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Evolution of size-dependent flowering in a variable

environment: partitioning the effects of fluctuating

selection
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2Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK

In a stochastic environment, two distinct processes, namely nonlinear averaging and non-equilibrium

dynamics, influence fitness. We develop methods for decomposing the effects of temporal variation in

demography into contributions from nonlinear averaging and non-equilibrium dynamics. We illustrate the

approach using Carlina vulgaris, a monocarpic species in which recruitment, growth and survival all vary

from year to year. In Carlina the absolute effect of temporal variation on the evolutionarily stable flowering

strategy is substantial (ca. 50% of the evolutionarily stable flowering size) but the net effect is much

smaller (ca. 10%) because the effects of temporal variation do not influence the evolutionarily stable

strategy in the same direction.
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1. INTRODUCTION

Temporal variation in demographic rates is a ubiquitous

property of natural systems (Reinartz 1984; Verkaar &

Schenkeveld 1984; Klemow & Raynal 1985; de Jong &

Klinkhamer 1986, 1988; Crawley & Gillman 1989; de

Jong et al. 1989, 2000; Kelly 1989; Watkinson 1990;

Louda & Potvin 1995; Klinkhamer et al. 1996; Campbell

1997; Wesselingh et al. 1997; Rees et al. 1999, 2002; Rose

et al. 2002). Despite this, we know almost nothing about

the role and importance of temporal variation in the evol-

ution of plant life histories in natural systems. This is

caused, in part, by a lack of suitable data, but also reflects

the complex way that temporal fluctuations affect fitness.

There are two distinct ways that temporal variation influ-

ences fitness. First, average demographic rates vary owing

to nonlinear averaging (NLA) (Ruel & Ayres 1999). For

example, probabilities of survival and growth are nonlinear

functions and so demographic rates in the average

environment will differ systematically from average demo-

graphic rates. Second, there are non-equilibrium fluctu-

ations in fitness caused by variation in both demographic

rates and the size and age structure of the population; this

means that the fitness of a particular strategy varies, and

bet-hedging may become an important component of fit-

ness (Seger & Brockmann 1987). It is important to separ-

ate the effects of NLA and non-equilibrium dynamics

(NED) because there is no reason to assume that they act

in the same direction, and so potentially large effects of

temporal variation on fitness may be masked if they act

equally but in opposite directions. How these different

mechanisms influence life-history evolution in the field is

an important, but still unanswered, question.

Despite the presence of a well-developed theoretical

framework for estimating fitness in stochastic environ-
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ments (Tuljapurkar 1990), there are few examples of stud-

ies that have applied the techniques to empirical datasets.

Rees et al. (1999) and Rose et al. (2002) attempted to

separate the effects of stochastic recruitment, growth and

mortality on the evolutionarily stable flowering size, by fit-

ting statistical models with and without year effects and

comparing their predictions. The problem with this

approach is that the constant- and stochastic-environment

models have different fitted functions. For example, in

Carlina the probability of survival is independent of size if

one ignores year effects and size dependent when year

effects are included (Rose et al. 2002). This means that

the influence of stochastic variation is confounded by

changes in the fitted functions, making it difficult to assess

the impact of temporal variation on life-history evolution.

In addition, these studies did not attempt to separate the

effects of NLA and NED.

We investigate the selection pressures acting on the

flowering strategy of Carlina, extending the analysis of

Rose et al. (2002) and Childs et al. (2003, 2004) by

developing a method for systematically decomposing the

effects of stochastic variation on the evolutionarily stable

strategy (ESS). The methods are derived for the Carlina

system but are applicable to any system where variation

in demographic rates has been quantified. We derive

appropriately averaged versions of the statistical models

for recruitment, growth and survival, which allow the

effects of different sources of stochasticity on the evol-

utionarily stable flowering size to be quantified. Methods

for constructing size- and age-dependent stochastic mod-

els and calculating evolutionarily stable flowering stra-

tegies are described in Childs et al. (2003, 2004).

2. METHODS

(a) General approach and rationale

The main aim of this study is to understand how the evol-

utionarily stable flowering size is influenced by: (i) different
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sources of temporal variation; (ii) NLA; and (iii) NED. To par-

tition these effects, we use statistical models including year

effects to derive appropriately averaged functions for the differ-

ent demographic transitions. Comparison of the ESS predictions

of the different models then allows the impact of stochastic

effects to be estimated. We assume that a model, f(�t ), which

contains parameters, denoted collectively by �t that vary from

year to year, describes some demographic rate. This function

could depend on plant size or age, and may also contain para-

meters that do not vary from year to year. The average demo-

graphic rate is given by averaging f(�t ) with respect to the

distribution of yearly parameters, �t, that is E[ f(�t )]. If f(�t ) is

nonlinear then this expectation will depend on the variance of

�t. By contrast, if f(�t ) is linear then E[ f(�t )] = f(E[�t]), so the

difference between E[ f(�t)] and f(E[�t]) measures the impact of

NLA on demographic rates. If we define f̄� = E[ f(�t )] and

f̄ = f(E[�t]) then the difference between the ESS predictions of

models that use these functions will provide an estimate of the

effect of NLA. We will refer to f̄ and f̄� as the average-environ-

ment (AE) model and NLA model, respectively.

The second way that temporal variation could influence the

ESS is through NED. To separate the effects of NLA and NED

we need to define a model where demographic rates vary from

year to year, but the effect of NLA is removed. To do this we

define the function

f̄� = f� � ( f̄� � f̄ ), (2.1)

where f� is the demographic rate in year type �; the term in

brackets is the effect of NLA. The average of f̄� with respect to

�t is f̄, because E[ f�] = E[ f(�t)] = f̄�. In this way, the difference

between the ESS predictions of models that use f̄� and f̄ provides

an estimate of the effect of NED. We will refer to f̄� as the non-

equilibrium dynamics (NED) model. Therefore, by carefully

averaging the functions that define a model we can estimate the

effects of NLA and NED on model predictions.

(b) Alternative models for demography in Carlina

In Carlina, the number of recruits and the intercepts of the

size-dependent growth and survival functions vary from year to

year (Rose et al. 2002). None of the estimated parameters is

correlated within years (Spearman’s rank correlation, p � 0.2 in

all cases), and so any differences in the predictions obtained with

different models may be attributed to specific stochastic effects.

A single alternative model for recruitment was derived by

replacing the number of recruits in a particular year, R�, with

the mean number of recruits, R̄. We refer to this as the average-

recruitment model. Survival is described by a logistic regression,

and so the NLA survival function, conditional on plant size, x,

is given by

s̄�(x) =
1

N
�
N

� = 1

exp(m0 � �� � msx)

1 � exp(m0 � �� � msx)
, (2.2)

where N is the number of year types, m0 is the average intercept,

�� is the deviation from m0 in year type �, and ms is the size-

dependent slope. The average-environment survival function is

s̄(x) =
exp(m0 � msx)

1 � exp(m0 � msx)
. (2.3)

The functions s̄�(x) and s̄(x) are the NLA and AE survival func-

tions, respectively. The NED survival function, s̄�(x), was gener-

ated using

s̄�(x) = s�(x) � (s̄�(x) � s̄(x)), (2.4)

Proc. R. Soc. Lond. B (2004)

the expectation of which, with respect to the distribution of

yearly intercepts, is s̄(x). To ensure that s̄�(x) � [0, 1], the func-

tion was truncated to lie inside the unit interval. The expectation

of the truncated functions was compared against s̄(x) and found

to give the same ESS predictions.

The NLA growth function is derived in an analogous manner.

Growth in Carlina is well described by a simple linear model,

y = ag � �� � bgx � 	, (2.5)

where y and x are size (on a log scale) next year and this year,

respectively, ag � �� is the intercept in year type �, bg is the size-

dependent slope and 	 is a normally distributed random variable

with variance, �2, that describes the scatter about the fitted line.

The probability that an individual grows from size x to size y is

therefore normally distributed, and so the NLA growth function

is given by

ḡ�(x,y) =
1

N
�
N

� = 1

1

��2

exp��

(y � (ag � �� � bgx))2

2� 2 �. (2.6)

The average-environment growth function is

ḡ(x,y) =
1

��2

exp��

(y � (ag � bgx))2

2� 2 �. (2.7)

The functions ḡ�(x,y) and ḡ(x,y) are referred to as the NLA

and AE growth functions, respectively. These are used to gener-

ate the NED growth function, ḡ �(x,y):

ḡ �(x,y) = g�(x,y) � ( ḡ�(x,y) � ḡ(x,y)), (2.8)

the expectation of which, with respect to the distribution of

yearly intercepts, is ḡ(x,y). To ensure that ḡ �(x,y) � [0, 1], the

function was truncated to lie inside the unit interval and then

renormalized so that the conditional growth function is a true

probability density function. The expectation of the truncated

functions was compared against ḡ(x,y) and found to give the

same ESS predictions. The model using the average recruitment

and the average-environment growth and survival functions is

referred to as the constant-environment model.

(c) Partitioning the effects of temporal variation

To partition the effects of temporal variation in the vital rates

on the evolutionarily stable flowering strategy, we use an

ANOVA decomposition of the different stochastic effects. The

evolutionarily stable flowering strategies were calculated using

the techniques described in Childs et al. (2004). By comparing

the predictions of models using the AE and NLA survival and/or

growth functions we can estimate the effect of NLA. Comparing

the predictions of models incorporating the AE survival and/or

growth functions with those of the NED models allows the effect

of NED to be estimated. Interactions between the effects of

NLA and NED can then be estimated by applying the NLA and

NED models in a factorial manner. We write the evolutionarily

stable mean flowering size in a fully stochastic, variable environ-

ment, �V, as a linear function of the corresponding mean size

in the average (constant) environment, �C, a stochastic recruit-

ment effect, �RV, stochastic survival effects, �SNLA and �SNED,

stochastic growth effects, �GNLA and �GNED, and interaction

terms, such that

�V = �C � �RV � �SNLA � �SNED � �GNLA � �GNED

� interactions, (2.9)
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Table 1. ANOVA table summarizing the effects of different sources of stochastic variation on the evolutionarily stable flowering

size, partitioned into the effects of NLA and NED.

(Only main effects and first-order interactions were fitted to the fully factorial design.)

d.f. SS MS F-value p-value

RV 1 163.24 163.24 812.38 3.837 × 10�15∗∗∗

SNLA 1 224.72 224.72 1118.36 3.096 × 10�16∗∗∗

SNED 1 161.31 161.31 802.80 4.212 × 10�15∗∗∗

GNLA 1 264.57 264.57 1316.70 
 2.2 × 10�16∗∗∗

GNED 1 292.21 292.21 1454.23 
 2.2 × 10�1∗∗∗

RV × SNLA 1 1.63 1.63 8.11 0.0116297∗

RV × SNED 1 0.00 0.00 0.00 0.9555731

RV × GNLA 1 0.04 0.04 0.21 0.6519315

RV × GNED 1 4.78 4.78 23.77 0.0001685∗∗∗

SNLA × SNED 1 0.41 0.41 2.04 0.1723841

SNLA × GNLA 1 0.01 0.01 0.06 0.8036207

SNLA × GNED 1 0.04 0.04 0.18 0.6756577

SNED × GNLA 1 0.05 0.05 0.23 0.6415143

SNED × GNED 1 0.15 0.15 0.75 0.3985939

GNLA × GNED 1 20.12 20.12 100.12 2.724 × 10�8∗∗∗

residuals 16 3.22 0.20

∗p 
 0.05; ∗∗∗p 
 0.001.

Table 2. Estimated change in the evolutionarily stable flowering size resulting from different sources of stochastic variation, from

the main-effects-only model, partitioned into the effects of NLA and those of NED.

(The baseline evolutionarily stable flowering size in a constant environment is also given.)

estimate (mm) net change (mm) absolute change (mm)

mean flowering size constant

environment �C 56.8

recruitment �RV �4.5∗∗∗ �4.5 4.5

survival �SNLA �5.3∗∗∗ �9.8 9.8

�SNED �4.5∗∗∗

growth �GNLA �5.8∗∗∗ �0.2 11.8

�GNED �6.0∗∗∗

∗∗∗p 
 0.001.

where the NLA and NED subscripts refer to the effects of NLA

and NED, respectively. To estimate these effects, the evol-

utionarily stable flowering size was calculated using every combi-

nation of AE, NLA, NED and stochastic models for survival,

growth and recruitment. The resultant design of the simulation

experiment is a five-way fully factorial ANOVA without repli-

cation (i.e. R̄ versus R�, s̄(x) versus s̄�(x), s̄(x) versus s̄�(x),

ḡ(x,y) versus ḡ�(x,y) and ḡ(x,y) versus ḡ �(x,y)). The size slope

of the flowering function, �s, was constrained during the simul-

ation experiment to fix the variance in the threshold-size distri-

bution (see Childs et al. (2004) for a justification of this

approach).

3. RESULTS

(a) Partitioning the effects of temporal variation

The ANOVA model (equation (2.9)) with main effects

and two-way interactions accounted for 99.6% of the vari-

ation in the evolutionarily stable mean flowering size. All

the main effects and two of the interactions (RV × GNED

and GNLA × GNED) were highly significant ( p 
 0.001).

Only one other interaction (RV × SNLA) was significant

( p 
 0.05) (table 1). The ANOVA model with only the

Proc. R. Soc. Lond. B (2004)

main effects accounts for 97.2% of the variance, suggest-

ing that the effects of variable recruitment, survival and

growth on the evolutionarily stable flowering size are

approximately additive. Consequently, to simplify model

interpretation, the main-effects model was used to derive

estimates of the stochastic effects (table 2). The net effect

of stochastic survival was greatest (�SNLA � �SNED

= �9.8), followed by that of recruitment (�RV = 4.5) and

then that of growth (�GNLA � �GNED = �0.2). Variable

recruitment selects for larger sizes at flowering, which sug-

gests the operation of a bet-hedging strategy: large sizes

at flowering, coupled with variable growth, distribute

reproduction over several years, thereby mitigating the

effects of low-recruitment years. By contrast, the non-

equilibrium effects of variable survival and growth select

for smaller flowering sizes (i.e. �SNED = �4.5,

�GNED = �6.0): individuals flower earlier to reduce the

risk of suffering occasional high-mortality or low-growth

years. When we consider the absolute values of the different

terms, variable growth had the largest impact (|�GNLA|

� |�GNED| = 11.8), followed by survival (|�SNLA|

� |�SNED| = 9.8) and recruitment (|�RV| = 4.5). The

significant interactions involving the variable-recruitment
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term (RV × GNED and RV × SNLA, not presented) both

increased the evolutionarily stable flowering size, while the

interaction involving the growth terms (GNLA × GNED, not

presented) reduced the evolutionarily stable size.

4. DISCUSSION

By calculating the evolutionarily stable flowering size

with a set of carefully chosen analogues of the stochastic

model, we have partitioned out the effects of different

sources of stochasticity. The absolute change in the evol-

utionarily stable flowering size caused by these effects is

ca. 50% of the evolutionarily stable size in the constant

environment, though the net effect is much smaller (ca.

10%) because the processes do not influence the ESS in

the same direction. Without quantifying the total effect of

stochasticity in this way, it would be easy to underestimate

the influence of temporal variation. For example, reducing

temporal variation in survival could increase flowering

sizes by as much as 19% of the current observed mean.

NED induced by variable survival and growth select for

smaller flowering sizes. Presumably, this reflects the cost

associated with occasional low-survival or low-growth

years: individuals that wait too long before flowering

increase the risk of suffering such an event. By contrast,

variable recruitment selects for larger flowering sizes,

which indicates that a bet-hedging mechanism is

operating. To spread the risk of suffering a poor year for

recruitment, a particular flowering strategy needs to dis-

tribute reproduction over several years. When individuals

are subject to variable growth (within or between years)

increasing the size at flowering achieves this by increasing

the variance in the age at flowering. We suggest that, in a

system with density-dependent recruitment, these mech-

anisms are generic, and the direction of change in the ESS

resulting from NED should be consistent across systems.

The effect of NLA depends on the shape of the survival

and growth functions. For survival, the standard small-

variance approximation of equation (2.2) shows that, pro-

vided s̄(x) � 1/2, temporal variability reduces the prob-

ability of survival and so selects for smaller sizes at

flowering. For all plants with a longest leaf length of

greater than 10 mm, we find that s̄(x) � 1/2 and therefore

selection favours flowering at smaller sizes, as found in the

simulation experiment. The biological reason for this is

that the probability of survival is bounded at one, and

plants that make the decision to flower are large and have

high chances of survival. This means that in good years

the probability of survival hardly changes, whereas in bad

years the probability of survival is substantially reduced.

Clearly, the effect of bad years will outweigh that of the

good years and as a result the probability of survival

decreases when the environment fluctuates. In long-lived

monocarpic species, where the probability of survival is

high for large plants, we suspect that �SNLA will be nega-

tive, as in Carlina. However, in short-lived species the

opposite may be true, because in bad years the probability

of survival is bounded at zero.

A similar approach can be used to understand the effect

of variance in the growth intercept. The number of

microsites captured by a plant depends on its seed pro-

duction, which is a function of plant size on an arithmetic

scale (i.e. not log transformed), and arithmetic plant size

Proc. R. Soc. Lond. B (2004)

is given by exp(y) = exp(ag � �� � bgx � 	) (equation

(2.5)). This function is concave up (has a positive second

derivative), which means that large values of 	 and ��

result in dramatic increases in plant size, whereas small

values are bounded by zero. The net effect is an increase

in arithmetic size when 	 and �� fluctuate, which selects

for larger sizes at flowering (Rees et al. 2000; Rose et al.

2002; Childs et al. 2003), as found in the simulation

experiment. For a wide range of species growth is well

described by the simple linear model (equation (2.5);

Metcalf et al. 2003) and so we expect that �GNLA will

generally be positive.

Our method for partitioning out the effects of stochas-

ticity is only one of several approaches that could be used.

For example, one could argue that the geometric (rather

than arithmetic) mean of the fitted survival functions is

most appropriate, because the probability of surviving to

a given age is the product of several size-dependent mor-

tality terms. The advantage of our adopted method is that

the effects of NLA and NED are easy to interpret in terms

of simple underlying models (Rees et al. 2000; Rose et al.

2002; Childs et al. 2003).

The techniques developed in this article should be

broadly applicable to any system where temporal variation

in demographic rates has been quantified and an appropri-

ate model that allows the prediction of the evolutionarily

stable or optimal strategy has been defined. A wide range

of life-history problems can be addressed within this

framework. For example, species with multiple repro-

ductive delays arising from seed dormancy and delayed

reproduction or complex reproductive strategies, combin-

ing clonal growth and seed production, can easily be ana-

lysed.

In Carlina, the main-effects-only ANOVA model

accounts for over 97% of the variance in the results of the

simulation experiment. We suspect that this is a conse-

quence of the lack of covariation between the yearly para-

meter estimates. In systems where there is covariation

between parameter estimates, for example, a good year for

growth could also be a good year for survival, interaction

terms may well be important. These effects can be

explored in the current framework by randomizing the

yearly parameter estimates, repeating the analysis and cal-

culating the covariation between the parameter estimates

in the randomized dataset. Plots of the effect size of the

interaction against the covariance of the parameter esti-

mates then allow the impact of covariance to be assessed.

Life-history analyses have traditionally measured the

success of a model in terms of how well it is able to predict

a trait. An adequate model must lead to accurate predic-

tions, but this should not be viewed as a sufficient measure

of model validity, especially if the aim of a study is to

understand the selective forces acting on the trait. We

demonstrated that in Carlina variable recruitment, growth

and mortality influence the evolutionarily stable flowering

size, though their net effect is relatively small because they

act in different directions. It is possible to imagine a scen-

ario in which a constant-environment model might accu-

rately predict flowering size, not because stochasticity is

unimportant, but because the various stochastic effects are

balanced. Conclusions about the role of stochasticity

should be reached only after a stochastic model has

been analysed.
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