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We discuss quantum entanglement in the context of the thermodynamic arrow of time. We review the role of
correlations in entropy-decreasing events and prove that the occurrence of a transformation between two
thermodynamic states constitutes a new type of entanglement witness, one not defined as a separating plane in
state space between separable and entangled states, but as a physical process dependent on the local initial
properties of the states. Extending work by Partovi, we consider a general entangled multipartite system that
allows large reversals of the thermodynamic arrow of time. We describe a hierarchy of arrows that arises from
the different correlations allowed in a quantum state and examine these features in the context of Maxwell’s
Demon. We examine in detail the case of three qubits, and also propose some simple experimental demonstra-
tions possible with small numbers of qubits.
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I. INTRODUCTION

For over a century, Maxwell’s demon has provided a set-
ting in which to address the limitations that thermodynamics
places on an observer free to perform measurements on a
system and then act on their acquired information in some
algorithmic way �1–4�. As is now well appreciated, informa-
tion has an energetic value. A demon �5� in possession of
information about a physical state may transform this infor-
mation into mechanical work �3,6�. Specifically, given a sys-
tem of dimension D in a state � and the presence of a reser-
voir at a temperature T, the demon can extract W=kT�ln D
−S���� amount of mechanical work from the reservoir, where
S���=−Tr�� log �� is the von Neumann entropy of the state.
The demon fails in his attempt to violate the second law of
thermodynamics because the demon’s memory, where he
records the measurement results of the state, must be erased
in order to operate in a cycle �7�. Such an erasure of memory
can only occur with an unavoidable dissipation of heat �8�.

As a concrete example, we may consider a gas of N par-
ticles that resides in a piston on one side of a movable par-
tition and in thermal equilibrium with a reservoir at a tem-
perature T, Fig. 1�a�. The demon, upon discovering what side
of the partition the gas is on, may extract usable energy by
deterministically acting on the piston system—if the gas is to
the left of the partition, the demon puts the piston in contact
with the reservoir, loads the partition with a mass M, tilts the
piston as in Fig. 1�b� and allows the gas to expand slowly
through the available empty volume. The expansion of the
gas does work on the mass, elevating to a height h, which
makes mechanical energy available. Indeed, the expansion
can provide a maximum mechanical energy of NkT ln 2,
which is extracted from the thermal reservoir �Fig. 1�c��.

A. Confounding Maxwell’s Demon

In order to illustrate the possibilities that quantum en-
tanglement can bring to the story, it is amusing to consider
cases in which a “global demon,” with access to a large
entangled quantum state, can confuse the traditional “local
demon” who can only measure and act locally. The global
demon can arrange that any thermodynamic process for the

local demon can run “backwards”—heat can flow from a
cold to hot and gases can contract instead of expand—driven
by entanglement present in the state.

As a concrete example, consider a system that consists of
a reservoir and piston that are both in local thermal states,
but with the global state of the system being pure. This state
is prepared by the global demon, who may manipulate the
global state as he pleases. The global demon ensures that the
entanglement is local, in the sense that any part of the total
system is entangled with its surroundings. Furthermore, for
simplicity, we constrain the reservoir subsystems to couple to
each other much weaker than to the piston subsystem �9�.
This situation is indicated in Fig. 2.

Since thermality arises from entanglement between the
different components of the system in a global pure state,
when the local demon places the piston in contact with the
quantum reservoir and releases the partition, instead of the
gas expanding up the piston to fill the empty volume, the
thermal state repeatedly expands forward and then contracts
backward in the tube as energy flows into and out of the
piston. The spontaneous contraction phase of the gas is iden-
tical to the usual spontaneous expansion of a gas but with
time “running backwards.” For the local demon, the thermo-
dynamic arrow of time has failed and he is unable to extract
any net work despite having been given a piston that is on its
own completely indistinguishable from a standard thermal
state on one side of a partition, seemingly coupled to a stan-
dard thermal reservoir.

The mischievous global demon, however, may further
confuse the local demon by thermalizing the entanglement in
the �quantum� reservoir that he has access to, using a differ-
ent �fully thermal, classical� reservoir. Since the full system
of dimension D is in a pure state, the global demon can
extract kT ln D amount of work from the classical reservoir,
which he may store as mechanical energy, leaving the quan-
tum reservoir plus piston in a maximally mixed state. Then
using only some of this mechanical energy he may convert
the maximally mixed reservoir into a true thermal state at the
original temperature T. At which point the thermodynamic
arrow is returned, the global demon has converted the en-
tanglement into mechanical energy and the local demon, un-
aware of all the entanglement that was present, will finally be
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able to extract NkT ln 2 of work from the reservoir as he had
originally hoped.

B. Arrow of time

There are many reasons to be interested in the arrow of
time beyond simply fun stories about demons. The standard
thermodynamic arrow applies to systems that are in isolation
and amounts to a directionality for certain physical pro-
cesses. The curious fact that certain processes are forbidden
and certain states inaccessible is generally traced back to the
initial conditions of the physical system. Furthermore, since
all parts of the observed universe seem to obey a common
“arrow of time,” the problem of resolving the thermody-
namic arrow’s origin requires us to account for the particular
initial conditions of our universe �10�.

The notion of an “arrow of time” is quite broad—
extending from the uniform large-scale expansion of the uni-
verse, to the radiative arrow, and through to the individual,
psychological perception of time �11,12�. However, since the
laws of physics are invariant under time reversal �strictly
CPT invariant�, it is believed that any form of temporal di-
rectionality will stem ultimately from the initial conditions of
the universe.

Recent work by Partovi �13� has considered a specific
pure entangled state that produced heat flow from a cold
body to a hotter one, contrary to the usual thermodynamic
arrow. In �13�, Partovi identifies the large degree of entangle-
ment present in the state as being responsible for this unusual
behavior. We will see, in fact, that the negative heat flow he
considers does not necessarily depend on the presence of
entanglement in the state and, by adopting an information
theoretic framework, we explore these and similar possibili-
ties as a way of elucidating the properties of entangled quan-
tum states and the connection with varied notions of “arrows
of time.”

C. Thermodynamic arrow and correlations

A paradigmatic setting that captures the essentials of the
thermodynamic arrow of time is in the context of heat flow
between two systems A and B that interact in isolation, so
that their total energy is constant. For simplicity, we assume
that they do no mechanical work on each other, but may
exchange energy in the form of heat, for which conservation
of energy implies that QA+QB=0, where QA is the heat ac-
quired by A and QB is the heat acquired by B.

Ultimately, the key ingredient that dictates which states
are accessible via the set of all interactions on the total state
�AB is the degree of correlations initially present between A
and B. These correlations between the two subsystems are
quantified by the mutual information, which is non-negative
for all states and defined in terms of relative entropy as
I�A :B�=S��AB ��A � �B�=SA+SB−SAB, where, for example,
SA=−Tr��A log �A� is the von Neumann entropy for the state
�A. The mutual information is a convenient measure of how
distinguishable the state �AB is from the completely uncorre-
lated product state �A � �B.

Of particular interest is when the reduced states at the
initial time ti of subsystems A and B are thermal states for
their respective individual Hamiltonians, HA and HB. Given
temperatures TA and TB, the reduced states then take the form
�A�ti��exp�−�AHA� and �B�ti��exp�−�BHB�, where �X
=1 /kTX for subsystem X� �A ,B�.

We may consider the most general process of switching
on time-dependent interactions VAB�t� between A and B that
evolve the composite system into a new state �AB�t�. For
subsystem X� �A ,B� at a later time t, the two thermody-
namic variables of central interest are the average energy
UX=Tr�HX�X�t�� and the thermodynamic entropy SX

therm. In
what follows, we identify the thermodynamic entropy SX

therm

of subsystem X with the von Neumann entropy SX�S��X� of
the reduced state �X. This identification of the information
theoretic quantity with the thermodynamic variable has gen-
erated a long history of debate �14,15�, however we do not
add to this debate here since the operational and mathemati-
cal correctness of our analysis holds, independent of such
interpretation issues.

Locally at A the interaction results in the transformation
�A�ti�→�A�tf�=TrB��AB�tf��, and so UA→UA+�UA and SA
→SA+�SA, with similar expressions for B. The identification
of the von Neumann entropy with the thermodynamic en-
tropy then allows us to describe the resultant thermodynamic
heat flow that occurs between the two subsystems A and B.

These changes in local thermodynamic variables are con-
strained by the fact that a thermal state exp�−�H� /Tr�exp
�−�H�� minimizes the free-energy function F���=Tr��H�
−S��� /�. Consequently we have that Tr���ti�H�−S���ti�� /�
�Tr���tf�H�−S���tf�� /�, which more explicitly yields

�A�UA − �SA � 0

(a) (b) (c)

FIG. 1. �Color online� Uncorrelated case: The piston is in con-
tact with a thermal reservoir of particles, at temperature T. Me-
chanical energy is extracted from the reservoir by the demon choos-
ing which way to tilt the piston, conditional on his information
about what side the gas is located.

FIG. 2. �Color online� Entangled case: The local thermodynamic
states of the piston and reservoir are indistinguishable from the
uncorrelated cases, however, now entanglement is present in the
system. In this case the piston both expands forward and contracts
backward. Heat flows both into and out of the piston and the usual
thermodynamic arrow no longer holds.
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�B�UB − �SB � 0 �1�

for the change in the thermodynamic variables defined at A
and B. It must be emphasized that Eqs. �1� are kinematical
restrictions on any transformation from initially thermal
states, ��A�ti� ,�B�ti��, to any other pair of local states
��A�tf� ,�B�tf��.

We consider transformations on the composite system that
satisfy S��AB�ti��=S��AB�tf�� �which includes unitary trans-
formations� and so �I�A :B�=�SA+�SB. The only other re-
striction that we place on the transformation is that
Tr��AB�ti��HA+HB��=Tr��AB�tf��HA+HB��. Since we don’t
consider mechanical work, this amounts to requiring that
there is zero net heat flow into the composite system, and the
total energy before the interaction process equals the total
energy afterwards. Writing QA=�UA and QB=�UB for the
heat gained by A and B respectively, we obtain for these
energy preserving processes that

�AQA + �BQB � �I�A:B� , �2�

where �I�A :B� is the change in the mutual information be-
tween A and B.

The special initial state �AB�ti�=�A�ti� � �B�ti� in which
correlations vanish was historically called the condition of
Stosszahlansatz, or “molecular chaos.” If we consider A and
B initially uncorrelated at some time ti then I�A :B ; ti�=0,
however interactions allow correlations to form between the
two subsystems, and so at later times tf we have I�A :B ; tf�
�0. We immediately deduce that �AQA+�BQB�0, or more
explicitly in terms of temperature

QA	 1

TA
−

1

TB

 � 0. �3�

In other words, heat can only flow from hot thermal states to
cold thermal states in isolation. This is the standard thermo-
dynamic arrow of time.

This situation can be generalized to N initially uncorre-
lated thermal states and provides us with the constraint

�
j

Qj

Tj
� 0, �4�

which forbids certain types of heat flow; for example, if we
partition the N thermal states in two, such that all the tem-
peratures in the first group are lower than those in the sec-
ond, then it is impossible for heat to flow from the first to the
second.

In general, however, initial correlations are expected to be
present, I�A :B ; ti��0, and so the change in mutual informa-
tion can be negative. From Eq. �2� it is clear that there is no
longer a constraint on the directionality of heat flow between
A and B �16�. As we shall now see, the correlations that make
up the total mutual information can arise from classical cor-
relations, or from a combination of classical correlations and
quantum entanglement.

D. Entanglement correlations

Entangled quantum systems can possess far stronger cor-
relations than are possible classically, and in fact the vast

majority of quantum states are entangled �17,18�. Work has
been done previously on how quantum correlations affect
macroscopic thermodynamic observables such as the suscep-
tibility or the heat capacity, and it has been shown that mea-
surement of these macroscopic observables can act as en-
tanglement witnesses �19,20�. We shall show that the
thermodynamic transformations themselves also constitute
entanglement witnesses. We should be careful to distinguish
this research program from the one to do with formal analo-
gies �21,22� between irreversible entanglement transforma-
tions and the second law of thermodynamics, on which much
progress has recently been made �23�, or from attempts to
connect the second law of thermodynamics to Bell inequali-
ties �24�. Here we are interested in the physical effects which
entanglement between systems and reservoirs has on the
thermodynamical transformations of the systems.

Recently in �13� Partovi considered how the presence of
entanglement in a system affects irreversible thermodynamic
transformations. The intriguing scenario he considered in-
volves two subsystems A and B that are overall in a pure
state ��AB and possess strong quantum correlations. Further-
more, he arranged that the local reduced states �A,B
=TrB,A���AB��AB�� are thermal states for the two sub-
systems and so locally indistinguishable from classical ther-
mal mixtures. Despite being locally indistinguishable from
classical thermal mixtures, the composite system behaves
quite differently under any energy-conserving unitary. Since
the total initial state is a pure state we have that S��AB�ti��
=0, which remains true at any later time. From a Schmidt
decomposition for A and B we find that �A�t� and �B�t� are
isospectral, Spec��A�t��=Spec��B�t��, and so their entropies
are always equal. Consequently, any unitary transformation
occurring on the composite system will have �SA=�SB.

Once again, assuming �i� no mechanical work and �ii� no
overall change in the total energy, the condition on the heat
flow between A and B is �AQA+�BQB��SA+�SB. How-
ever, since �SA=�SB and QA=−QB we have that

− �SA�1/�A + 1/�B� � 0, �5�

and so �SA=�SB	0. Energy conserving unitary interactions
never increase the local entropies of either subsystem, in
stark contrast to the uncorrelated situation of classically
mixed thermal states, where �SA+�SB never decreases.

The model in �13� emphasizes the crucial role of high
correlations in the reversal of standard thermodynamic heat
flow, and highlights that molecular chaos and maximal bipar-
tite entanglement are the two extremes for correlations.
However, the model in �13� also allows reversal of the ther-
modynamic arrow for intermediate levels of correlation,
which need not be due to the presence of any entanglement.
For example we may simply dephase ��AB to turn it into a
classically correlated separable state that would produce the
exact same reversal of the thermodynamic arrow.

In addition, while the pure state ��AB allows local en-
tropy decreases, and the reversal of the thermodynamic ar-
row, the isospectral constraint for the bipartite splitting of the
pure state ��AB is very restrictive—the only way in which
two different temperatures for A and B is achieved in �13� is
to impose that the energy spectrum of A be a scaled version
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of the energy spectrum of B. Another undesirable feature of
the model is that the initial thermal states that are considered
in �13� �squeezed Gaussian states of two oscillators� are the
only thermal states that are attainable in this setting—all
other thermal states are inaccessible.

In the next section, we extend the work of �13� to show
that we may distinguish entangled systems from classically
correlated system through violations of thermodynamic ar-
row and produce transformations between arbitrary thermal
states without restrictions on the energy spectra. Further-
more, we analyze quantum systems in which the correlation
structure is more complex and allows for a more subtle range
of violations of the thermodynamic arrow.

E. Classical correlations and entanglement witnesses

Recently �25�, the mutual information I�A :B� was given
an operational meaning in terms of the minimal amount of
local randomizing work that must be done on a bipartite
system to reduce it to a product state and destroy all corre-
lations. We will give here another thermodynamical
interpretation—namely, the mutual information is a measure
of the maximal amount that the isolated bipartite system may
violate the thermodynamic arrow in the form of energy trans-
fer from a colder subsystem to a hotter one.

The total correlations, as quantified by I�A :B�, also con-
tain classical correlations, which may be defined as

Ic�A:B� = maxMA�MB
H�A:B� , �6�

where H�A :B� is the classical �Shannon� mutual information
for the joint probability distributions generated by local
POVM measurements MA � MB at A and B �26�. The classi-
cal mutual information Ic�A :B� is always less than or equal
to the total mutual information I�A :B� and vanishes if and
only if the bipartite state is a product state �27�.

It is clear that for bipartite states �AB the classical mutual
information always obeys the bound 0	 Ic�A :B�	 log D,
where D is the dimensionality of the smaller subsystem. On
the other hand, while the quantum mutual information
I�A :B� is always positive, it can in general take on values
larger than log D. However, if we write the quantum mutual
information as

I�A:B� = SA + SB − SAB = SA − �SAB − SB� = SB − �SAB − SA�

and restrict ourselves to separable states �AB for which SAB is
always greater than both SB and SA �28� we may deduce that
I�A :B�	min�SA ,SB� and so I�A :B� �sep	 log D over the set
of separable states. This upper bound is saturated for per-
fectly correlated, zero discord, separable states �AB

= 1
D�i�iA�i� � �iB�i�, in which case Ic�A :B�= I�A :B�=log D.
However, for entangled states we can have I�A :B�

� log D, and so from Eq. �2� we see that certain types of heat
flow are possible that are forbidden classically. In particular a
quantity of heat I�A :B� / ���A−�B�� can be transferred from
the cold subsystem to the hot system, whereas classical cor-
relations could only permit at most a quantity of heat
log D / ���A−�B�� to flow from cold to hot. From this it fol-
lows that the reversal of the thermodynamic arrow of time is
a kind of entanglement witness where quantum correlations

present in the state allow much larger violations of the arrow
than are classically possible, and so the detection of such
large reversals must imply an entangled state. Standard en-
tanglement witnesses correspond to an observable W that
defines a plane Tr�W��=0 in state space separating entangled
states from separable ones, while for us, it is the set of en-
ergetically accessible states that acts as the witness. Instead
of local observables, it is the transformations of the state that
signal entanglement.

The classical mutual information Ic�A :B� has previously
been considered in the context of the thermodynamic arrow
as a candidate measure for the classical memory record that a
system A has of events that affect B �29�. The claim in �29�
was that any event that decreases the entropy of B necessar-
ily reduces the classical mutual information between A and
B, and so entropy-decreasing events at B do not leave a
memory trace in A. This was a proposed resolution to the
empirical fact that we only observe entropy-decreasing
events, namely the “arrow of time dilemma.”

However, in �30� we demonstrate explicitly that this claim
is false, and in reality quantum mechanics allows the exact
opposite to occur. We show that large quantum correlations
present in a state can be used up to reverse the thermody-
namic arrow and at the same time increase the classical cor-
relations between two subsystems. Quantum mechanics al-
lows enhanced memory records of entropy-increasing events
and so there can be no resolution of the arrow of time in
terms of classical memory records.

The process of dividing correlations into quantum and
classical components has many subtle aspects and counter-
intuitive results exist, for example in the setting of multipar-
tite correlations it is possible to have purely quantum multi-
partite correlations without any classical multipartite
correlations being present �31�. In the next section we con-
sider multipartite quantum systems that are in a highly en-
tangled pure state and analyze how the quantum correlations
present allow arbitrarily large reversals of the thermody-
namic arrow.

II. LOCAL THERMAL STATES, GLOBAL STATES,
AND A HIERARCHY OF ARROWS

We now turn to an analysis of entanglement-assisted vio-
lations of the thermodynamic arrow in a general multipartite
setting. Once again, we consider an isolated system that may
undergo a complex time-dependent interaction process be-
tween times ti and tf, but with the total energy, defined via a
total Hamiltonian Htot, at time ti equal to the total energy at
time tf.

It is well known that most quantum states are highly en-
tangled �18�, however recently a deep theorem �32� has
shown that if the total system is large, then any randomly
chosen pure state �
 that satisfies the total energy constraint
has the property that any sufficiently small subsystem is
highly likely to be in a thermal state. For generic large sys-
tems in a pure state, thermality of its subsystems naturally
arises from the high degree of entanglement present in the
state. Consequently, instead of entangled thermal states such
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as in �13� being artificial or exceptional, for large systems in
a randomly chosen pure state they are actually quite typical.

A. Local thermal states from an entangled state

For simplicity we shall consider the multiple subsystems
S1 , . . .SN, to be qubits, but it is clear that similar arguments
apply to any higher dimensional subsystems. We take the
reduced states, obtained by tracing out the other subsystems,
to be initially thermal and the total system is assumed to be
in a pure state �� with a fixed energy. We refer to the re-
duced states �1 ,�2 , . . . as the thermal marginals for the sub-
systems.

However, not all sets of thermal marginals may be ob-
tained from a global pure state ��. For the case of qubits, if
the marginal states for the individual qubits are given by ��i�,
then the necessary and sufficient conditions for the existence
of a pure state �� such that Trj�i�����=�i are in terms of
the smallest eigenvalue of each subsystem, �i
=min�Spec��i��. The conditions are �33�

�i 	 �
j�i

� j

0 	 �i 	 1/2 i = 1, . . . ,N . �7�

Without loss of generality, we take the Hamiltonians of
each qubit to be equal, and choose the ground state to have
zero energy while the excited state has energy 1. Thus, Hi

= 1
2 �I+Zi�, where Zi is the Pauli operator for the Z direction,

and for qubits with thermal marginals, the total expected
energy of the system is then E=�i�i. The parameter space
for the set of states �� in terms of the smallest eigenvalues
of its subsystems is defined by Eq. �7� and is an
N-dimensional polyhedron PN, with the constant energy con-
dition being a hyperplane that intersects PN on a subset TN−1
of dimension at most N−1. Each point in TN−1 corresponds
to an accessible combination of thermal marginals, however
there is in general more than one pure global state associated
to such a point.

As an example, in the case N=3, the region of parameter
space is a diamond formed from two tetrahedra, while the
constant energy condition corresponds to a plane that slices
the diamond in triangular cross-sections, as depicted in Fig.
3. Each point in the diamond defines three qubit thermal
states, however, since the overall state is a pure state, any
other pure state may be reached by a general unitary trans-
formation. It is the restriction to energy-conserving unitaries
which means that only thermal states with parameters in the
triangular region T2 are accessible. Such energy conserving
unitaries could arise from time-dependent interactions Vij�t�,
or, for example, from time-independent interactions of the
form XiY j −YiXj.

The diamond polyhedron has some nice features. The ori-
gin is the bottom vertex and corresponds to E=0, where all
the qubits are at T=0, while E=3 /2 is the other extreme
point, where each qubit is maximally mixed, and T=�. The
centroid of any given constant energy triangle corresponds to
all three qubits having equal temperatures and so would cor-
respond to the standard equilibrium one would expect if the

three subsystems were initially uncorrelated. For standard
thermally mixed states free to interact, the total system
would tend to evolve toward this configuration. However,
from our analysis we see that this is no longer imposed. The
overall state is pure and the total system can undergo unitary
evolution to any other set of local thermal states in T2. The
large degree of entanglement present has radically lifted the
constraints of the thermodynamic arrow and allows the sub-
systems to transformation to otherwise inaccessible states.

The triangle formed by the intersection of E=1 and the
diamond forms the widest part of the polyhedron and is spe-
cial in the sense that there is enough entanglement for two of
the qubits to form a singlet state, but not too much that the
singlet becomes impossible. In terms of temperature, for
points on this triangle it is possible to unitarily transform
along E=constant to a situation where two qubits are maxi-
mally mixed while the third is in a pure state. For E�1 it is
always possible to turn off the temperature of one qubit with
the other two being at some finite temperatures, while for
E�1 this is no longer possible and each qubit always has
some nonzero temperature.

The diamond setting also provides a simple way to visu-
alize the contrast between a system subject to the standard
thermodynamic arrow and the highly entangled system dis-
cussed here. Figure 4 shows the constant energy region T2
for a system of three qubits with thermal marginals �a, �b
and �c. The centroid of the triangle corresponds to the equi-
librium configuration Ta=Tb=Tc. The solid lines passing
through the equilibrium point and intersecting the midpoint
of the sides correspond to the situation where two of the
subsystems have equal temperatures. These lines divide the
triangle into six regions, labeled I–VI in Fig. 5, correspond-
ing to the six choices of temperature orderings, Ta�Tb
�Tc ,¯, Tc�Tb�Ta.

If the system is in a thermal configuration C with no cor-
relations then Eq. �4� forces the system to evolve only in the
direction shown in Fig. 4. The thermodynamic arrow there-
fore imposes a cone of accessible configurations for the ther-
mal system, and gradually drives the system inexorably to

FIG. 3. �Color online� The parameter space P3: The set of en-
tangled states giving local thermal states possesses a diamond poly-
gon parameter space. A triangular slice T2 with constant total energy
is shown. Dark regions have low energies and temperatures, while
bright regions have high energies and temperatures.
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thermal equilibrium at the center of the region �a fun com-
parison is with black holes—the light cone of a person inside
the event horizon always forces them to move radially in-
wards, eventually reaching the central singularity, while here
we have in some sense a “thermal cone” that dictates how
the system must evolve in time, ultimately reaching the cen-
tral equilibrium point�.

It makes physical sense in this context to only consider a
small transfer of energy that perturbs the initial thermal con-
figuration into a neighboring thermal configuration. A state
with Tb=Tc has no formal restriction from Eq. �4� on the
amount of heat that may be exchanged between b and c,
however, the configuration Tb=Tc is stable in the sense that a
small transfer of heat will automatically induce a correcting
directionality that returns the system to Tb=Tc.

This is illustrated in Fig. 5 where given an initial thermal
configuration C, subject to random heat exchanges and the
constraint Eq. �4�, the system starts in region I where Ta
�Tb�Tc. Heat is exchanged, cooling c and heating a and b

until the system crosses the Tb=Tc line into region II. At
which point only fluctuations around this line are permitted
by Eq. �4�. Subsequently, the system a is heated up until the
thermal configuration reaches the central equilibrium point,
as shown in the diagram, at which point only small fluctua-
tions from equilibrium are permitted.

However, no constraint is present for our entangled state,
which is free to execute a random walk and roam over the
accessible region of parameter space T2, for example a given
initial configuration Q may start in region V, but is free to
move toward and away from equilibrium and can visit every
point in the accessible parameter space, see Fig. 5.

B. Global pure state

We now present a highly entangled pure state for which
the thermodynamic arrow is removed for interactions be-
tween any two of its subsystems, and so allows the most
stark deviation from standard thermodynamical behavior.

In general for N qubits in locally thermal states there exist
a vast number of consistent pure states. However, it is
straightforward to see that any set of thermal marginals
��i�i=1

N can be obtained from a global pure state with a fixed
energy E, of the form

�� = �
i

xiXi�0 ¯ 0 + �1 − E/�N − 1��1 ¯ 1 �8�

with Xi the Pauli operator on qubit i, and each xi real and
obeying the condition �ixi

2=E / �N−1�.
Furthermore, these parameters are related to the param-

eters for PN through �i=� j�ixj
2. The parameters xi specify a

point on a hypersphere in RN of radius �E / �N−1� and any
unitary transformation that satisfies the energy constraint
�iQi=0 then corresponds to O�N� transformations on the
subspace spanned by �Xi�0¯0�i=1

N . Heat transfer between
any two qubits a and b can be mediated by an energy-
conserving interaction Hamiltonian such as Vab= �YaXb
−XaYb� /2 and the evolution is then described by the unitary
Uab=exp�−i /2�YaXb−XaYb��. This unitary allows heat flow
in either direction between the thermal reduced states �a and
�b.

While the reduced states �a ,�b are thermal, it is not the
case that �ab=Tri�a,b����� is a direct product of thermal
states. The two-qubit process we gave, detects the quantum
correlations present between a and b that are not accounted
for by merely probing the qubits individually. A state such as
Eq. �8� could clearly be used by a global demon to reverse
standard thermodynamic behavior for a local demon, as de-
scribed in the introduction, with an interaction such as Vab
causing heat to flow both into and out of a thermal state. In
addition, we see that quantum correlations in a pure state
allow far more freedom than would be allowed by classically
correlated states.

C. Candidate experimental state?

We now consider an interesting system consisting of 3
qubits A, B, and C in a line, where A is allowed to interact
with B and B is allowed to interact with C. The state of the

FIG. 4. �Color online� The parameter space T2: The standard
thermodynamic arrow would constrain C to evolve only into the
cone of states depicted, and this drives it steadily toward equilib-
rium, while the entangled state Q has no such restriction. Dotted
lines are the isotherms for Ta, Tb, and Tc, while the solid internal
lines represent �Ta=Tb�, �Tb=Tc�, and �Tc=Ta�. The center point
corresponds to thermal equilibrium Ta=Tb=Tc.

FIG. 5. �Color online� Contrast in system evolution due to ran-
dom transfers of energy between subsystems. For C, subject to the
constraint Eq. �4�, the thermodynamic arrow forces the subsystems
to the equilibrium configuration. The system Q is not restricted for
the small fluctuations and performs a nondirected random walk
through the accessible configuration space.
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total system is given by a mixed state �ABC, and has the
property that �AB=�A�TA� � �B�TB� and �BC=�B�TB�
� �C�TC� for thermal marginals �i�Ti�, i=A ,B ,C with TA
�TB�TC. Hence, the pairs AB and BC obey the thermody-
namic arrow individually and we would expect heat only to
flow from C to B and from B to A.

However, if �AC is given by

�AC =
1

2
��� + �C − �A��10�10� + �� − �C + �A��01�01�

+ ��2 − ��C − �A�2��10�01� + �01�10�� + ��A + �C − ��

��00�00� + �2 − �A − �C − ���11�11�

+ ���A + �C − ���2 − �A − �C − ����00�11� + �11

��00��� ,

then we are able to exploit correlations between A and C to
for example transfer heat from A to B. The state �AC at first
glance looks complicated, but it may be obtained from a 3
qubit state ��ACD of the form Eq. �8� by tracing out D; the
parameters �A ,�C ,� must then obey similar relations to Eq.
�7�.

The total state now takes the form �ABC=�AC � �B and we
assume that the interaction Hamiltonians are once again
given by VAB= 1

2 �XAYB−YAXB� and VBC= 1
2 �XBYC−YBXC�. In

the event that only one of these interactions is switched on
we have that the thermodynamic arrow is obeyed and heat
always flows in the direction C→B→A. However, when
both interactions are on, the heat flow becomes more
complicated.

If we assume the system �ABC evolves under the unitary
U�t ,s�=exp�−itVAB− isVBC�, then Figs. 6 and 7 show the
contrast between heat flows for the entangled state �ABC and
for the uncorrelated product state �A � �B � �C.

For s=0 heat can only flow from B to A, however as can
be seen from Fig. 6 by switching on s we are able to have

system A, the coldest subsystem, emit heat into B. Figure 7
shows the expected heat flow patterns given the standard
uncorrelated product thermal states. Here, the heat flow into
A is always positive �dark-colored regions�, while the heat
flow into C is always negative �light-colored regions�. It is
clear that the presence of entanglement can dramatically alter
this pattern. Figure 8 shows the difference �QA�QA

p −QA
e

between the flow for A in the two cases of a product state
�QA

p� and an entangled state QA
e . It is evident from this that

the entanglement can increase the heat into A as well as out
of A. Figure 8 also shows the region of parameter space for
which heat leaves A and both B and C gain heat, which
corresponds to a clear violation of the expected thermody-
namic behavior.

We can also ask if the system can act as an entanglement
witness under heat flow. By analyzing the mutual informa-
tion for the system we can show that range exists in the
parameters ��A ,�C ,�� for which the correlations present in
the state �ABC exceed log 2 and so allows heat flows that
cannot be attributed to classical correlations between A and

(a) (b)

(c)

FIG. 6. �Color online� Entangled system: The heat flow pattern
into A ,B ,C for the correlated state �ABC with �A=0.15, �B=0.2,
�C=0.3, �=0.4, and parameters t for the interaction VAB and s for
VBC. Here a light-colored plane is shown through Q=0 to highlight
those regions where heat leaves the subsystem Q�0, while the dark
regions visible above this plane correspond to heat entering the
system Q�0.

(a) (b)

(c)

FIG. 7. �Color online� Uncorrelated system: The heat flow pat-
tern into A ,B ,C for the ordinary product state �A � �B � �C, with
parameters �A=0.15, �B=0.2, �C=0.3, t for the interaction HAB and
s for HBC. Here a light-colored plane is shown through Q=0 to
highlight those regions where heat leaves the subsystem Q�0,
while the dark regions visible above this plane correspond to heat
entering the system Q�0.

(a) (b)

FIG. 8. �Color online� The first graph shows the difference in
heat pattern for A in the two cases of an entangled state and a
separable state. Here QA

p is the heat gained by A in the product state
case, while QA

e is the heat gained by A in the entangled state case.
Once again, light regions correspond to negative values, while dark
regions correspond to positive values. The second plot shows the
regions of s-t parameter space, in which A has lost heat and both B
and C have gained heat.
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C. Figure 9 shows this region as part of the diamond polygon
parameter space discussed earlier. The set of states for which
it may act as an entanglement witness is shown as the semi-
transparent light-colored region. However, it must be empha-
sized that for a generic, correlated mixed state it is not al-
ways possible to unitarily eliminate all of the correlations
present as the set of unitary orbits containing product states
is a low dimensional submanifold of the manifold of all uni-
tary orbits �34�.

D. Quiver of thermodynamical arrows

As already mentioned in general there exists a multitude
of global states �tot associated with a given combination of
thermal marginal states. For a given collection of marginals
the full state can have a vast array of different consistent
correlations. The set of such consistent states Q contains
states that differ in the correlations that exist between differ-
ent combinations of subsystems. Consequently, given sub-
systems S1 , . . .Sk, the reduced state �1¯k can vary for differ-
ent global states �tot in Q.

It is easy to see that while we might demand the indi-
vidual subsystems S1 , . . . ,SN to be thermal states, this ther-
mality may appear at various levels of coarse graining on the
collection of subsystems. For example we might have for a
pair of subsystems Sa and Sb that �ab=Tr��tot�=�a � �b, how-
ever for a triple of subsystems Sa ,Sb ,Sc the state �abc is
entangled. For such a situation, the thermodynamic arrow is
present for any energy transfer process involving only the
two subsystems a and b, however for processes involving
three or more subsystems the correlations present allow vio-
lations of the thermodynamic arrow.

Consequently, the different possible correlation structures
that can occur in a state �tot�Q correspond to a hierarchy of
thermodynamic arrows. The set of states Q can be parti-
tioned up as Q=A1�A2�¯, where a state � is in Ak if
there exists subsystems Sa1

, . . . ,Sak
such that

�
j=1

k
Qj

Tj
� 0 �9�

is observed for all transformations on �a1. . .ak
and no larger

set of subsystems exist with this property. It is not clear,
however, if a nontrivial partitioning can be defined in which,
for a state in a given class, the thermodynamic arrow holds
for all marginals on k subsystems.

This classification of states in terms of their largest ther-
mal marginal depends on the particular correlation structure
of the global state without reference to where the subsystem
are situated, however in more practical situations it makes
sense to include a notion of locality. For example, we might
consider a collection of subsystems S1 ,S2 , . . . located at vari-
ous points in space. For a given subsystem Sa we may define
the notion of an “arrow range,” Ra, which is the largest ra
such that the reduced state ��ra� on all subsystems within a
distance ra of Sa is a thermal marginal. For the entire state

�tot we may then simply define a characteristic arrow range R̄
as the average over the set �Ri� of ranges for each subsystem

Si. States with large R̄ do possess correlations, however these
correlations are difficult to access in practice, requiring many
coordinated, local pairwise interactions Vij in order to gener-
ate an effective multipartite interaction over the correlated

state. On the other hand, states with small values for R̄, for
example states of the form Eq. �8� or the state �ABC consid-
ered in the previous section, have correlations that are more
easily accessible through local pairwise interactions. This
provides a simple generalization of the ‘local’ Maxwell de-
mon introduced in the first section. A demon should not only
be finite in terms of its memory resources, but also in terms
of the correlation range R that it can probe.

III. CONCLUSION

Time, with its inexorable flow, is one of our oldest mys-
teries. In stark contrast, it is only in the last century that we
have become aware of the quantum mechanical properties of
Nature, and only in the past few decades that some of the
subtleties and power of quantum correlations have revealed
themselves. In this paper, we have examined some aspects of
entanglement correlations, how they can reverse the standard
thermodynamic arrow of time, and have shown that in this
regard thermodynamic transformations may act as entangle-
ment witnesses.

We analyzed how highly entangled multipartite states can
make ordinarily forbidden thermodynamic states accessible.
Different correlation structures can give rise to the same set
of local thermal states, and so processes involving several
subsystems are in general required to exploit the entangle-
ment present. The set of transformations on a system then
possess a hierarchy of thermodynamic arrows, whether con-
sidered globally or in terms of local correlation ranges. The
key aspect is to allow interactions that activate the correla-
tions present, which we demonstrated with a mixed state
example �ABC in which the thermodynamic arrow is in place
for interactions involving only A and B or for B and C, but
by switching on an interaction with system C this can be
dramatically modified.

FIG. 9. �Color online� The region of parameter space for which
reversal of the thermodynamic arrow in �ABC can act as an entangle-
ment witness is shown in semi-transparent light region, while the
remainder of the space only possesses correlations that could be
attributed to a classically correlated state.
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It would be of interest to further explore the multipartite
correlation structures that can occur in a quantum state—for
example we might speculate that in the early, dense universe
that R̄ is small enough to allow any random physical inter-
actions to exploit the correlations present, producing a
gradual disappearance of the thermodynamic arrow the
closer we get to the initial state of the universe. Of course
such notions of locality rely on a classical space-time back-
ground, and so we could only push the issue of the special
initial conditions into the sub-Planck scales, where a com-
plete theory of quantum gravity would be required.

Another setting of interest is that of quantum field theory,
where thermality arises naturally due to observers possessing
causal horizons, such as in the case of black holes or for
accelerated observers. Once again, thermality can be viewed

as arising from entanglement across the horizon, however it
is unclear if these correlations could actually be utilized in
any thermodynamic transformations. At a deeper level, it
may also be fruitful to explore connections with the thermal
time hypothesis due to Connes and Rovelli �35� or recent
work by Padmanabhan �36� that attempts to relate the cos-
mological arrow of time for our expanding universe with the
thermodynamic arrow by exploiting the thermodynamics of
local space-time horizons.

Finally, in a more grounded setting, it would be of interest
to see if a mixed state �ABC, or one like it, could be realized
experimentally to see how easily one might exploit quantum
correlations present in a state to affect its thermodynamic
behavior.
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