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We show that the usefulness of the thermal state of a specific spin-lattice model for measurement-based

quantum computing exhibits a transition between two distinct “phases”—one in which every state is a univer-

sal resource for quantum computation, and another in which any local measurement sequence can be simulated

efficiently on a classical computer. Remarkably, this transition in computational power does not coincide with

any phase transition, classical, or quantum in the underlying spin-lattice model.
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I. INTRODUCTION

Determining whether properties of the ground or thermal

state of a coupled quantum many-body system can be effi-

ciently simulated on a computer is a central question in

many-body physics. Consider a spin-lattice model that is uni-

tarily equivalent to a lattice of uncoupled spins; in such a

model, the spectrum and the behavior of simple correlation

functions can be solved analytically. However, such simplic-

ity can belie an underlying complexity, as the calculation of

more general observables on the thermal state of this system

can be computationally intractable. For example, one might

want to simulate the outcomes of a sequence of local �single-

spin� measurements on a subset of spins; such measurements

are used to reveal “hidden” order such as long-range en-

tanglement �1�. Although numerical techniques such as

Monte Carlo methods �1� may be efficient in some instances,

one can also devise models for which the outcomes of such

measurements performs a quantum computation �2,3� for

which no classical simulation algorithm is expected to be

efficient. Little is known about how to characterize the clas-

sical simulation complexity of such general observables,

even in the simplest models.

Here, we provide a remarkable example of a solvable

model wherein the efficiency of simulating general observ-

ables of the thermal state undergoes a transition, separating

the model’s parameter space into two distinct regions. In one

region, at high temperatures, we present an explicit algo-

rithm that can efficiently simulate the outcome of any local

adaptive measurement sequence. In the other region, we

prove �based on standard complexity assumptions
1� that no

such efficient simulation algorithm exists. Remarkably, there

is no phase transition in this model, classical or quantum,

that could serve to demarcate these two regions.

Specifically, we make use of the cluster state model of

measurement-based quantum computation �MBQC� �2,3�,

wherein a fixed resource state is subjected to local measure-

ments �4�. We consider a spin-lattice model for which the

unperturbed ground state is a cluster state but which is sub-

ject to both thermal noise and a uniform external field. We

introduce a method for efficient classical simulation of local

measurements on sufficiently high-temperature equilibrium

states of this model. Our method significantly generalizes the

separability result for bipartite partitions of thermal cluster

states �5� by combining ideas from mixed-state entanglement

and percolation theory. For sufficiently low temperatures and

small external fields, we describe a method for obtaining

cluster states on which MBQC can be performed by making

use of the error-correcting thresholds of �6,7�.
Our paper is structured as follows. In Sec. II, we present

our completely solvable model. We provide a lower bound

on the temperature for which MBQC on the thermal state can

be efficiently classically simulated in Sec. III and an upper

bound on the temperature for which the thermal state is a

universal resource for MBQC in Sec. IV. Conclusions are

presented in Sec. V.

II. CLUSTER-STATE MODEL

The model we consider is the cluster state Hamiltonian

�5� with the addition of a local magnetic field in the z direc-

tion. A cluster state is a highly entangled state of two-level

systems on a lattice L �2,3�. It can be characterized as the

unique +1 eigenstate of a set of commuting operators

Ki=Xi� j�iZ j, where Xi �Zi� is the Pauli X �Z� operator at site

i and where j� i denotes that j is connected to i by a bond in

the lattice L. The cluster state Hamiltonian �5,8� is a model

of interacting spins with H=−
�

2
�i�LKi for which the cluster

state is the unique ground state and which possesses an en-

ergy gap of � between the ground and first-excited states. We

will consider a modified Hamiltonian with a local Z field at

each site:

H� = −
�

2
�
i�L

�cos � Ki + sin � Zi� �1�

for 0���� /2. With this parametrization, the ground-state

energy gap of the Hamiltonian is � for all values of �. The

1
It is believed that local measurements on such states are impos-

sible to efficiently simulate on a classical computer since, if this

were possible, any polynomial time quantum algorithm could be

performed efficiently on a classical device.
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parameter � quantifies the relative strength of the local mag-

netic field term. For �=0 we recover the cluster state Hamil-

tonian, while for �=� /2 the spins are uncoupled and the

ground state is a product state.

The thermal state of this model can be found straightfor-

wardly for any strength of external field and temperature T

because the system is unitarily equivalent to a lattice of un-

coupled spins �9� as follows. The controlled-phase gate

CZ=diag�1,1 ,1 ,−1� can be applied to any bond in the lat-

tice; because of its symmetry, it does not depend on which

qubit is the control and which is the target. Also, as the gate

is diagonal in the Z basis, its action on different bonds all

commute with each other. Therefore, we can define the uni-

tary operator UL which is given by the product of controlled-

phase gates on all bonds of the lattice. This unitary operator

decouples the system as

�UL�Zi�UL� = Zi, �2�

�UL�Ki�UL� = Xi �3�

for all i�L. We can therefore express the transformed

Hamiltonian as

�UL�H��UL� = −
�

2
�
i�L

�cos �Xi + sin �Zi� , �4�

i.e., as a sum over single spin observables. Note that UL is a

nonlocal unitary that creates entanglement so that the ground

state of H� can be highly entangled even though H� is uni-

tarily equivalent to a model of uncoupled spins. Note that

this solution does not imply that MBQC can be efficiently

simulated for any value of � or T because the statistics of

measurement outcomes may still be hard to calculate.

This solution yields an explicit expression for the thermal

states of Eq. �1�. Define the single spin states

��	 
 cos��/2��+ 	 + sin��/2��− 	 , �5�

with �� 	 as the eigenstates of X. The ground state of Eq. �1�
is obtained by applying UL to the product state ��	�L where

each spin on L is prepared in the state ��	. We recognize the

ground state of our model as one of the states whose useful-

ness for MBQC was considered in �10�. The thermal state

��� ,�� is obtained by applying UL to the thermal states

1

2
�I + tanh���/2�ei�Yi/2Xie

−i�Yi/2� , �6�

of each independent spin, where �= �kBT�−1.

The model is unitarily equivalent to uncoupled spins, and

so there are no phase transitions, quantum, or classical. Spe-

cifically, in the thermodynamic limit, the free energy per site

is analytic for the full range of T and �. Despite this, we now

demonstrate that this system exhibits a transition in its use-

fulness as a resource for universal MBQC. First, we demon-

strate that above a certain finite temperature it is possible to

efficiently classically simulate any attempt at MBQC. We

label this region of the parameter space of the model “region

C.” Second, we demonstrate that for � and T below some

specific thresholds, the thermal state is a universal resource

for MBQC; this is denoted “region Q.”

III. REGION C: EFFICIENTLY SIMULATABLE

We define classical simulation of an attempted MBQC as

in Ref. �11�: let N be the number of two-level systems in a

particular finite sized lattice. An MQBC on these qubits can

be efficiently classically simulated if there exists a random-

ized algorithm that can sample results of arbitrary single-

qubit measurements �together with feedforward� from the

correct �quantum-mechanical� probability distribution using

resources that scale polynomially in N on a classical com-

puter.

A. Simulation of thermal states

Certain Monte Carlo algorithms simulate properties of a

thermal density matrix ��� ,�� by sampling energy eigen-

states with probabilities given by the Gibbs distribution.

Here we will develop a stochastic simulation that efficiently

samples from a different set of states �C		�C	� with prob-

abilities p	 such that

���,�� = �
	

p	�C		�C	� . �7�

�We note that the states �C		 need not be orthogonal, and do

not in general form a basis.� The states �C		 will be chosen

such that, for sufficiently high temperatures, they have such

small amounts of entanglement that they can be stored and

manipulated efficiently on a classical computer. We conclude

that it is not possible to perform MBQC on the states ��� ,��
in the regime of temperature in which this simulation suc-

ceeds.

The first step in our simulation algorithm is to represent

the state ��� ,�� as a projected entangled pair state �PEPS�
�12�; a class of states that generalizes the well-known va-

lence bond solids �13�. In a PEPS representation, as indicated

in Fig. 1�a� for a square lattice, a set of d�i� virtual quantum

systems �we restrict ourselves to considering virtual qubits�
is associated with each site i of the lattice, where d�i� is the

number of bonds emanating from site i. For every pair of

sites i and j connected by a bond, we can identify two virtual

qubits �one at site i and one at site j� which we associate to

this bond. A PEPS on the original lattice is obtained by plac-

ing every such bond in some state �bond, and at every site i

some operator Ai maps the d�i� virtual systems onto the

physical system. �The operators Ai are isometries but are

commonly referred to as projectors.�

(a) (b)

FIG. 1. �a� A PEPS representation of the thermal state on a

square lattice. Bonds between virtual qubits, denoted by dashed

lines, are in a mixed state. �b� An instance of this thermal state.

Solid lines denote a maximally entangled state on the bond,

whereas no line denotes a separable state.
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For the cluster state �and generally for PEPS representa-

tions�, the pair of virtual qubits associated to each bond are

assigned the maximally entangled state �bond= �C2	�C2�, with

�C2	 =
1

�2
��0	�+ 	 + �1	�− 	� , �8�

where �� 	=
1
�2

��0	� �1	�. With this convention, the cluster

state has a simple PEPS representation �12� corresponding to

the choice of isometry

A = �0	�00 . . . 0� + �1	�11 . . . 1� , �9�

at each site, with d�i� zeros �ones� in �00. . .0� ��11. . .1��, and

the states �0	 and �1	 forming a basis for the resulting qubit at

each site.

In our simulation algorithm, we follow �5� and choose

more general states for the pairs of virtual qubits on a bond,

allowing us to describe thermal states of our cluster Hamil-

tonian, both with and without the local field term. The zero-

field thermal state ��� ,0� is obtained as a PEPS if we choose

�bond��,� = 0� =
1

4
�I + 
eX � Z��I + 
eZ � X� �10�

on every bond and

A = �0	�00 . . . 0� + �1	�11 . . . 1� �11�

at every site �5�. For 
e=1, the bond states are pure and

maximally entangled and the resulting PEPS is the cluster

state. For 
e=0, the bond states are maximally mixed, cor-

responding to infinite temperature. To obtain ��� ,0�, the pa-

rameters 
e are chosen such that

�
e


e = tanh���/2� , �12�

where the product is taken over the bonds emanating from a

particular site; for simplicity, we choose all 
e to be equal.

The case of nonzero � is handled by a slightly more general

ansatz for the bond states as follows:

�bond��,�� =
1

4
�I + 	X � Z + �Z � I��I + 	Z � X + �I � Z� .

�13�

The details of how to choose 	 and � to reproduce ��� ,�� is

described in Appendix B.

The second step of the algorithm is to decompose the

states �bond as an ensemble of states, such that the elements

of the ensemble are product states with high probability. Ev-

ery two-qubit state has a decomposition of the form �14�

�bond = pe��	��� + �


ps,��1,	��1,� � ��2,	��2,� ,

�14�

where ��	 is a pure entangled state, ��1,	 � ��2,	 is a pure

product state, pe, ps, are probabilities, and the probability of

getting a product state �ps,
1− pe is maximal over all

possible decompositions. Following �15�, we find that for

�bond�� ,0� the state ��	 is simply the two-qubit cluster state

and that

pe = �
e
2 + 2
e − 1�/2. �15�

As expected, high temperatures yield small values for pe and

an ensemble that is largely made up of product states. For the

case of general � this decomposition is readily performed

numerically.

Our key insight for simulating MBQC on a thermal PEPS

state is that, armed with a decomposition such as Eq. �14�,
one can efficiently generate instances of an ensemble that

gives the state ��� ,��. If the temperature is sufficiently high,

the members of this ensemble can be efficiently stored and

manipulated in a classical computer. We outline the simula-

tion algorithm here; full details are given in Appendix A.

On a given run of the simulation, the state for each bond

is chosen to be either the pure two-qubit entangled state ��	
or one of the product states ��1,	 � ��2,	. We note that the

operator A can be viewed as one outcome of a generalized

quantum measurement, albeit one that reduces the dimension

of the measured system from four spins to one. The prob-

abilities for these states are given by the decomposition �Eq.

�14��, conditional on performing this measurement and suc-

cessfully obtaining the outcome associated with A. Figure 1

illustrates this sampling. For sufficiently small pe, percola-

tion theory tells us that the lattice decomposes into discon-

nected clusters with entanglement only within a cluster, and

not between clusters. Specifically, if pe is smaller than the

critical bond percolation probability pcrit
bond for the lattice, then

we expect all the clusters will be sufficiently small to store

and simulate efficiently on a classical computer.

B. Classical resource requirements

We now provide an explicit bound on the classical com-

puting resources required to execute our simulation algo-

rithm. Specifically, we prove that if pe� pcrit
bond, then the total

simulation cost is bounded by a polynomial in N.

In our simulation, each run yields a lattice with some

entangled and some product-state bonds. We identify

regions—“clusters”—that are connected by entangled bonds.

Distinct clusters are therefore in a product state and can be

stored and simulated separately. For cluster C j of size �C j�, a

direct simulation would have a cost proportional to 22�Cj�.

Because there are at most N clusters, the total cost of classi-

cally simulating a measurement sequence on the state ��� ,��
is bounded above by N22�Cj� for each round of the simulation.

We expect that for sufficiently high temperatures pe will

become very small and the resulting clusters will be small

enough to simulate efficiently. To confirm this expectation,

we invoke results from percolation theory �16,17� to bound

�C j�. The essential idea is that, if pe is smaller than the critical

bond percolation probability pcrit
bond for the lattice, then all the

clusters will be “small enough” to simulate efficiently. Spe-

cifically, if pe� pcrit
bond, then the mean cluster size ��pe� does

not depend on N. In addition, the largest cluster size is al-

most surely of size O�log2 N� with standard deviation

O�log2 log2 N� �18�. Now imagine we reserve N classical

registers, each of kNc classical bits for some constants k and

c, and use each register to store the state of one of the

M ��N� distinct clusters. This allows us to store, with k bit

precision, the quantum state of any cluster for which
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�C j�� log2 Nc and to simulate local measurements on it effi-

ciently. As the largest cluster is almost surely of this size, the

total simulation cost is bounded by a polynomial in N. Note

that while this analysis shows efficient classical simulatabil-

ity is possible, it is certainly not optimal—more precise es-

timates would require considering the distribution of cluster

sizes.

C. Critical temperature for region C

With this analysis, we can now lower bound the critical

temperature above which our simulation algorithm succeeds.

In the case of �=0, we can first compute the critical value of


e

crit and relate this to a critical temperature via

tanh��crit�/2� = �
e


e = 
crit
d . �16�

For some well-known lattices we find that kTcrit is 0.813�
�honeycomb�, 1.6921� �square�, 7.1617� �triangular�, and

13.1� �cubic�. For ��0, we resort to numerical methods

�see Appendix B� and again find a critical temperature. As

expected, this temperature becomes zero at �=� /2 when the

ground state is a product state. Figure 2 plots this solution for

a cubic lattice. We note that improved lower bounds of this

critical temperature can be obtained by allowing the value of


e to vary from bond to bond.

IV. REGION Q: UNIVERSAL FOR MBQC

We now demonstrate that, for the “cold and weak field”

regions in parameter space, the thermal state of Eq. �1� is a

universal resource for MBQC on an appropriate lattice. Spe-

cifically, we use the error thresholds of �6,7�, together with a

local filtering method, to prove the existence of a finite re-

gion of parameter space for which the thermal state of Eq.

�1� is a universal resource for MBQC given ideal single-

qubit measurements.

Consider performing the local measurement on every site

in L as introduced in �10� for the zero temperature case,

described by the measurement operators

M0 = �1 − tan2 ��0	�0�, M1 = tan ��0	�0� + �1	�1� ,

�17�

where 2�=� /2−�. For T=0, the effect of the measurement

is easily calculated by recalling that this state can be ex-

pressed as �UL���	�L. Both measurement operators M0 and

M1 commute with UL, and thus we can consider their effect

on the state ��	 at each site. If the “0” outcome is obtained,

which occurs with probability p0=sin �, the postmeasure-

ment state is �0	; if “1” is obtained, the resulting state is

�+	. If the operation UL is applied to a lattice of qubits where

a subset L� �corresponding to those qubits for which the

measurement outcome “1” was obtained� has each qubit pre-

pared in the �+	 state and all remaining qubits prepared in �0	,
the result is an ideal cluster state on L� where the remaining

sites remain unentangled. We will refer to this procedure as

local filtering.

Similar results hold for the thermal state, with

cos 2�=tanh��� /2�sin �. The resulting state is a thermal

state of the �=0 Hamiltonian on L� �the subset of the lattice

where the measurement results “1” were obtained� with an

increased temperature T�= �kB���−1 given by

tanh����/2� =
cos �

�1 − tanh2���/2�sin2 �
tanh���/2� .

�18�

The probability that, for a given site, the measurement yields

“1” is p1=1−tanh��� /2�sin �.

With this filtering, we can argue the existence of a finite

region of parameter space where MBQC is definitely pos-

sible on a cubic lattice using ideal single-qubit measure-

ments. Define L� to be the subset of qubits for which the “0”

outcome occurred, i.e., the complement of L�. For ��1 the

measurement disentangles the qubits in L� from the rest of

the cluster state, leaving them in the state �0	. We then ran-

domly flip each qubit in L�, such that they are described by

the completely mixed state. We also apply a Z gate to all

neighboring qubits to those that have been flipped into the

state �1	. The effect of this further processing is to prepare a

�=0 thermal cluster state for which complete dephasing has

been applied qubits in L�. We then discard the measurement

record and the result is a thermal cluster state on the entire

lattice L for which each qubit has been passed through an

effective dephasing channel ����= �1− p��+ pZ�Z, with p

FIG. 2. �Color online� The parameter space of our model, with

bounds on the usefulness of the thermal state on a simple cubic

lattice for MBQC. Region C represents the region on which any

MBQC scheme performed on the thermal state can be efficiently

simulated on a classical computer. Region Q represents the region

where we can rigorously show via the dephasing channel argument

given in the text that the state is universal for MBQC using ideal

measurements. Region Q� is a region where the local filtering yields

a percolated thermal cluster state with T�0.28�; it is possible to

perform universal MBQC on any ground state or �=0 thermal state

in this phase, and states in this phase with T ,��0 may be universal

for MBQC although rigorous error thresholds for such states are not

currently known. The black dashed curve represents the separability

criteria of �5�; above this curve, the PEPS description of the thermal

state is separable along any bipartite division of the cubic lattice

given by a plane.
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=tanh��� /2�sin �. This is just the same state as the �=0

thermal state with T chosen such that p= �1+exp�� /kBT��−1.

Thus, a thermal ��0 state can be converted by local mea-

surements into an ideal cluster state subjected to dephasing

noise. With this fact, we use the results of �6�, which dem-

onstrate that MBQC can proceed using the cluster state on a

body-centered cubic �bcc� lattice with dephasing noise up to

pc�2.9�10−2. This bound defines a region at low T and �
wherein every state is useful for MBQC given ideal measure-

ments. Figure 2 shows this region for a cubic lattice �noting

that a cubic lattice can be converted into a bcc lattice with

local Z measurements, which are unaffected by the noise�,
labeled as region Q. At �=0, the boundary corresponds to a

temperature of Tc�0.28�.

However, these results may be too conservative. Consider

the ��0 ground state and apply the local filtering measure-

ment. Again, the effect of this measurement is to disentangle

some qubits from the lattice and leave the remaining qubits

in a cluster state. One can then investigate whether the re-

sulting subset L� contains a cluster of neighboring sites that

spans the lattice L. This will occur with certainty if the suc-

cess probability 1−sin � is above the site percolation thresh-

old, pc
site. So if 1−sin �� pc

site, then the resulting cluster state

on L� is a universal resource for MBQC �16,19�. This lower

bound �valid only at T=0� is much larger than the conserva-

tive lower bound on the critical value of � obtained via the

dephasing argument above.

A similar question can be asked of the thermal cluster

state; however, the results of �5–7� do not directly apply

because it is not clear how to convert the thermal cluster

state on the irregular set L� into the bcc lattice for which

error thresholds are known. �A direct conversion using the

methods of �16,19� would require performing local X mea-

surements, which do not commute with the noise.� As a re-

sult it is not clear that MBQC can in fact be performed.

Nevertheless, Fig. 2 shows the region Q� for which the suc-

cess probability of the filtering operation is greater than the

site percolation threshold 1−sin �� pc
site, with a resulting

temperature T� less than the critical temperature for universal

MBQC. An alternative approach would be to apply the error

correction procedure of �20� which corrects the effects of

both finite temperature and qubit loss errors. The perfor-

mance of this scheme in a three-dimensional cluster is cur-

rently unknown, however it may yield better performance

than the strategies described above in some regions of pa-

rameter space.

V. CONCLUSIONS

We have shown that the thermal equilibrium states of Eq.

�1� undergo a transition in their usefulness for MBQC, from

a region of parameter space where every state is a universal

resource, to one where every state is efficiently classically

simulatable. In spite of this dramatic change in computa-

tional power, these states do not exhibit any corresponding

phase transition.

We conclude by contrasting our results with some related

work. First, in a similar model with a transverse rather than

longitudinal local field, the system does exhibit a zero-

temperature phase transition at sufficiently high-field

strength, and correlation functions can be identified which

characterize a phase for which a set of MBQC gates can be

performed over arbitrary ranges �21�. Thus, a transition in

computational power coincides with a quantum phase transi-

tion in this model.

Second, nonanalytic behavior in long-range entanglement

quantities such as localizable entanglement �1� does not nec-

essarily indicate a phase transition. In our model, for

sin ��1− pc
site, the localizable entanglement in the ground

state is precisely equal to 1 ebit at all length scales, and at

�=� /2 it is equal to zero �because the state is a product

state�. There is no analytic function fulfilling these require-

ments, and so the localizable entanglement is a nonanalytic

function of �, indicating a sharp transition somewhere in the

interval 1− pc
site�sin ��1. Again, we emphasize that there is

no quantum phase transition at any value of � in this model,

and so we have an example of a system where a nonanalyt-

icity in the localizable entanglement length does not identify

an underlying quantum phase transition. This in contrast to

the situation for a large number of models discussed in the

literature �1� including the cluster Hamiltonian with a local X

field �21,22�.
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APPENDIX A: THE SAMPLING ALGORITHM

The sampling of PEPS bonds to generate a single pure

state instance of the thermal state requires some care. We

must sample from the ensemble of bond instances after each

of the site projections A= �0	�0. . .0�+ �1	�1. . .1�. To obtain

the correct distribution, the projections A should be viewed

as physical measurement operations and one should sample

from the posterior distribution conditional on the success of

the operations. However, the success of the projection at a

site can vary depending on the choice of pure bond states at

the site. For example, a site containing a virtual qubit in the

state �0	 and another virtual qubit in �1	 will yield zero-

conditional probability for the projection, while a site with

all qubits in the pure state �0	 will guarantee success for the

projection. Consequently, we cannot sample directly from

the ensemble of pure bond states according to the probabili-

ties in the decomposition of Eq. �14�; instead, we use a sam-

pling procedure where each step is conditioned on the suc-

cess of the site projections. Here we describe an algorithm

that samples efficiently from the appropriate distribution and

show below that the algorithm samples the correct distribu-

tion for the whole system. The key requirement for this
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simulation to be efficient is that the success of the measure-

ment Ai at site i is independent of the other sites in the

lattice.

The following algorithm efficiently samples from the pos-

terior bond distribution: That is, it reproduces the distribution

p��ij�� �A1 � A2 � ¯ � AN� of a particular configuration

�ij�� of all bonds in the lattice conditional on success of

each of the projectors Ai.

Set all virtual qubits to empty.

For all bonds �i , j� do.

Set any empty qubits in i . � \ i . j� and j . � \ j . i�
to the state �0=tr2��bond�
Sample from the distribution

p��i,j��Ai � A j,�
i.�\i.j�,�j.�\j.i�� .

Set the state of qubits i . j and j . i to the

corresponding bond state.

End for.

Here, i . � \ i . j� is the set of virtual qubits at site i except

for the one associated with the bond �i , j� and

p��i,j� �Ai � A j ,�
i.�\i.j� ,�j.�\j.i�� is the posterior probability for

the bond �i , j�, given the state of the other virtual qubits at

sites i and j and given that the projections Ai and A j succeed.

We can calculate this distribution straightforwardly from

Bayes’ rule.

We now show that the above algorithm indeed samples

from the correct probability distribution, which is the poste-

rior distribution for the bond configuration, conditioned on

the success of all N projections. The desired distribution may

be written using Bayes’ rule as

p��ij���A1 � A2 � ¯ � AN�

=
p�A1 � A2 ¯ � AN��ij���p��ij���

p�A1 � A2 � ¯ � AN�
. �A1�

On the other hand, the algorithm described above samples,

on a bond-by-bond basis, from the distribution

palg��
ij��� = �

ij�

p��ij��Ai � A j,�
i.�\i.j�,�j.�\j.i��

= �
ij�

p�Ai � A j��
ij�,�i.�\i.j�,�j.�\j.i��pij�

p�Ai � A j��
i.�\i.j�,�j.�\j.i��

.

�A2�

Here, the product runs over all bonds ij� in the lattice,

p�Ai � A j ��
ij� ,�i.�\i.j� ,�j.�\j.i�� is the probability that the

projections at site i and j succeed conditioned on the bond

ij� being in state �ij�, and pij� is the prior distribution for

each bond as given by the probabilities pe , ps,� of Eq. �14�.
The denominator p�Ai � A j ��

i.�\i.j� ,�j.�\j.i�� denotes the total

probability that the projections at site i and j succeed condi-

tioned only on the state of the virtual qubits i . � \ i . j� and

j . � \ j . i�.
In order to show the equivalence of the two distributions

of Eqs. �A1� and �A2�, first consider the denominators in Eq.

�A2�. These may be written as

p�Ai � A j��
i.�\i.j�,�j.�\j.i��

= �
k

p�Ai � A j��k
ij�,�i.�\i.j�,�j.�\j.i��pk

ij�, �A3�

where �k
ij� are the elements of the ensemble decomposition

of Eq. �14� and pk
ij� are the corresponding weights. This ex-

pression may be written

p�Ai � A j��
i.�\i.j�,�j.�\j.i��

= �
k

tr��Ai � A j��
i.�\i.j�

� �k
ij�

� �j.�\j.i��Ai � A j�
†�pk

ij�

= tr��Ai � A j��
i.�\i.j�

� �bond
ij�

� �j.�\j.i��Ai � A j�
†� , �A4�

where �bond
ij� denotes the total state of the bond. In Sec. III B,

we show that for ��0, the thermal bond state is of the form

�bond=
1

4
�I+	X � Z+�Z � I��I+	Z � X+�I � Z�, where 	 and

� are parameters determined numerically for a given tem-

perature and field strength �see Sec. III B�. For any physical

values of 	, �, �i.�\i.j� and �j.�\j.i�, one finds that this expres-

sion may be written

p�Ai � A j��
i.�\i.j�,�j.�\j.i��

= p�Ai��
i.�\i.j�,�0

i.j��p�A j��
j.�\j.i�,�0

j.i�� . �A5�

The numerators in Eq. �A2� contain likelihood factors of the

form

p�Ai � A j��
ij�,�i.�\i.j�,�j.�\j.i��

= tr��Ai � A j��
i.�\i.j�

� �ij�
� �j.�\j.i��Ai � A j�

†� .

�A6�

If �ij�=�i.j�
� �j.i� then it is clear that this expression

can be written as a product of two probabilities

�corresponding to independent outcomes Ai and A j at

sites i and j, respectively�. Conversely, as we show

in the final section of this appendix, the entangled

component of the decomposition is also of the form �e

=
1

4
�I+	0X � Z+�0Z � I��I+	0Z � X+�0I � Z�, where 	0 and

�0 are real parameters. Since, in this case, �ij� is of the same

form as the state �bond
ij� appearing in Eq. �A4�, it follows from

Eq. �A5� that the expression can also be written as a product

of two probabilities. Thus this term may be written as the

product

p�Ai � A j��
ij�,�i.�\i.j�,�j.�\j.i��

= p�Ai��
i.j�,�i.�\i.j��p�A j��

j.i�,�j.�\j.i�� . �A7�

Note that generalizations of Eqs. �A5� and �A7� to arbi-

trary numbers of sites also hold. For example, in the three

site case, where site j neighbors both site i and site k, we find

p�Ai � A j � Ak��
i.�\i.j�,�j.�\j.i,j.k��,�k.�\k.j��

= p�Ai��
i.�\i.j�,�0

i.j��p�A j��
j.�\j.i,j.k��,�0

j.i�,�0
j.k��

�p�Ak��
k.�\k.j�,�0

k.j�� , �A8�

and also
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p�Ai � A j � Ak��
ij�,�jk�,�i.�\i.j�,�j.�\j.i,j.k��,�k.�\k.j��

= p�Ai��
i.j�,�i.�\i.j��p�A j��

j.i�,�j.k�,�j.�\j.i,j.k���

�p�Ak��
k.j�,�k.�\k.j�� . �A9�

One way to verify these expressions and their generalizations

to any number of sites is as follows. Recall that the site

projections of the PEPS representation commute with UL

gates applied on each of the bonds. Consider a single in-

stance of the thermal ensemble of entangled and product

state bonds, as shown in Fig. 1�b�. Consider performing a UL

operation on every bond that is occupied by an entangled

state, leaving the bonds with product states alone. The site

projections are unaffected by this operation, however the en-

tangled bond states have become completely unentangled

and the resulting state is a product state between all sites.

The success probabilities at each site are now clearly inde-

pendent.

Using the factorized expressions Eqs. �A5� and �A7�, Eq.

�A2� becomes

palg��
ij��� = �

ij�

p�Ai��
i.j�,�i.�\i.j��p�A j��

j.i�,�j.�\j.i��pij�

p�Ai��
i.�\i.j�,�0

i.j��p�A j��
j.�\j.i�,�0

j.i��

= �
i

p�Ai��
i.j1�,�0

i.j2�
, . . . ,�0

i.jd��p�Ai��
i.j1�,�i.j2�,�0

i.j3�
. . . ,�0

i.jd�� . . . p�Ai��
i.j1�,�i.j2�, . . . ,�i.jd��

p�Ai��0
i.j1�

,�0
i.j2�

, . . . ,�0
i.jd��p�Ai��

i.j1�,�0
i.j2�

, . . . ,�0
i.jd�� . . . p�Ai��

i.j1�,�i.j2�, . . . ,�0
i.jd��

�
ij�

pij� �A10�

where in the second line we have rearranged the product
such that each factor now corresponds to a particular site of
the lattice rather than a bond. The ordering of the virtual
qubits at site i implied by the indices j1 , . . . , jd corresponds to
the order in which the corresponding bonds are sampled in
the algorithm. Equation �A10� can be simplified considerably
by noting that many repeated terms appear in both the nu-
merator and denominator, yielding

palg��
ij��� =

�
i

p�Ai��
i.j1�,�i.j2�, . . . ,�i.jd���

ij�

pij�

�
i

p�Ai��0
i.j1�

,�0
i.j2�

, . . . ,�0
i.jd��

.

�A11�

Finally, by observing that the expressions p�A1 � A2¯

� AN � �ij��� and p�A1 � A2 � ¯ � AN� of Eq. �A1� may be
written in a factorized form �by making use of the appropri-

ate generalization of Eqs. �A8� and �A9�, we can identify

each term in Eq. �A11� with the corresponding term in Eq.

�A1�. Thus, our algorithm indeed samples from the correct

distribution for the whole state.

APPENDIX B: THERMAL STATES WITH NONZERO

LOCAL FIELD

In the nonzero field case the thermal bonds are deter-

mined by the requirement that they project, under Ai at each

site, to the correct thermal cluster state.

In the zero temperature case it is possible to obtain an

analytical expression for this bond state. It is straightforward

to see that the states

�bond�T = 0,�� =
1

4
�I + X � Z cos 2� − Z � I sin 2��

��I + Z � X cos 2� − I � Z sin 2��

�B1�

yield the correct pure cluster state, provided that

tand��+� /4�=tan�� /2+� /4�, where d is the coordination

number of the lattice. However, for finite temperatures it is

slightly more difficult to obtain the relations between the

bond parameters and the values of T and �. As stated in the

main text, the bond states take the general form

�bond�T,�� =
1

4
�I + 	X � Z + �Z � I��I + 	Z � X + �I � Z� ,

�B2�

where the parameters 	 and � obey

	d = tanh
��

2
cos � �

j even

�d

j
�� j ,

�
j odd

�d

j
�� j = − tanh

��

2
sin � �

j even

�d

j
�� j , �B3�

while also being constrained to producing physical bond

states. In one dimension these equations are relatively

straightforward and may be solved without much trouble,

however for the cubic lattice the conditions involve sixth-

order polynomials in � and so we opt to solve these con-

straints numerically and find that for any T or 0���� /2

we obtain an appropriate thermal bond state.

To calculate the classical simulation bound from percola-

tion on the lattice, the thermal bond state must be decom-

posed into an entangled part and a separable part. Instead of

calculating the best separable approximation �BSA� for the

thermal state, we use the state �e=�bond�T=0,�� as the �non-

maximally� entangled pure bond state in the decomposition

�bond= pe�e+ �1− pe��s and choose the largest pe for which �s

remains separable.
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