraints, see Figure 11. Along the bottom edge, ed1, (Figure 10A),

the boundary condition is set as

UA = u (xA) , UB = u (xB) , UC = u (xC) , etc. (31)

in whichU is the degrees of freedom at Powell-Sabin triangle corner. u stands for the exact solution and x represents the

coordinates of the Powell-Sabin triangle corner.

In the analysis displacement control is employed to apply the external load. The displacement boundary condition for

the Powell-Sabin triangle t1 associated with the load point E, Figure 11B, is approximated as

UD = ū (xE) , UF = ū (xE) , (32)

whereU denotes the degrees of freedom at the Powell-Sabin triangle corner. ū (xE) is the applied displacement at the load-

ing point xE. This approximation may influence the stress and displacements near the loading point. However, according

to Saint-Venant's principle, the influence on the far-field will be small.

(A) geometry (in mm) and boundary conditions
(B) initial triangulation

FIGURE 10 L-shaped beam subject to a vertical load
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Triangulation PS refinement PS triangles

PS triangle corner loading point

(A) along bottom edge ed (B) along loading edge

FIGURE 11 Application of Dirichlet boundary conditions to the Powell-Sabin triangle corner along A, bottom edge ed1 and B, loading

edge ed2 in Figure 10A [Colour figure can be viewed at wileyonlinelibrary.com]
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Experiment range

Proposed method

Experiment range

Proposed method

(A) load displacement curve (B) predicted crack path

FIGURE 12 Load-displacement response and predicted crack path [Colour figure can be viewed at wileyonlinelibrary.com]

The computed load-displacement curve is shown in Figure 12A.A good agreement is obtainedwith experimental data.47

The curve exhibits some kinks due to a sudden release of the node at the crack tip when the fracture criterion ismet. Upon

mesh refinement, the kinks gradually disappear. Figure 12B shows that the computed crack path is well within the range

recorded in the experiments.47 In Figure 13, the meshes are given for different loading steps. The meshes are well defined

with good aspect ratios, which demonstrates the soundness of the remeshing algorithm in Section 3.2. Figure 14 gives

contour plots of the principal stress �1 for two different load levels. The stresses are smooth due to the 1-continuity of the
Powell-Sabin B-splines. The crack propagates smoothly through the interface Γc and no stress oscillations are observed.

Figure 12B shows that there are also kinks in the crack path. Again, this is due to quadrature errors and the discretisation,

and has also been observed in other higher continuity numerical approaches.49 The kinks gradually disappear uponmesh

refinement.

4.3 Nooru-Mohamed tension shear test

This example serves to demonstrate the improvements for discrete crack propagation, which the use of Powell-Sabin

B-splines offers over NURBS or T-splines.16,23 TheNooru-Mohamed tension-shear test is considered. In a previous study,23

this fracture test has been used to demonstrate limitations of the use of NURBS or T-splines for crack simulation. The

Nooru-Mohamed tension-shear test has been carried out on a double-edge notched plane concrete specimenwith a thick-

ness of 50 mm.50 Figure 15A shows the geometry and the boundary conditions. In the test, the specimen is first subjected

to a prescribed horizontal displacement u1 until a certain level of shear force F1 is reached. Subsequently, a vertical load

F2 was applied on the top edge via displacement control while keeping F1 constant. Three shear force values were tested:

F1 = 5kN, F1 = 10kN, and F1 = 27.5kN. Here, we take the case F1 = 10kN, see Figure 15A. The elastic material

parameters are: Young's modulus E = 30GPa and Poisson's ratio � = 0.2. To describe the fracture process, we employ

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 13 Mesh in the deformed configuration. The red lines indicate the crack path, which is aligned with the triangle element

boundaries [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 14 Stress distribution �1(MPa) for different load steps. The displacements have been amplified by a factor 100 [Colour figure can

be viewed at wileyonlinelibrary.com]

(A) geometry (in mm) and boundary conditions (B) initial triangulation

FIGURE 15 Nooru-Mohamed shear test: geometry, boundary conditions and initial triangulation. The solid lines in A, represent crack

paths obtained in the experiment of the case F1 = 10kN [Colour figure can be viewed at wileyonlinelibrary.com]
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(A) load displacement curve (B) predicted crack path

FIGURE 16 Load-displacement response and predicted crack path [Colour figure can be viewed at wileyonlinelibrary.com]

the exponential decohesion relation in a previous study (29) with two different sets of values for the tensile strength and

the fracture energy: (1) tu = 3.0MPa, c = 0.11 N/mm, labelled as "CZM1",51 and (2) tu = 2.3MPa, c = 0.08 N/mm

labelled as "CZM2."52 Herein, we include mode-II behaviour: dint = 10N/mm and hs = 0 in Equation 29.53 Plane-stress

conditions are assumed and the loading condition is set up as follows:

Step 1 Load control is considered to fully track the load-displacement path with steps of ΔF1 = 2kN along the upper

left edge edl. The top edge edt is fixed at this stage, see Figure 15A. To achieve this, a prescribed horizontal

displacement u1 has been applied along the upper left edge. These displacement boundary conditions are applied

as Equation 32 for all the Powell-Sabin triangle corners associated with the vertices along the upper left edge

edl and the top edge edt. Then, we sum up all internal forces along the upper left edge edl and add the following

relation as a constrain to the system equation.

∑
KlΔUl = Δu1

∑
Kl

[
1 1 · · · 1

]T
= ΔF1, (33)

where Kl represents the stiffness matrix associated with degrees of freedom of Powell-Sabin triangle corners

along the upper left edge edl, see Figure 15A; ΔUl denotes the displacement increment of degrees of free-

dom along the upper left edge edl. Δu1 represents the prescribed displacement increment along the upper left

edge edl.

Step 2 Displacement control is employed to fully track the load-displacement path with steps of Δu2 = 0.001mm

along the top edge edt, while keeping F1 = 10kN constant along the upper left edge edl, see Figure 15A. This is

achieved by applying the displacement boundary condition along the top edge edt as in Equation 32, for all the

Powell-Sabin triangle corners. The displacement boundary condition along the upper left edge edl is computed

following:

∑
KlUl = u1

∑
Kl

[
1 1 · · · 1

]T
= F1 = 10kN, (34)

which will be considered as a constraint on the system of equation.

The response curve is given in terms of the vertical load F2 vs the vertical displacement u2, see Figure 16A. For the

parameter set CZM1, the numerical results deviate from the experimental observations. The difference is caused by the

overestimation of fracture parameters tu andc.51 For the parameter set CZM2, the results agreewellwith the experimental
results.50 There is a discrepancy between the simulation and the experimental results in the tail of the load-dispacement

curve. This is because of the fact that we do not consider the mixity of crack modes.51 For the initial part of the crack

simulation, the mixity is not so important, but becomes relevant later on. In Figure 17, the meshes at different load steps

are given. As expected, the meshes are well defined with good aspect ratios. The stress contours for different load levels

are given in Figure 18. The crack propagates gradually when increasing the vertical displacement u2. A comparison of

the computed crack path and the experimental results (shaded in grey) is given in Figure 16B. Compared with standard

finite element methods, the present method can provide a smoother crack path and load-displacement curve due to the

1 continuous basis functions.54 Furthermore, elements with higher continuity tend to result in a more accurate stress
tensor, which in turn will better predict the direction of the crack path.

http://wileyonlinelibrary.com
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(B)(A)

FIGURE 17 Mesh in the deformed configuration. The red lines indicate the crack path, which is aligned with the triangle element

boundaries [Colour figure can be viewed at wileyonlinelibrary.com]

(B)(A)

FIGURE 18 Stress distribution �1(MPa) for different load steps. The parameter set is considered. The displacements have been amplified

by a factor 100 [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

For a number of applications in fracture of concrete and rock, discrete modelling is to be preferred. Recently, isogeo-

metric analysis has been used for this purpose and crack segments are then represented by NURBS or T-spline basis

functions.16,17,19-23 Indeed, the higher-order continuity of the NURBS and T-spline shape functions that are employed,

result in the advantageous property of smooth and accurate stress fields.

Nevertheless, NURBS and T-splines have some limitations when modelling (cohesive) fracture, and a discrete repre-

sentation of a crack fails in some situations. This restriction is because of the fact that the crack segment is inserted in

the parameter domain and that a reparametrisation must be carried out in the physical domain. Moreover, the degree of

continuity of NURBS and T-splines is reduced to 0 at the crack tip, which necessitates to use the stresses at integration
points around the crack tip to assess whether the criterion for insertion of a new crack segment has been met.

The use of Powell-Sabin B-splines, which are based on triangles, overcomes these restrictions. In this approach, a crack

is introduced directly in the physical domain. Moreover, Powell-Sabin B-splines remain 1 continuous at the crack tip,
which allows for assessing the crack initiation criterion at this point. Furthermore, remeshing is straightforward because

of the use of triangles. The initial mesh does not have to be aligned with the final crack path, which can be the case for

isogeometric analysis. To ensure compatibility with existing finite element programmes, an element-wise point of view is

adopted through the use of Bézier extraction. Numerical examples show that the refinement ability of the Powell-Sabin

B-splines is very suitable for the analysis of crack propagation.

A limitation of Powell-Sabin B-splines lies in the extension to three-dimensional objects. Until now, there is no proce-

dure to define Powell-Sabin B-splines on arbitrary tetrahedral meshes because of certain constraints with neighbouring

http://wileyonlinelibrary.com
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tetrahedrons,55,56 and they only work for structured meshes. Alternatively, one can construct prisms as a tensor product

of two-dimensional Powell-Sabin B-splines and NURBS in the third dimension.
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