

This is a repository copy of Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/139449/

Version: Supplemental Material

Article:

Vis, B, Hewitt, RE, Faria, N et al. (6 more authors) (2018) Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells. ACS Nano, 12 (11). pp. 10843-10854. ISSN 1936-0851

https://doi.org/10.1021/acsnano.8b03363

© 2018 American Chemical Society. This is an author produced version of a paper published in ACS Nano. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells

Authors: Bradley Vis^{†‡§}*, Rachel E. Hewitt^{†‡}*, Nuno Faria^{†‡}, Carlos Bastos^{†‡}, Helen Chappell^{‡Φ}, Laetitia Pele^{†‡}, Ravin Jugdaohsingh^{†‡}, Stephen D. Kinrade[§], Jonathan J. Powell^{†‡}

[†]Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.

[‡]Biomineral Research Group, Department of Mineral Science and Technology, MRC Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.

[§]Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.

^ФSchool of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK

*Equal contributors

Corresponding author: Jonathan Powell. jjp37@cam.ac.uk

Figure S1.

Model of a 2.9 nm USSN derived from the manual packing of a previous DFT-optimised model of a $(SiO_2)_{24}$ cluster.¹ The original small clusters were simulated in a hydrated environment and represent the lowest energy state. However, no further relaxation was carried out on the larger particle and a hydration shell was not included. (A 0.35 nm hydration shell would increase the hydrated particle size to 3.6 nm for example).

Figure S2.

IL-1 β levels in PBMC supernatants after 3 h treatment challenge followed by a 21 h incubation. PBMC cultures were unstimulated or stimulated with 10 ng/mL lipopolysaccharide for 3 h prior to challenge with silica. Data are reported as means \pm standard deviation for 4 replicates. * denotes significance against the control (p<0.05, one-way ANOVA).

Figure S3

Dissolution of 800 μ M USSNs in cell-free growth media at 37 °C. The percentage of dissolved silica was determined through ultrafiltration (<3 kDa). Means \pm standard deviation for 6 replicates.

Figure S4. The cell distribution in enriched T cell cultures.

Cells were first selected based on generous FSC versus SSC profiles that also excluded debris, followed by T cell (CD3), and subsequent monocyte (CD11c), B cell (CD19) and unstained (CD3(-)CD11c(-)(CD19(-)) gates.

Figure S5. Gating strategy employed for assessing CD25 and CD69 on CD4 and CD8 T cells in PBMC culture.

Cells were first selected based on a T cell FSC versus SSC profile that also excluded debris, followed by a viable T cell (CD3(+)), and a CD4(+) or CD8(+) gate. Percentage of cells positive for CD25 and CD69 were assessed through quadrant gating, and mean fluorescent intensity for the activation markers was recorded.

Figure S6. Gating strategy employed for assessing proliferation of CD4 and CD8 T cells in PBMC culture

Cells were first selected based on a T cell FSC versus SSC profile that also excluded debris, followed by a viable T cell (CD3(+)), and a CD4(+) or CD8(+) gate. Percentage of cells divided was assessed through CFDA-SE^{LOW} gate.

Figure S7. Gating strategy employed for assessing CD69 on Jurkat cells

Cells were first selected based on a FSC versus SSC profile that excluded debris, followed by a viable T cell (CD3(+)). Percentage of cells positive for CD69 was plotted against the SSC profile.

Table S1.

USSN zeta-potential and derived count rate in PBS and RPMI. Although USSN-free PBS and RPMI both contained species with zeta-potentials similar to the USSN containing media, the derived count rate (kcps), which is a measure of particle density based on scattering intensity, of the media containing USSN was higher than the USSN-free media. This indicated that particles were detected in the complex media, and the zeta-potentials correspond to that of the USSN. The decrease in charge magnitude in the complex media versus ultrapure water (UHP) is consistent with trends reported in the literature.²

	Zeta-potential /mV	kcps
PBS	-22.4±0.9	222 +/- 22
PBS + USSN	-19.0 ± 4.4	$1436\pm\textbf{-}519$
RPMI	-11.2+/-1.6	29.0+/-7.8
RPMI + USSN	-16.0 ± 1.9	356 ± 89

Table S2.

The 100 gene pathways which are most significantly up regulated in PBMC culture by 150 μM USSN.

NAME	SIZE	NES	FDR q-val
KEGG_LYSOSOME	122	2.412125	0
TRANSFERRIN.ENDOCYTOSIS.AND.RECYCLING	29	2.34737	0
IRON LIPTAKE AND TRANSPORT	43	2.332215	0
WP2670.IRON.UPTAKE.AND.TRANSPORT	112	2.278574	0
WP2700.LATENT.INFECTION.OF.HOMO.SAPIENS.WITH.MYCOBACTERIUM.TUBERCULOSIS	30	2.270007	0
LATENT.INFECTION.OF.HOMO.SAPIENS.WITH.MYCOBACTERIUM.TUBERCULOSIS PHAGOSOMAL MATURATION FARLY ENDOSOMAL STAGE	33	2.214397	2.09E-04 2.35E-04
INSULIN.RECEPTOR.RECYCLING	26	2.233781	2.69E-04
SPHINGOLIPID.METABOLISM	69	2.148967	3.84E-04
KEGG_SPHINGOLIPID.METABOLISM	47	2.031814	0.006816
KEGG VIBRIO.CHOLERAE.INFECTION	54	1.996895	0.007802
WP516.HYPERTROPHY.MODEL	20	1.977822	0.010697
KEGG_SYNAPTIC.VESICLE.CYCLE	63	1.981199	0.010844
WP197.CHOLESTEROL BIOSYNTHESIS	13	1.93623	0.017494
WP1913.SIGNALING.BY.INSULIN.RECEPTOR	73	1.923677	0.018852
WP2788.SPHINGOLIPID.METABOLISM	45	1.899784	0.023461
KEGG_KHEUMATOID.ARTHKITIS WP530 CYTOKINES AND INFLAMMATORY RESPONSE	23	1.864963	0.034792
MPS.VI.MAROTEAUX.LAMY.SYNDROME	120	1.711475	0.075753
GLYCOSAMINOGLYCAN.METABOLISM	120	1.715812	0.075788
MPS.IX.NATOWICZ.SYNDROME	120	1.70496	0.076394
DEFECTIVE.EXT2.CAUSES.EXOSTOSES.2	120	1.716062	0.077156
DEFECTIVE.PAPSS2.CAUSES.SEMD.PA	120	1.705239	0.077593
WP1795.CHOLESTEROL.BIOSYNTHESIS	19	1.706618	0.077975
MPS IV MOROLIIO SYNDROME B	120	1.716364	0.078503
MPS.IIIC.SANFILIPPO.SYNDROME.C	120	1.697702	0.079648
MUCOPOLYSACCHARIDOSES	120	1.719842	0.079703
COLLAGEN. DEGRADATION DEEECTIVE CHIST14 CAUSES EDS MUSCUI OCONTRACTURAL TYPE	38	1.699164	0.079853
DEFECTIVE.EXT1.CAUSES.EXOSTOSES.1.TRPS2.AND.CHDS	120	1.721098	0.080238
BIOC_41BBPATHWAY	18	1.69045	0.082406
MPS.VII.SLY.SYNDROME	120	1.7231	0.08247
AMINO.ACID.AND.OLIGOPEPTIDE.SLC.TRANSPORTERS	120	1.090707	0.083641
GAP.JUNCTION.ASSEMBLY	17	1.725111	0.084567
SPHINGOLIPID.DE.NOVO.BIOSYNTHESIS	31	1.683833	0.084691
MPS.IIIB.SANFILIPPO.SYNDROME.B MPS.IIID.SANFILIPPO.SYNDROME.D	120	1.729995	0.085017
GAP.JUNCTION.TRAFFICKING.AND.REGULATION	28	1.685041	0.085172
DEFECTIVE.SLC26A2.CAUSES.CHONDRODYSPLASIAS	120	1.730998	0.08641
MPS.II.HUNTER.SYNDROME	120	1.732043	0.088056
DISEASES ASSOCIATED WITH GLYCOSAMINOGLYCAN METABOLISM	113	1.732122	0.088196
KEGG_AMINO.SUGAR.AND.NUCLEOTIDE.SUGAR.METABOLISM	47	1.77501	0.091561
WP2011.SREBF.AND.MIR33.IN.CHOLESTEROL.AND.LIPID.HOMEOSTASIS	17	1.673107	0.091951
MPS.IV.MOROUIO.SYNDROME.A	120	1.745403	0.092308
MPS.IIIA.SANFILIPPO.SYNDROME.A	120	1.733872	0.09394
DEFECTIVE.CHSY1.CAUSES.TPBS	120	1.749261	0.094602
CHEMOKINE.RECEPTORS.BIND.CHEMOKINES WD430 STATIN DATHWAY	53	1.745979	0.094671
DEFECTIVE.B4GALT7.CAUSES.EDS.PROGEROID.TYPE	120	1.734324	0.096461
KERATAN.SULFATE.KERATIN.METABOLISM	32	1.766427	0.096475
KERATAN.SULFATE.BIOSYNTHESIS	27	1.76192	0.096898
WP2840.HAIR.FOLLICLE.DEVELOPMENT.CYTODIFFERENTIATION PART.3.OE 3.	86	1.661783	0.098289
DISEASES.OF.GLYCOSYLATION	120	1.735025	0.09893
DEFECTIVE.CHST6.CAUSES.MCDC1	120	1.754486	0.100371
GAP.JUNCTION.TRAFFICKING KEGG RIBOSOME.BIOGENESIS.IN.EUKARYOTES	72	1.640219	0.116826
BIOC_ILIRPATHWAY	32	1.620022	0.138707
WP706.SIDS.SUSCEPTIBILITY.PATHWAYS	154	1.614106	0.144288
BIOC_INFLAMPATHWAY KEGG_STEROID BIOSYNTHESIS	29	1.602853	0.152143
INTERACTION.BETWEEN.L1.AND.ANKYRINS	20	1.59329	0.159489
BASIGIN.INTERACTIONS	25	1.593826	0.160913
KEGG_OTHER.GLYCAN.DEGRADATION	18	1.589595	0.162257
KEGG CIRCADIAN.RHYTHM	30	1.580349	0.172092
WP195.IL.1.SIGNALING.PATHWAY	56	1.578051	0.173034
BIOC_EDGIPATHWAY	22	1.565499	0.188346
FGFR LIGAND BINDING AND ACTIVATION	238	1.536761	0.199329
WP2855.DOPMINERGIC.NEUROGENESIS	30	1.534687	0.22201
WP1867.NEPHRIN.INTERACTIONS	19	1.539006	0.222848
WY 230. ADIPUGENESIS OXYGEN DEPENDENT PROFINE HYDROXYLATION OF HYPOXIA INDUCIRI F FACTOR ALPHA	131	1.537218	0.223171
KEGG_BILE.SECRETION	72	1.528364	0.227608
WP1422.SPHINGOLIPID.METABOLISM	21	1.528405	0.230257
SIGNALING.BY.FGFR.MUTANTS	45	1.524603	0.231493
KEGG SELENOCOMPOUND.METABOLISM		1.520902	0.250376
BIOC_GSK3PATHWAY	26	1.507782	0.253781
SIALIC.ACID.METABOLISM	33	1.505087	0.256066
AMINO.ACID.TRANSPORT.ACROSS.THE.PLASMA.MEMBRANE	23	1.491757	0.260283

KEGG_GLYCOSAMINOGLYCAN.BIOSYNTHESIS.CHONDROITIN.SULFATE.DERMATAN.SULFATE	20	1.48673	0.280231
WP2003.MIR.TARGETED.GENES.IN.LEUKOCYTES.TARBASE	150	1.488119	0.280555
SIGNALING.BY.FGFR1.MUTANTS	30	1.483293	0.284049
WP2037.PROLACTIN.SIGNALING.PATHWAY	77	1.478202	0.284943
WP1982.SREBP.SIGNALLING	63	1.47823	0.287829
WP615.SENESCENCE.AND.AUTOPHAGY	106	1.478805	0.289463
KEGG_INFLAMMATORY.BOWEL.DISEASE.IBD.	63	1.473289	0.291857
WP428.WNT.SIGNALING.PATHWAY	60	1.470805	0.294348
WP2743.GLYCOSAMINOGLYCAN.METABOLISM	41	1.462832	0.299421

Table S3.

The 100 gene pathways which are most significantly down regulated in PBMC culture by 150 μ M USSN.

NAME	SIZE	NES	FDR q-val
PEROXISOMAL.LIPID.METABOLISM	21	-2.05276	0.042144
KEGG_PEROXISOME	79	-2.02518	0.038501
HDACS.DEACETYLATE.HISTONES	56	-2.00952	0.032493
WP1878.PEROXISOMAL.LIPID.METABOLISM	19	-1.91423	0.083207
ANTIGEN.ACTIVATES.B.CELL.RECEPTOR.BCR.LEADING.TO.GENERATION.OF.SECOND.MESSENGERS	37	-1.88025	0.106366
BIOC_AMIPATHWAY	21	-1.84779	0.136954
SCAVENGING. UP. HEME.FRUM. PLASMA THE CITELY ACTION TO A CYCLE A NID DESDIDATORY ELECTRON TRANSPORT	18	-1.83125	0.144034
THE.CITRIC.ACID.TCA.CTCLE.AND.RESPIRATORY.ELECTRON.TRANSPORT	135	-1.81/89	0.148095
RNA POLYMERASE I PROMOTER OPENING	24	-1.78007	0.180335
REGULATION OF ACTIN DYNAMICS FOR PHAGOCYTIC CUP FORMATION	63	-1.77775	0.168337
WP2675 SIGNALING BY NODAL	15	-1 76286	0 18134
PLATELET SENSITIZATION BY LDL	17	-1.74141	0.211196
IMMUNOREGULATORY.INTERACTIONS.BETWEEN.A.LYMPHOID.AND.A.NON.LYMPHOID.CELL	72	-1.71614	0.255837
ACYL.CHAIN.REMODELLING.OF.PS	16	-1.71467	0.241663
PACKAGING.OF.TELOMERE.ENDS	27	-1.70624	0.249746
CONDENSATION.OF.PROPHASE.CHROMOSOMES	34	-1.69391	0.265173
BIOC_MCALPAINPATHWAY	24	-1.69047	0.257973
KEGG_BASE.EXCISION.REPAIR	33	-1.68799	0.249315
NUCLEOSOME.ASSEMBLY	41	-1.68523	0.243609
WP1433.NOD.PATHWAY	39	-1.68515	0.232154
WP1848.METABOLISM.OF.CARBOHYDRATES	85	-1.68274	0.227145
DEPOSITION.OF.NEW.CENPA.CONTAINING.NUCLEOSOMES.AT.THE.CENTROMERE	41	-1.68183	0.218699
FORMATION. OF AT P. BY, CHEMIOSMOTIC COUPLING	16	-1.6/64	0.220682
RESPIRATORY, ELECTRON, IRANSPORTATE, SYNTHESIS, BY, CHEMIOSMOTIC, COUPLING, AND, HEAT, PRODUCTI ON DV UNCOUPLING PROTEING	94	-1.66472	0.237673
UN.D I. UNCOUPLING, PROTEINS.	00	1 66452	0.228766
REGULATION OF PVRIVATE DEHYDROGENASE PDH COMPLEX	16	-1.66333	0.223145
PYRIVATE METABOLISM AND CITRICACID TCA CYCLE	45	-1 66166	0.219033
GENERATION OF SECOND MESSENGER MOLECILLES	31	-1.65857	0.217164
SIGNALING BY NODAL	16	-1.64284	0.240378
FCERI.MEDIATED.NF.KB.ACTIVATION	29	-1.63362	0.250823
BIOC MPRPATHWAY	22	-1.63278	0.24436
BIOC_BCRPATHWAY	34	-1.62084	0.262697
WP1874.NUCLEOSOME.ASSEMBLY	32	-1.60829	0.284836
CHROMOSOME.MAINTENANCE	76	-1.60825	0.276757
KEGG_PRIMARY.IMMUNODEFICIENCY	36	-1.60526	0.276278
INTEGRIN.ALPHAIIB.BETA3.SIGNALING	27	-1.60495	0.269673
ABCA.TRANSPORTERS.IN.LIPID.HOMEOSTASIS	17	-1.60061	0.27235
WP623.OXIDATIVE.PHOSPHORYLATION	52	-1.59607	0.275946
WP2739.AMYLOIDS	24	-1.58423	0.296655
WP500.GLYCOGEN.METABOLISM WT1000 DEEDID ATODY ELECTRON TRANSPORT ATD SYNTHESIS DV CHEMIOS MOTIC COURTING AND HEAT DD	36	-1.58115	0.296425
WP1902.RESPIRATORY.ELECTRON.TRANSPORT.ATP.SYNTHESIS.BY.CHEMIOSMOTIC.COUPLING.AND.HEAT.PR	81	-1.5802	0.291377
WD275 TOLL I LVE DECEDTORS CASCADES	22	1 57196	0 205471
WE27/3.TOELLINE.NECETTONS.CASCADES DNA DAMAGE FELOMEETSTORS.SINDICED SENESCENCE	54	-1.57180	0.303974
DIVAJDANGE, FELOMEKES, INESS, INDOCEDSEINESCENCE RESOLUTION OF SISTER CHROMATID COHESION	98	-1.56646	0.305041
REVERBAREPRESSES GENE EXPRESSION	24	-1 56555	0.300687
FCGAMMA.RECEPTOR.FCGR.DEPENDENT.PHAGOCYTOSIS	87	-1.56021	0.306386
GENERIC. TRANSCRIPTION.PATHWAY	469	-1.56001	0.300578
BIOC_ERK5PATHWAY	16	-1.55516	0.306077
BIOC_HIVNEFPATHWAY	53	-1.55135	0.309209
BIOC_CREBPATHWAY	26	-1.54902	0.309215
YAP1.AND.WWTR1.TAZ.STIMULATED.GENE.EXPRESSION	29	-1.54817	0.305485
PD.1.SIGNALING	22	-1.54028	0.317824
KEGG_DNA.REPLICATION	36	-1.53943	0.314255
TRANSLOCATION.OF.ZAP./0.TO.IMMUNOLOGICAL.SYNAPSE	17	-1.53782	0.312487
WP408.UAIDATIVE.STRESS DOD & ACTIVATES CIRCA DIAN CENE EVIDESSION	29	-1.55/58	0.307894
KUKA, AUTI VATES, URUADIAN, UENE, EARRESSIUN SVNTHESIS OF 102 AND 104 IN THE CYTOSOI	25	-1.55564	0.306392
WP1829 IMMUNOREGUL ATORY INTERACTIONS RETWEEN A LYMPHOID AND A NON LYMPHOID CELL	59	-1 53216	0.304031
PIC BETA MEDIATED EVENTS	42	-1 52691	0.311906
WP1978 OPIOID SIGNALLING	57	-1.52546	0.310316
WP1928.TELOMERE.MAINTENANCE	45	-1.52543	0.30536
SIRT1.NEGATIVELY.REGULATES.RRNA.EXPRESSION	29	-1.52512	0.301215
WP2652.MITOTIC.PROMETAPHASE	95	-1.51659	0.316351
WP2371.PARKINSONS.DISEASE.PATHWAY	38	-1.51089	0.32578
PHOSPHORYLATION.OF.CD3.AND.TCR.ZETA.CHAINS	19	-1.51016	0.322471
MITOTIC.PROMETAPHASE	106	-1.5097	0.318636
ROLE.OF.PHOSPHOLIPIDS.IN.PHAGOCYTOSIS	30	-1.50869	0.316672
KEGG_GLUTATHIONE.METABOLISM	48	-1.50852	0.312469
ACTLCRAIN.REMODELLING.OF.FI	28	-1.50572	0.315608
BIOC_INFRIATIWAT RESPIRATORY ELECTRON TRANSPORT	28	-1.50009	0.316559
WP1832 INTEGRIN ALPHAIIB BETA3.SIGNALING	19	-1.49918	0.316779
KEGG PROPANOATE.METABOLISM	28	-1.49915	0.312583
WP2795.CARDIAC.HYPERTROPHIC.RESPONSE	56	-1.49899	0.30885
KEGG_ALCOHOLISM	165	-1.49891	0.304936
BIOC_SPPAPATHWAY	21	-1.49784	0.303693
BIOC_ERKPATHWAY	29	-1.49495	0.306755
RNA.POLYMERASE.I.TRANSCRIPTION	69	-1.49322	0.306817
KEGG_HUNTINGTON.S.DISEASE	183	-1.49081	0.308532
RNA.POLYMERASE.I.PROMOTER.CLEARANCE	67	-1.48917	0.308396
KEGG_SHIGELLOSIS	60	-1.48731	0.308748
WP 304, KIT, RECEPTOR, SIGNALING, PATH WAY	59	-1.48286	0.315417
NERVILA INAPOL	53	-1.48264	0.312235
WE GO FANCONT ANEMIA DATHWAY	45	-1.40108	0.310832
G PROTEIN MEDIATED EVENTS	49	-1.4/2//	0.321134
WP1980 NUCLEOTIDE EXCISION REPAIR	47	-1.46758	0.33237
WP1787.BASE.EXCISION.REPAIR	19	-1.4642	0.335958

KEGG_PARKINSON.S.DISEASE	128	-1.45984	0.342553
WP1885.PLATELET.HOMEOSTASIS	28	-1.45976	0.339025
KEGG_FC.GAMMA.R.MEDIATED.PHAGOCYTOSIS	88	-1.45944	0.33639
FORMATION.OF.THE.BETA.CATENIN.TCF.TRANSACTIVATING.COMPLEX	52	-1.45682	0.338852
WP23.B.CELL.RECEPTOR.SIGNALING.PATHWAY	93	-1.45426	0.341527
WP422.MAPK.CASCADE	29	-1.45415	0.338257
KEGG_VALINE.LEUCINE.AND.ISOLEUCINE.DEGRADATION	43	-1.45321	0.337081
KEGG_GLYOXYLATE.AND.DICARBOXYLATE.METABOLISM	24	-1.453	0.33403
RAP1.SIGNALLING	16	-1.44899	0.340437
KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL.GPI.ANCHOR.BIOSYNTHESIS	24	-1.44642	0.343097
DNA.METHYLATION	26	-1.44597	0.340753

References

1. Jelfs, K. E.; Flikkema, E.; Bromley, S. T., Hydroxylation of Silica Nanoclusters $(SiO_2)_M(H_2O)$ _N, M= 4, 8, 16, 24: Stability and Structural Trends. Phys. Chem. Chem. Phys. **2013**, 15, 20438-20443

2. Kobayashi, M.; Juillerat, F.; Galletto, P.; Bowen, P.; Borkovec, M., Aggregation and Charging of Colloidal Silica Particles: Effect of Particle Size. Langmuir **2005**, 21, 5761-5769.