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ABSTRACT

Diffusion processes with reaction generated by a nonlinear source are commonly en-
countered in practical applications related to ignition, pyrolysis and polymerization.
In such processes, determining the intensity of reaction in time is of crucial impor-
tance for control and monitoring purposes. Therefore, this paper is devoted to such
an identification problem of determining the time-dependent coefficient of a nonlin-
ear heat source together with the unknown heat flux at an inaccessible boundary of
a one-dimensional slab from temperature measurements at two sensor locations in
the context of nonlinear transient heat conduction. Local existence and uniqueness
results for the inverse coefficient problem are proved when the first three derivatives
of the nonlinear source term are Lipschitz continuous functions. Furthermore, the
conjugate gradient method (CGM) for separately reconstructing the reaction coef-
ficient and the heat flux is developed. The ill-posedness is overcome by using the
discrepancy principle to stop the iteration procedure of CGM when the input data
is contaminated with noise. Numerical results show that the inverse solutions are
accurate and stable.
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Nomenclature

dn direction of descent at nth iteration
E1, E2 accuracy errors
f(x, t) heat source

f j
i heat source at x̃i and tj
g(u) temperature-dependent reaction function
h(t) reaction coefficient
hj reaction coefficient at tj
J1, J2 objective function
J ′
i gradient of Ji

M number of nodes in space domain
N number of nodes in time domain
nh, nq stopping iteration numbers
nopt,h optimal iteration number for h(t)
nopt,q optimal iteration number for q(t)
P function needed to be estimated
p percentage of noise
q(t) heat flux
qj heat flux at tj
r ratio of ∆t to (∆x)2

t time variable
tj jth temporal node
T final time of interest
u(x, t) temperature

uji temperature at x̃i and tj
u0 initial temperature
x space variable
x1, x2 coordinates of measurement points
x̃i coordinate of ith spatial node
Y1, Y2 measured temperatures

Greek symbols
βn search step size at nth iteration
χ power order
δ Dirac delta function
∆x mesh size in space domain
∆t mesh size in time domain
Ei tolerance of Ji
ǫi measurement noise of Yi
ε small parameter
γn conjugate coefficient at nth iteration
Λ eigenvalue
λ(x, t) Lagrange multiplier
σi standard deviation of noise ǫi
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1. Introduction

Inverse heat conduction problems (IHCP) associated with the estimation of boundary
functions (e.g. temperature, heat flux, surface heat transfer coefficient) [3, 5] arise in
various areas of applied thermal engineering. One of the typical applications concerns
the reconstruction of exterior thermal environment of heat shields on re-entry vehicles
using internal temperature measurements. Furthermore, the heat transfer process can
also be influenced by a heat source, which may or may not depend on the temperature,
whose identification is referred to as the inverse heat source problem (IHSP). Typical
applications of IHSPs occur in bio-heat conduction [36, 42], fins in heat exchangers
[27, 28], microwave heating [45], mass transport in groundwater [39], spontaneous
ignition [31], pyrolysis of ablative materials [33] and polymerization of bone cements
[22].

The unknown boundary conditions and the source term are desired to be determined
from temperature measurements on the surface or inside the spatial domain. The
analysis of inverse problem requires the solution of its corresponding direct problem,
which is concerned with the determination of the effect (temperature) from known
cause (boundary condition and source term). Although some analytical methods are
available for solving the heat conduction equation to establish the relationship between
internal temperature and boundary heat flux [15, 16, 24, 48], the analytical solution can
hardly be obtained when there exists a nonlinear heat source (temperature-dependent).
Fortunately, a number of numerical methods have been employed to deal with such
kind of problems [29, 31, 38, 46]. Because of the ill-posed nature of inverse problem,
small errors in the experimental measurements cause large oscillations in the inverse
solution. Therefore, many methods have been proposed to address the instability of
the solution, e.g., Tikhonov’s regularization [40], function specification method [3],
truncated singular value decomposition (TSVD) [18], Levenberg-Marquardt algorithm
(LM) and conjugate gradient method (CGM) [30].

When the heat source does not depend explicitly on the temperature, the result-
ing linear IHSPs of identifying space-dependent and time-dependent coefficient have
been rigorously investigated in [14] and [21], respectively. Especially, in [21], the well-
posedness of the inverse problem was established based on some assumptions over the
input data. Moreover, Hasanov [20] considered the identification of the space and time
dependent sources in two seperate inverse problems, which were numerically solved
based on CGM and collocation algorithm, respectively. On the other hand, when the
heat source depends linearly on the temperature, the source term with an unknown
time-dependent control function was solved using various finite difference schemes
[12, 44]. As an example, Trucu et al. [42] identified the space-dependent blood perfu-
sion coefficient using the Crank-Nicolson finite difference scheme combined with the
Tikhonov regularization method. More recently, Cao and Lesnic [7] reconstructed the
space and time-dependent blood perfusion coefficient using the CGM.

When the heat source depends nonlinearly on the temperature the literature on
IHSP for the resulting semilinear heat equation is rather scarce [8, 22, 35, 37]. For
the numerical solution, Huang et al. [22] applied the CGM to determine the heat
source governed by the Arrhenius law, but the source term was assumed an explicit
function of space and time variables. Shidfar et al. [37] used the LM algorithm to
approximate the space-dependent nonlinear source in a special basis functions space.
Our work will show rigorously the local existence and uniqueness of the time-dependent
intensity of a nonlinear reaction process from internal temperature measurements,
which has not been investigated yet to our knowledge. Besides, it should be noted
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that all the aforementioned works concerned with source identification are based on the
assumption of known boundary conditions. But in some circumstances, the boundary
conditions are also unknown as the measurement on the surface is inaccessible [47].

To summarise, the aim of this article is to investigate the inverse problem of de-
termining the time-dependent coefficient of a nonlinear source and the heat flux in a
nonlinear parabolic equation from two temperature measurements in time. The numer-
ical method for solving the direct problem of heat conduction with nonlinear source
based on the FDM is presented in section 2. In section 3 the inverse problems under
investigation are formulated. The local existence and uniqueness of a classical solution
to the IHSP are proved in section 4 and the numerical CGM for solving the inverse
problems is presented in section 5. Two numerical examples are illustrated to verify the
accuracy and stability of the algorithm in section 6. Finally, conclusions are presented
in section 7.

2. Direct problem

Consider the one-dimensional direct heat conduction problem in a homogeneous finite
slab of unit length with a nonlinear source given by:

∂u

∂t
=

∂2u

∂x2
+ h(t)g(u) + f(x, t), (x, t) ∈ [0, 1]× [0, T ], (1)

subject to Neumann heat flux boundary conditions

−∂u

∂x
(0, t) = q(t), t ∈ (0, T ], (2)

∂u

∂x
(1, t) = 0, t ∈ (0, T ], (3)

and initial condition

u(x, 0) = u0(x), x ∈ [0, 1], (4)

where T > 0 is a final time of interest, f(x, t) is a free term heat source, u(x, t) is the de-
pendent variable, i.e., the temperature, g(u) is an a priori known heat source/reaction
function depending on u given by some physical/chemical laws, and h(t) is a time-
dependent reaction coefficient characterizing the intensity of the source term. The
initial temperature is u0(x). The boundary at x = 0 is subjected to a time varying
heat flux q(t), whilst the boundary at x = 1 is insulated.

Because of the presence of the nonlinearity g(u), no analytical method is available
and hence the finite difference method (FDM) is applied for numerical discretization.
The mesh sizes in space and time domains are ∆x = 1/(M − 1) and ∆t = T/(N − 1),
where M and N denote the number of nodes. The nodes are x̃i = (i−1)∆x, i = 1toM

and tj = (j−1)∆t, j = 1toN . The discretized values of u(x̃i, tj) are denoted as uji . By
employing an implicit FDM scheme, which is unconditionally stable by von Neumann
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stability analysis, the governing Eq.(1) is discretized as follows:

uj+1
i − uji
∆t

=
uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆x)2
+ hj+1g(uj+1

i ) + f j+1
i , i = 1,M, j = 1, N − 1.

(5)

The nonlinear source term g(uj+1
i ) is linearized by a first-order Taylor series expansion

[32, 45],

g(uj+1
i ) = g(u∗) + g′(u∗)(uj+1

i − u∗), (6)

and then Eq.(6) is substituted into Eq.(5) to obtain the following recurrence relation-
ship:

[

1 + 2r − hj+1g′(u∗)∆t
]

uj+1
i − ruj+1

i+1 − ruj+1
i−1

= uji +∆t
[

hj+1
(

g(u∗)− g′(u∗)u∗
)

+ f j+1
i

]

, (7)

where r = ∆t/(∆x)2, g′ denotes the first derivative of g, and u∗ is the previously
iterated solution. The boundary conditions (2) and (3) can be discretized as follows:

uj+1
0 − uj+1

2

2∆x
= qj+1, j = 1, N − 1, (8)

uj+1
M+1 − uj+1

M−1

2∆x
= 0, j = 1, N − 1, (9)

where uj+1
0 and uj+1

M+1 are nodal temperatures at fictitious points i = 0 and i = M+1 on
the left-hand side and right-hand side of the boundaries x = 0 and x = 1, respectively.
The fictitious nodal temperatures can be further eliminated by substituting Eqs.(8)
and (9) into Eq.(5) for i = 1 and M . To solve Eq.(7), the iteration is implemented by

assuming u∗ = uji , namely the values at previous time step. With these new values as
better guesses, repeat the process until the changes in the values of u are negligible.

3. Inverse problem

In the inverse problem, both the time-dependent heat flux q(t) and the reaction co-
efficient h(t) are unknown and need to be determined together with the temperature
u(x, t). In this study, the time varying temperature measurements at two points x = x1
and x2 (0 ≤ x2 < x1 ≤ 1), as shown in Figure 1, are taken as the overspecification
needed to compensate for the missing information. For linear problems where g(u) = u,
similar inverse problems have been widely considered in the literatures, see for instance
[12, 25, 26, 41, 44] for the recovery of the blood perfusion coefficient h(t), and [19] for
the recovery of the heat flux q(t). In the case g(u) = uχ with χ ∈ (0, 1), the existence
and uniqueness of the pair (q(t), u(x, t)) for the homogeneous heat equation (1) with
homogeneous Neumann boundary conditions (2) and (3), initial condition (4) and in-
ternal measurement (12) with 0 < x2 < 1, was established in [34] and [4, Sect.7.2]. In
our paper, in section 4 we will show for the first time the local (in time) existence and
uniqueness of the pair solution (h(t), u(x, t)) satisfying Eqs.(11)-(15) with a general
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Figure 1. Schematic representation of the inverse problem considered.

nonlinear source term g(u), when the first three derivatives of g are Lipschitz contin-
uous functions. We also mention that some different inverse source problems where h
depends on x, or where the function g(u) is unknown have been investigated elsewhere,
see [6, 13, 35, 42].

Considering the ill-posedness of the inverse problem, we formulate it in the frame-
work of least-squares variational minimization. The unknown functions h(t) and q(t)
are sought by solving two separate inverse problems described below.

The objective functions for minimization, which characterize the residual between
the temperature measurement and the calculated value, are listed as follows:

{

J1[h(t)] =
1
2

∫ T
0 [u(x1, t;h)− Y1(t)]

2 dt,

J2[q(t)] =
1
2

∫ T
0 [u(x2, t; q)− Y2(t)]

2 dt,
(10)

where Yi are the measured temperatures at x = xi, i = 1, 2, respectively. There are
no bounds on the variables h and q that need to be imposed in the minimization of
(10). We take time-dependent temperature measurements with two sensors at x = xi,
i = 1, 2, because there are two unknown functions dependent on time that have to be
identified.

The first step is to estimate h(t) by minimizing J1, which can be achieved by solving
the IHSP defined in the domain (x, t) ∈ [x2, 1] × [0, T ], as shown in Figure 1. The
problem is stated as follows:

∂u

∂t
=

∂2u

∂x2
+ h(t)g(u) + f(x, t), (x, t) ∈ [x2, 1]× [0, T ], (11)

with a Dirichlet boundary condition at x = x2 (the measured temperature is used as
a boundary condition) and the insulation condition at x = 1, namely,

u(x2, t) = Y2(t), t ∈ [0, T ], (12)

∂u

∂x
(1, t) = 0, t ∈ (0, T ], (13)

the initial condition

u(x, 0) = u0(x), x ∈ [x2, 1], (14)

6



and the additional condition

u(x1, t) = Y1(t), t ∈ [0, T ], (15)

where u0, Y1 and Y2 satisfy consistency conditions, namely, u′0(1) = 0, Y1(0) = u0(x1)
and Y2(0) = u0(x2). Whilst the above inverse problem given by equations (11)-(15)
for recovering the reaction coefficient h(t) can be easily formulated in multiple spatial
dimensions, its mathematical analysis described in the next section cannot be readily
extended and is deferred to a future work.

With h(t) being determined, the second step is to estimate q(t) by minimizing J2
in Eq.(10). The problem is considered as an IHCP, which consists in the evaluation
of the unknown heat flux q(t) and the temperature u(x, t) satisfying Eqs.(1), (3), (4)
and (12).

4. Mathematical analysis of the IHSP

In this section, we prove the existence and uniqueness of a classical solution to the IHSP
(11)-(15). First, since the boundary condition (12) is non-homogeneous, we introduce
a new variable v(x̂, t) := u(x, t) − Y2(t). Then, from Eqs.(11)-(15), it is easy to see
that v(x̂, t) satisfies the following problem:

∂v

∂t
= D

∂2v

∂x̂2
+ h(t)g(v + Y2(t)) + f̂(x̂, t), (x̂, t) ∈ DT := [0, 1]× [0, T ], (16)

v(0, t) =
∂v

∂x̂
(1, t) = 0, t ∈ (0, T ], (17)

v(x̂, 0) = u0(x)− Y2(0) =: ϕ(x̂), x̂ ∈ [0, 1], (18)

and the additional condition is

v(x̂1, t) = Y1(t)− Y2(t) =: a(t), t ∈ [0, T ], (19)

where D = 1
(1−x2)2

, x̂ = x−x2

1−x2

, x̂1 = x1−x2

1−x2

and f̂(x̂, t) = f(x, t)− Y ′
2(t). The functions

ϕ and a satisfy the consistency conditions ϕ(0) = 0 and ϕ(x̂1) = a(0). The pair
(h(t), v(x̂, t)) from the class C[0, T ] × C2,1(DT ) which satisfies (16)-(19) is called a
classical solution of the inverse problem (16)-(19).

We attempt to apply the Fourier method of eigenfunction expansion to the problem
(16)-(19). Consider first the auxiliary spectral problem given by

{

DX ′′(x̂) + ΛX(x̂) = 0, x̂ ∈ [0, 1],
X(0) = X ′(1) = 0,

(20)

which has the eigenvalues Λn = Dµ2
n and the eigenfunctions Xn(x̂) = sin(µnx̂), where

µn =
(

π
2 + nπ

)

for n = 0, 1, ....
Let us seek the solution of the problem (16)-(19) in the form

v(x̂, t) =

∞
∑

n=0

vn(t) sin(µnx̂), (21)
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where vn(t) is the solution of the following initial value problem:

{

v′n(t) +Dµ2
nvn(t) = Fn(t; v, h),

vn(0) = ϕn.
(22)

Here ϕn = 2
∫ 1
0 ϕ(x̂) sin(µnx̂) dx̂ and Fn(t; v, h) = h(t)gn(t) + fn(t), where gn(t) =

2
∫ 1
0 g(v(x̂, t) + Y2(t)) sin(µnx̂) dx̂ and fn(t) = 2

∫ 1
0 f̂(x̂, t) sin(µnx̂) dx̂. The solution of

(22) satisfies the nonlinear integral equation

vn(t) = ϕne
−Dµ2

nt +

∫ t

0
Fn(s; v, h)e

Dµ2

n(s−t)ds. (23)

Substituting Eq.(23) into Eq.(21), we get

v(x̂, t) =

∞
∑

n=0

[

ϕne
−Dµ2

nt +

∫ t

0
Fn(s; v, h)e

Dµ2

n(s−t)ds

]

sin(µnx̂). (24)

Consider x̂ = x̂1 in Eq.(16) and use the over-specification condition (19) to obtain

h(t) =
1

g(a(t) + Y2(t))

[

a′(t)− f̂(x̂1, t) +D

∞
∑

n=0

µ2
n sin(µnx̂1)vn(t).

]

. (25)

The pair z := [h(t), v(x̂, t)]T satisfies the nonlinear system of equations (24) and (25),
which can be rewritten as an operator equation

z = Φ(z). (26)

The operator Φ has the form [φ0, φ]
T, where

φ0(z) =
1

g(a(t) + Y2(t))

[

a′(t)− f̂(x̂1, t)

+D

∞
∑

n=0

µ2
n sin(µnx̂1)

(

ϕne
−Dµ2

nt +

∫ t

0
Fn(s; v, h)e

Dµ2

n(s−t)ds

)

]

, (27)

φ(z) =

∞
∑

n=0

[

ϕne
−Dµ2

nt +

∫ t

0
Fn(s; v, h)e

Dµ2

n(s−t)ds

]

sin(µnx̂). (28)

One can note that Eq.(27) contains the derivative a′(t) of the function a(t) = Y1(t)−
Y2(t) whose numerical differentiation represents an ill-posed problem since the data
(12) and (15) come from measurement which is inherently contaminated with random
noise.
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Let us now introduce the functional space [23]

B3
2,T :=

{

v(x̂, t) =

∞
∑

n=0

vn(t) sin(µnx̂) : vn(t) ∈ C[0, T ],

JT (v) :=

[

∞
∑

n=0

(

µ3
n ‖vn(t)‖C[0,T ]

)2
]1/2

< +∞







, (29)

with the norm ‖v‖B3

2,T
:= JT (v). It can be shown that B3

2,T is a Banach space. Obvi-

ously, E3
T := B3

2,T ×C[0, T ] with the norm ‖z‖E3

T
= ‖v(x̂, t)‖B3

2,T
+ ‖h(t)‖C[0,T ] is also

a Banach space.
Let us show that Φ maps E3

T onto itself continuously. In other words, we need to
show that φ0(z) ∈ C[0, T ] and φ(z) ∈ B3

2,T for arbitrary z = [h(t), v(x̂, t)]T, where

h(t) ∈ C[0, T ] and v(x̂, t) ∈ B3
2,T .

We will use the following assumptions on the data of problem (16)-(19):

(A1): ϕ(x̂) ∈ C3[0, 1], a(t) ∈ C1[0, T ], ϕ(0) = ϕ′(1) = ϕ′′(0) = 0, ϕ(x̂1) = a(0);

(A2): f̂(x̂, t) ∈ C(DT ), f̂(·, t) ∈ C3[0, 1], ∀t ∈ [0, T ], f̂(0, t) = f̂x̂(1, t) = f̂x̂x̂(0, t) = 0;

(A3):























Y2(t) ∈ C1[0, T ], g(v) ∈ C3(R), g(Y2(t)) = g′(Y2(t)) = g′′(Y2(t)) = 0,
g(a(t) + Y2(t)) 6= 0, ∀t ∈ [0, T ]; g′, g′′ and g′′′ are Lipschitz continuous
functions, i.e., there exist non-negative real constants ci, i = 1, 2, 3, such that
|g′(v)− g′(w)| ≤ c1 |v − w| , |g′′(v)− g′′(w)| ≤ c2 |v − w| ,
|g′′′(v)− g′′′(w)| ≤ c3 |v − w| , ∀v, w ∈ R.

First, let us show that φ0(z) ∈ C[0, T ]. Using integration by parts, it easy to see
that using (17), the assumptions (A1), (A2) and first condition of (A3), we have











ϕn = − 2
µ3

n

∫ 1
0 ϕ′′′(x̂) cos(µnx̂) dx̂,

fn(t) = − 2
µ3

n

∫ 1
0 f̂x̂x̂x̂(x̂, t) cos(µnx̂) dx̂,

gn(t) = − 2
µ3

n

∫ 1
0

(

gvvvv
3
x̂ + 3gvvvx̂x̂vx̂ + gvvx̂x̂x̂

)

cos(µnx̂) dx̂,

(30)

From Eqs.(27) and (30), we obtain

|φ0(z)| ≤
1

|g(a(t) + Y2(t))|
{

∣

∣a′(t)
∣

∣+ |f̂(x̂1, t)|

+

∞
∑

n=0

D

µn

[

|αn|+
∫ T

0
(|h(t)| |ηn(t)|+ |γn(t)|) dt

]

}

, (31)

where











αn := µ3
nϕn = −2

∫ 1
0 ϕ′′′(x̂) cos(µnx̂) dx̂,

ηn(t) := µ3
ngn(t) = −2

∫ 1
0

(

gvvvv
3
x̂ + 3gvvvx̂x̂vx̂ + gvvx̂x̂x̂

)

cos(µnx̂) dx̂,

γn(t) := µ3
nfn(t) = −2

∫ 1
0 f̂x̂x̂x̂(x̂, t) cos(µnx̂) dx̂.

(32)

The majorizing series in (31) is convergent by using (A1)-(A3) and the Cauchy-
Schwartz and Bessel inequalities. This implies that by the Weierstrass-M test, the
series in (27) is uniformly convergent in [0, T ]. Thus, φ0 is continuous in [0, T ].
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Now, let us show that φ(z) ∈ B3
2,T , i.e. we need to show that

[

∞
∑

n=0

(

µ3
n max
0≤t≤T

|φn(t)|
)2
]1/2

< +∞, (33)

where φn(t) := ϕne
−Dµ2

nt +
∫ t
0 Fn(s; v, h)e

Dµ2

n(s−t)ds by (28). Applying integration by
parts, as before (e.g. as in (30)-(32)), we obtain

φn(t) =
1

µ3
n

[

αne
−Dµ2

nt +

∫ t

0
[h(s)ηn(s) + γn(s)]e

Dµ2

n(s−t)ds

]

, (34)

under the assumption (A1)-(A3). This implies

µ3
n |φn(t)| ≤ |αn|+

∫ T

0
(|h(t)| |ηn(t)|+ |γn(t)|) dt. (35)

From the inequality (35), we obtain

∞
∑

n=0

(

µ3
n max
0≤t≤T

|φn(t)|
)2

≤ 2

∞
∑

n=0

|αn|2

+ 4T 2

[

(

max
0≤t≤T

|h(t)|
)2 ∞
∑

n=0

max
0≤t≤T

|ηn(t)|2 +
∞
∑

n=0

max
0≤t≤T

|γn(t)|2
]

. (36)

From the Bessel inequality, the series on the right hand side of (36) are convergent.
Thus, JT (φ) < +∞ and thus φ belongs to the space B3

2,T .

Let us now show that Φ is a contraction mapping on E3
T . Let z1 = [h(t), v(x̂, t)]T and

z2 = [h̃(t), ṽ(x̂, t)]T be any two elements of E3
T . We know that ‖Φ(z1)− Φ(z2)‖E3

T
=

‖φ0(z1)− φ0(z2)‖C[0,T ] + ‖φ(z1)− φ(z2)‖B3

2,T
.

After applying integration by parts to Eqs.(27) and (28), under the assumptions
(A1)-(A2) and first part of (A3), we obtain

φ0(z1)− φ0(z2) =
−D

g(a(t) + Y2(t))

[

∞
∑

n=0

2

µn
sin(µnx̂1)

∫ t

0
M(h, h̃, v, ṽ)eDµ2

n(s−t)ds

]

,

(37)

φ(z1)− φ(z2) = −
∞
∑

n=0

2

µ3
n

sin(µnx̂1)

∫ t

0
M(h, h̃, v, ṽ)eDµ2

n(s−t)ds, (38)

where

M(h, h̃, v, ṽ) := h(s)

∫ 1

0

[

gvvvv
3
x̂ + 3gvvvx̂x̂vx̂ + gvvx̂x̂x̂

]

cos(µnx̂) dx̂

−h̃(s)

∫ 1

0

[

gvvvṽ
3
x̂ + 3gvvṽx̂x̂ṽx̂ + gvṽx̂x̂x̂

]

cos(µnx̂) dx̂. (39)
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By using the Cauchy-Schwartz inequality from (21) it is easy to obtain that

|vx̂| =
∣

∣

∣

∣

∣

∞
∑

n=0

µnvn(t) cos(µnx̂)

∣

∣

∣

∣

∣

≤
∞
∑

n=0

1

µ2
n

(

µ3
n max
0≤t≤T

|vn(t)|
)

≤ c ‖v‖B3

2,T
, (40)

|vx̂x̂| =
∣

∣

∣

∣

∣

−
∞
∑

n=0

µ2
nvn(t) sin(µnx̂)

∣

∣

∣

∣

∣

≤
∞
∑

n=0

1

µn

(

µ3
n max
0≤t≤T

|vn(t)|
)

≤ c ‖v‖B3

2,T
, (41)

∫ 1

0
v2x̂x̂x̂ dx̂ =

(

−
∞
∑

n=0

µ3
nvn(t) cos(µnx̂), −

∞
∑

n=0

µ3
nvn(t) cos(µnx̂)

)

L2[0,1]

=
1

2

∞
∑

n=0

(

µ3
n |vn(t)|

)2 ≤ 1

2
‖v‖2B3

2,T
, (42)

where (·, ·)L2(0,1) denotes the inner product in L2(0, 1), c =
[

∑∞
n=0

1
µ2

n

]
1

2

, and similar

inequalities for ṽ.
After some manipulations in Eqs.(37) and (38) and using the estimates (40)-(42)

and the Lipschitz continuities in (A3), we obtain

‖Φ(z1)− Φ(z2)‖E3

T
≤ A(T )C(h, h̃, v, ṽ) ‖z1 − z2‖E3

T
, (43)

where A(T ) :=
√
T

(

1 +
∥

∥

∥

D
g(a(t)+Y2(t))

∥

∥

∥

C[0,T ]

)

and C(h, h̃, v, ṽ) is a positive constan-

t dependent on some multiplications and summations of the norms of ‖h‖C[0,T ],

‖h̃‖C[0,T ], ‖v‖2B3

2,T
and ‖ṽ‖2B3

2,T
.

Since A(T ) has limit zero as T tends to zero, it means that, for sufficient small T ,
the operator Φ is contraction mapping which maps E3

T onto itself continuously. Then
according to Banach fixed point theorem there exists unique solution to Eq.(26) in
E3

T .
Thus, we have proved the following theorem:

Theorem 4.1. Let the assumptions (A1)-(A3) be satisfied. Then, the inverse problem
(16)-(19) has a unique classical solution (v(x̂, t), h(t)) ∈ E3

T for small T . Moreover,
v(x̂, t) ∈ C2,1(DT ).

The fact that v(x̂, t) also belongs to C2,1(DT ) follows noting that from (29) we have

vx̂x̂(x̂, t) ∈ C(DT ), from (A2) we have that f̂(x̂, t) ∈ C(DT ), from (A3) it results
that g(v(x̂, t) + Y2(t)) ∈ C(DT ) and also since h ∈ C(DT ) from (16) we obtain that
vt(x̂, t) ∈ C(DT ).

Noting that Y1(t) = a(t)+Y2(t), u(x, t) = v(x̂, t)+Y2(t), u0(x) = ϕ(x̂)+Y2(0), and

f(x, t) = f̂(x̂, t) + Y ′
2(t), where x̂ = x−x2

1−x2

, then under the following assumptions:

(A′
1): u0 ∈ C3[x2, 1], Y1 ∈ C1[0, T ], Y2 ∈ C1[0, T ], u0(x2) = Y2(0), u

′
0(1) = u′′0(0) = 0,

u0(x1) = Y1(0);
(A′

2): f(x, t) ∈ C ([x2, 1]× [0, T ]), f(·, t) ∈ C3[x2, 1], ∀t ∈ [0, T ], f(x2, t) = Y ′
2(t),

fx(1, t) = fxx(x2, t) = 0;
(A′

3): The same as (A3), but with the condition g(a(t) + Y2(t)) 6= 0, ∀t ∈ [0, T ] being
replaced by the condition g(Y1(t)) 6= 0, ∀t ∈ [0, T ],
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it follows that the original IHSP (11)-(15) has a unique classical solution
(u(x, t), h(t)) ∈ B̃3

2,T × C[0, T ] for small T , where

B̃3
2,T :=

{

u(x, t) = Y2(t) + v(x̂, t) : v(x̂, t) ∈ B3
2,T ∩ C2,1(DT )

}

⊂ C2,1(DT ). (44)

5. The numerical procedure based on CGM

The estimations of h(t) and q(t), as minimizers of (10), can be achieved either by
gradient-free heuristic techniques, such as evolutionary optimization algorithms [9–11,
17], or by gradient-based methods. Gradient-free methods can be applied to problems
where the objective function is not differentiable, but if this is not the case, gradient-
based deterministic techniques are preferred due to their higher efficiency. In this
study, the rigorous CGM is applied for the numerical optimization of least-squares
functional. Assuming that P (t) is the function needed to be estimated, the value of
P (t) at iteration n+ 1 is

Pn+1(t) = Pn(t)− βndn(t), n = 0, 1, . . . , (45)

where the superscript n is the number of iteration, P 0 is an initial guess, βn is the
search step size and dn is the direction of descent given by:

d0(t) = J ′[P 0], dn(t) = J ′[Pn] + γndn−1(t), n = 1, 2, . . . , (46)

where J stands for J1 or J2 in (10) depending on whether h(t) or q(t) is estimated,
respectively. The conjugate coefficient γn is calculated by the Polak-Ribiere expression,
[2],

γn =

∫ T
0 J ′[Pn]

(

J ′[Pn]− J ′[Pn−1]
)

dt
∫ T
0 (J ′[Pn−1])2 dt

, n = 1, 2, . . . . (47)

Here, the gradient J ′[Pn] can be derived from the solution of an adjoint problem, which
will be presented in section 5.2. Further, the search step size βn is found by minimizing
the function J [Pn − βndn] with respect to βn, and following a similar analysis to that
of [7] we obtain

βn =

∫ T
0 [u(t;Pn)− Y (t)]∆undt

∫ T
0 (∆un)2 dt

, n = 0, 1, . . . , (48)

where ∆un = ∆u(t; dn) is obtained by solving the sensitivity problem (49) or (50) by
setting ∆Pn = dn, [1].

5.1. The sensitivity problem

Consider first the estimation of h(t). The sensitivity problem is obtained from the
direct problem by adding a perturbation ε∆h(t) to h(t), and the subsequent response
uh(x, t) is perturbed by ε∆uh(x, t), where ε is a small parameter. The increment
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∆uh(x, t) satisfies the following sensitivity problem:







∂∆uh

∂t = ∂2∆uh

∂x2 + h(t)g′(uh(x, t))∆uh + g(uh)∆h, (x, t) ∈ [x2, 1]× [0, T ],

∆uh(x2, t) = 0, ∂
∂x∆uh(1, t) = 0, t ∈ (0, T ],

∆uh(x, 0) = 0, x ∈ [x2, 1].

(49)

Now consider the sensitivity problem of estimating q(t). The increment ∆uq(x, t)
resulted from the perturbation ε∆q(t) is the solution of the following sensitivity prob-
lem,







∂∆uq

∂t = ∂2∆uq

∂x2 + h(t)g′(uq(x, t))∆uq, (x, t) ∈ [0, 1]× [0, T ],
∂
∂x∆uq(0, t) = −∆q(t), ∂

∂x∆uq(1, t) = 0, t ∈ (0, T ],
∆uq(x, 0) = 0, x ∈ [0, 1].

(50)

5.2. The adjoint problem

Because the temperature appearing in the objective function (10) needs to satisfy the
direct problem, we consider the following constrained objective functional for h(t) by
introducing a Lagrange multiplier λh(x, t):

J1[h] =
1

2

∫ T

0

∫ 1

x2

[uh(x, t;h)− Y1(t)]
2 δ(x− x1) dxdt

+

∫ T

0

∫ 1

x2

λh(x, t)

[

∂2uh
∂x2

+ h(t)g(uh) + f(x, t)− ∂uh
∂t

]

dxdt, (51)

where δ is the Dirac delta function. The first variation, ∆J1[h] = J1[h+∆h]− J1[h],
of the objective function J1[h] is derived as follows:

∆J1[h] =

∫ T

0

∫ 1

x2

∆uh[uh(x, t)− Y1(t)]δ(x− x1) dxdt

+

∫ T

0

∫ 1

x2

λh(x, t)

[

∂2∆uh
∂x2

+ h(t)g′(uh)∆uh + g(uh)∆h− ∂∆uh
∂t

]

dxdt

=

∫ T

0

∫ 1

x2

λhg(uh)∆h dxdt

+

∫ T

0

[

λh
∂∆uh
∂x

∣

∣

∣

∣

1

x2

−∆uh
∂λh

∂x

∣

∣

∣

∣

1

x2

]

dt−
∫ 1

x2

λh∆uh|T0 dx

+

∫ T

0

∫ 1

x2

∆uh

[

∂2λh

∂x2
+

∂λh

∂t
+ λhh(t)g

′(uh) + (uh − Y1)δ(x− x1)

]

dxdt.

(52)

Vanishing ∆J1[h], the adjoint problem that governs the Lagrange multiplier λh(x, t)
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is given by







∂λh

∂t = −∂2λh

∂x2 − λhh(t)g
′(uh(x, t))− (uh − Y1)δ(x− x1), (x, t) ∈ [x2, 1]× [0, T ],

λh(x2, t) = 0, ∂λh

∂x (1, t) = 0, t ∈ (0, T ],
λh(x, T ) = 0, x ∈ [x2, 1].

(53)
The gradient formula of the functional J1[h] can then be obtained as

J ′
1[h] =

∫ 1

x2

λh(x, t)g(uh(x, t)) dx. (54)

From Eq.(54) and the third equation in (53), one remarks that J ′
1[h] vanishes at the

final time t = T . Similarly, the adjoint problem for to the estimation of q(t) is given
by







∂λq

∂t = −∂2λq

∂x2 − λqh(t)g
′(uq(x, t))− (uq − Y2)δ(x− x2), (x, t) ∈ [0, 1]× (0, T ],

∂λq

∂x (0, t) = 0, ∂λq

∂x (1, t) = 0, t ∈ (0, T ],
λq(x, T ) = 0, x ∈ [0, 1].

(55)
The subsequent gradient formula is

J ′
2[q] = λq(0, t), (56)

which also vanishes at t = T .

5.3. Stopping criterion

Due to the ill-posedness of inverse problem, small random errors inherently present
in the measured temperatures can cause large oscillations in the inverse solution. In
order to illustrate the effect of measurement noise on the stablity of inverse solution,
the temperature measurements are numerically simulated by adding random noise to
the exact Yi(t) = u(xi, t), as

Y noise
i (t) = Yi(t) + ǫi(t), i = 1, 2, (57)

where ǫi(t) is the measurement noise at x = xi, satisfying a normal distribution with
zero mean and standard deviation σi given by

σi = p× max
t∈[0,T ]

|u(xi, t)|, i = 1, 2, (58)

where p represents the percentage of noise.
To stabilize the problem, the discrepancy principle is used for stopping the iterative

procedure of the CGM, namely, cease the iteration at the first iteration number k for
which

Ji[P
k] ≤ Ei, i = 1, 2, (59)
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where, from Eqs.(10) and (57),

Ei =
1

2

∫ T

0
ǫ2i (t) dt, i = 1, 2. (60)

5.4. CGM algorithm

1). Choose an initial guess of h0(t) and set n = 0.
2). Solve the direct problem (Eqs.(11)-(14)) to obtain unh = uh(x, t;h

n), and calcu-
late J1[h

n]. If J1[h
n] satisfies the stopping criterion (59), then go to step 6, else

go to step 3.
3). Solve the adjoint problem (Eq.(53)) to calculate λh(x, t;h

n), and the gradient
J ′
1[h

n] by Eq.(54). Calculate the conjugate coefficient γn by Eq.(47) and the
direction of descent dn by Eq.(46).

4). Solve the sensitivity problem (Eq.(49)) to obtain ∆uh(x, t;h
n) with ∆hn = dn,

and then calculate the search step size βn using Eq.(48).
5). Obtain hn+1(t) via Eq.(45). If J1[h

n+1] satisfy the stopping criterion (59), then
go to step 6, else set n = n+ 1 and go to step 2.

6). Choose an initial guess of q0(t) and set n = 0.
7). Solve the direct problem (Eqs.(1)-(4)) to obtain unq = uq(x, t; q

n), and calculate
J2[q

n].
8). Solve the adjoint problem (Eq.(55)) and obtain the gradient J ′

2[q
n] by Eq.(56).

Calculate γn and dn.
9). Solve the sensitivity problem (Eq.(50)) and then calculate the search step size

βn.
10). Obtain qn+1(t) from Eq.(45). If J2[q

n+1] satisfy the stopping criterion, then stop
the iteration (59), else set n = n+ 1 and go to step 7.

6. Numerical results and discussion

In this section, we perform numerical experiments to validate the CGM in solving
the inverse problem of determining h(t) and afterwards q(t). Two different functional
forms of g(u), h(t) and q(t) are tested here. To illustrate the accuracy of the inverse
solution, the retrieved functions h(t) and q(t) are compared with the exact one hext(t)
and qext(t). We define the accuracy errors at the iteration number n as







E1[h
n] =

√

1
N

∑N
j=1 [h

n(tj)− hext(tj)]
2,

E2[q
n] =

√

1
N

∑N
j=1 [q

n(tj)− qext(tj)]
2.

(61)

A uniform grid is used to discretize the space (x ∈ [0, 1]) and time (t ∈ [0, T = 1])
domains. The integrals involved are approximated using the trapezium rule. In each
example, both noiseless and noisy temperature data will be used for estimation to
illustrate the accuracy and stability of the inverse solutions obtained by CGM.
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6.1. Example 1

Let T = 1 and the functions in Eqs.(1)-(4) be as follows:

g(u) = sin3(u), u0(x) = sin

(

π

2
· x− x2
1− x2

)

,

f(x, t) =

(

π2

4(1− x2)2
− 1

)

sin

(

π

2
· x− x2
1− x2

)

e−t

+ (1 + t2) sin3
(

sin

(

π

2
· x− x2
1− x2

)

e−t

)

, (62)

h(t) = −1− t2, (63)

q(t) = − π

2(1− x2)
cos

(

πx2
2(1− x2)

)

e−t. (64)

The analytical solution of the direct problem (1)-(4) is

uext(x, t) = sin

(

π

2
· x− x2
1− x2

)

e−t. (65)

Let us take x2 = 0.1.

6.1.1. Direct problem (1)-(4)

The numerical solution of the direct Neumann problem given by Eqs.(1)-(4) is obtained
using the iterative FDM described in section 2. In order to demonstrate the accuracy
and convergence of the direct problem solution, we introduce the root mean square
error (RMSE) defined as

RMSE =

√

√

√

√

1

N

N
∑

i=1

(unum(x1, ti)− uext(x1, ti))
2, (66)

where, for simplicity, only the result at x = x1 = 0.9 is used for evaluation and
unum(x1, t) denotes the numerical solution at x = x1. The RMSEs for various mesh
sizes at different iteration numbers are presented in Table 1. It can be remarked that
the solution converges after 2 iterations for all mesh sizes. Thus, the number of itera-
tions in the direct problem solver for the following calculations is set to be 2. It can also
be concluded that the accuracy improves, as the mesh size increases. In addition, it
can be seen that the independence of mesh has been achieved and the mesh ∆t = 0.01
and ∆x = 0.01, i.e., M = N = 101, is sufficiently fine for accurately solving the direct
problem.

6.1.2. Inverse problem (11)-(15) of finding h(t)

For the inverse problem (11)-(15), the temperatures (12) and (15) given by

u(xi, t) = sin

(

π

2
· xi − x2
1− x2

)

e−t = Yi(t), i = 1, 2, (67)
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Table 1. The RMSE of converged solution of the direct problem given by Eqs.(1)-(4) of example 1, obtained

by the iterative FDM.

∆t = 0.1 ∆t = 0.05 ∆t = 0.01
Iteration

∆x = 0.1 ∆x = 0.05 ∆x = 0.01

1 1.0E-2 5.1E-3 1.0E-3
2 9.2E-3 4.9E-3 1.0E-3
3 9.2E-3 4.9E-3 1.0E-3

Figure 2. The inverse solution of h(t) for noiseless data (15) at x = x1 = 0.9 and (12) at x = x2 = 0.1 for
various space mesh sizes, for example 1. The time step is kept fixed at ∆t = 0.01.

are taken as the noiseless measurement data. Remark that for (11), the temperature
(12) at x = x2 is in fact a Dirichlet boundary condition. Further, using Eqs.(18) and
(19), we have

ϕ(x̂) = u0(x̂)− Y2(0) = sin
(π

2
x̂
)

, a(t) = Y1(t)− Y2(t) = sin
(π

2
x̂1

)

e−t, (68)

which satisfy assumption (A1). Also, using the data (62), we obtain that

f̂(x̂, t) = f(x, t)− Y ′
2(t) =

(

π2

4(1− x2)2
− 1

)

e−t sin
(π

2
x̂
)

+
(

1 + t2
)

sin3
(

e−t sin
(π

2
x̂
))

, (69)

which satisfies assumption (A2). Finally, g(u) = sin3(u) satisfies assumption (A3).
Then, according to Theorem 1, the inverse problem (11)-(15) has a unique (local)
solution. In fact, this analytical solution is given by (63) and (65). The initial guess
for the function h(t) in the step 1 of the CGM algorithm described in section 5.4 is
taken as

h0(t) = −1− t, (70)

which matches the analytical solution (63) at the endpoints t = 0 and t = T = 1, but
is sufficiently far from it otherwise.
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Figure 3. The inverse solution of h(t) for noiseless data (12) at x = x2 = 0.1 and (15) at various locations
x1 ∈ {0.2, 0.5, 0.9}, for example 1.

First, for a fixed time step ∆t = 0.01 we investigate the influence of the space step
∆x on the accuracy of the CGM numerical results for h(t), as illustrated in Figure
2. From this figure it can be seen that the curves for ∆x = 0.002 and ∆x = 0.001
are overlapped. Thus, convergent results to the exact solution (63) are obtained, as
∆x decreases to 0.002 and moreover, independence of this space mesh is achieved. In
the next Figures 3-5 we present results obtained with the FDM mesh ∆t = 0.01 and
∆x = 0.002.

In Figure 3 we illustrate the behaviour of the numerically retrieved solution with
respect to the location of the internal measurement x = x1 inside the space solution
domain (x2 = 0.1, 1). From this figure, it can be seen that the accuracy improves as x1
approaches the boundary x = 1. Thus, for optimal design the sensor x = x2 must be
placed close to the boundary x = 0 where the unknown heat flux (2) is exerted, whilst
the sensor x = x1 should be placed close to the insulated boundary x = 1 where the
zero heat flux condition (13) applies.

As shown in Figure 4(a), the objective function J1[h
n] that is minimized in Eq.(10)

decreases monotonically, as a function of the iteration number n, for p ∈ {0, 1%, 5%}
noise. In the case of noisy data, the horizontal lines represent the thresholds determined
from Eq.(60) for i = 1. The intersections of the horizontal lines with the curves of J1[h

n]
yield the stopping iteration numbers, nh ∈ {2, 1} for p ∈ {1%, 5%}. These discrepancy
principle stopping iteration numbers are in good agreement with the optimal ones
which can be inferred from Figure 4(b), where the accuracy error E1[h

n] is plotted
(for illustration only).

The solutions for h(t) are illustrated in Figure 5 for p ∈ {0, 1%, 5%} noise. The result
is presented after 50 iterations for noiseless data (p = 0), whilst for noisy data the
results are presented for the stopping iteration number given by the stopping criterion
(59) for i = 1, i.e., nh = 2 iterations for p = 1% noise and nh = 1 iteration for p = 5%
noise. The numerical solution for p = 0 is in good agreement with the exact solution
(63). Although the numerical solutions deviate from the exact solution (63) when the
noise increases from p = 1% to p = 5%, these are reasonably stable. Further, the
accuracy improves as the percentage of noise p decreases.
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Figure 4. The evolution of (a) the objective function J1[hn] and (b) the accuracy error E1[hn], as functions
of the iteration number n, for p ∈ {0, 1%, 5%} noise, for example 1.

Figure 5. The inverse solution of h(t), for p ∈ {0, 1%, 5%} noise, for example 1.
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6.1.3. Inverse problem (1), (3), (4) and (12) of finding q(t)

For the inverse problem (1), (3), (4) and (12), the uniqueness of solution is yet to be
established although it is worth mentioning the recent investigation of [43] concerning
the regularization of the sideways semilinear heat equation (1). We take the initial
guess for q(t) the linear function,

q0(t) =
π

2(1− x2)
cos

(

πx2
2(1− x2)

)

[(

1− e−1
)

t− 1
]

, (71)

which also matches the exact solution (64) at the endpoints t = 0 and t = T = 1, but
is still reasonably far away from it. The temperature (67) at x = x2, namely,

u(x2, t) = Y2(t) = 0, (72)

is the internal measurement. Since, in this case, the measurement (72) models a zero
temperature, it is not very realistic to add noise to it. Moreover, using (72) as input
data instead of the numerical FDM solution u(x2, t) of the direct problem (1)-(4)
(which has been obtained to be close to but not exactly equal to 0), avoids committing
an inverse crime as well as simulating some numerically noisy data. The retrieved
numerical solution of q(t) has been found in very close agreement with the exact
solution (64) and therefore these results are not presented (more on those in the next
example 2).

6.2. Example 2

Many physical problems, such as spontaneous ignition [45], polymerization [22] and py-
rolysis [33], are known to be governed by the transient diffusion equation with a highly
nonlinear reaction-heating term. By employing the Frank-Kamenetskii approximation,
the reaction-heating term can be simplified into an exponential function of tempera-
ture, which has a higher non-linearity than the power law relationship encountered in
microwave heating [45]. Therefore, in this example, we take

g(u) = eu, f(x, t) =
π

2
sin
(πx

2

)

e−t, u0(x) =
2

π
sin
(πx

2

)

. (73)

The input data in Eq.(73) do not satisfy some of the assumptions (A1)-(A3), so we
cannot conclude on the unique solvability of the inverse problem (11)-(15) for finding
the reaction coefficient h(t). Moreover, in contrast to the previous example which
contained smooth functions (63) and (64), in this example we consider retrieving the
discontinuous step functions,

h(t) =







0, t ∈ [0, 0.25),
−1, t ∈ [0.25, 0.75),
0, t ∈ [0.75, 1],

(74)

q(t) =

{

−1, t ∈ [0, 0.5),
0, t ∈ [0.5, 1].

(75)

In this case, the direct problems given by Eqs.(1)-(4) and Eqs.(11)-(14) do not have
analytical solutions for the temperature function u(x, t). Hence, the input temperatures
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Figure 6. The evolution of the objective functions (a) J1[hn] and (b) J2[qn], and the accuracy errors (c)
E1[hn] and (d) E2[qn], as functions of the iteration number n, for p ∈ {0, 1%, 5%} noise, for example 2.

(12) and (15) for the inverse problem are numerically simulated by solving the direct
problem given by Eqs.(1)-(4) with the input functions given by Eqs.(73)-(75).

Let us take x2 = 0.1, x1 = 0.5, and the initial guesses h0(t) = q0(t) = 0. In the
following Figures 6 and 7, numerical results obtained with the FDM mesh ∆t = 0.01
and ∆x = 0.002 for various percentages of noise p ∈ {0, 1%, 5%} are presented.

Figures 6(a) and 6(b) show the monotonic decrease convergences of the objective
functions J1[h

n] and J2[q
n], as functions of the iteration number n. For noisy data,

the horizontal lines determined from Eq.(60) intersect with the curves of J1[h
n] and

J2[q
n], yielding the stopping iteration numbers nh ∈ {12, 4} and nq ∈ {32, 16} for

p ∈ {1%, 5%} noise, respectively, according to the discrepancy principle (59). Besides,
the optimal iteration numbers minimizing the accuracy errors E1[h

n] and E2[q
n] are

obtained as nopt,h ∈ {14, 5} and nopt,q ∈ {50, 16} for p ∈ {1%, 5%} noise, as shown
in Figures 6(c) and 6(d), respectively, for illustration only. The stopping iteration
numbers nh and nq show good agreements with the optimal iteration numbers nopt,h

and nopt,q, except for nq = 32 < nopt,q = 50 when p = 1%. However, the error at
n = nq = 32 (E2[q] = 0.0439) is very close to the error at n = 50 (E2[q] = 0.0426) and
thus, for p = 1%, it is reasonable to stop the iterations at n = nq = 32 without much
loss of accuracy. Moreover, as shown in Figures 6(c) and 6(d), E1[h

n] increases faster
than E2[q

n] with increasing n, indicating that the recovery of h(t) is less accurate and
stable than the recovery of q(t).

Figure 7 shows the estimated solutions of h(t) and q(t). In the case of no noise
(p = 0), the results are presented after 50 iterations, whilst in the case of noisy data
the results are presented after nh and nq iterations for h(t) and q(t), respectively. In the
case of no noise, the numerical solutions agree well with the exact solutions (74) and
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Figure 7. The inverse solutions of (a) the reaction coefficient h(t) and (b) the heat flux q(t), for p ∈
{0, 1%, 5%} noise, for example 2.

(75). For noisy data, p ∈ {1, 5}%, there are some deviations in the retrieved solutions
especially at the discontinuity points, t = 0.25 and 0.75. By comparing the results of
Figures 7(a) and 7(b), as anticipated before, it can be seen that the reconstruction
of the heat flux q(t) is more stable than that of the reaction coefficient h(t) in the
presence of the same noise level, and they both become more accurate as p decreases.
The expected inaccuracy in q(t) near the final time t = T = 1, [19], is not observed in
Figure 7(b), because x2 = 0.1 is quite close to the boundary x = 0 where the unknown
heat flux is sought and also the initial guess q0(t) is zero. Nevertheless, inaccuracies
near t = T in the retrieved heat flux (2) will start to appear as the location x2 of the
thermocouple moves away from the boundary end x = 0.

7. Conclusions

In this paper, both the IHSP and the IHCP are solved to determine the unknown
time-dependent reaction coefficient h(t) of a nonlinear heat source and the heat flux
q(t), respectively, from two internal temperature measurements. Local existence and
uniqueness of a classical solution to the IHSP are proved under the assumptions (A1)-
(A3) or (A

′
1)-(A

′
3), which include that the derivatives of g(u) up to the third order are

Lipschitz continuous functions. The inverse solutions to the IHSP and the IHCP have
been obtained via the CGM. For noisy data, regularization is achieved by stopping the
iterations at a threshold dictated by the discrepancy principle. The stopping iteration
numbers for estimating h(t) are smaller than those for estimating q(t). In addition,
the sensitivity of the retrieved h(t) to measurement noise is higher than that of q(t).
From the numerical results, it can be seen that the solutions of h(t) and q(t) to the
corresponding inverse problems investigated are obtained efficiently and stably.

The more general case of recovering the space- and time-dependent reaction coef-
ficient h(x, t) from temperature measurements at many space locations is currently
under investigation.
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method to solve inverse heat conduction problems, Appl. Math. Model. 39 (2015), pp.
6897–6914.

[17] T.K. Gogoi and R. Das, Inverse analysis of an internal reforming solid oxide fuel cell
system using simplex search method, Appl. Math. Model. 37 (2013), pp. 6994–7015.

[18] P.C. Hansen, The truncated SVD as a method for regularization, BIT Numer. Math. 27
(1987), pp. 534–553.
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