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Many work extraction or information erasure processes in the literature involve the raising and lowering

of energy levels via external fields. But even if the actual system is treated quantum mechanically, the field
is assumed to be classical and of infinite strength, hence not developing any correlations with the system or
experiencing back-actions. We extend these considerations to a fully quantum mechanical treatment by studying
a spin-1/2 particle coupled to a finite-sized directional quantum reference frame, a spin-/ system, which models
an external field. With this concrete model together with a bosonic thermal bath, we analyze the back-action
a finite-size field suffers during a quantum-mechanical work extraction process and the effect this has on the
extractable work and highlight a range of assumptions commonly made when considering such processes. The
well-known semiclassical treatment of work extraction from a pure qubit predicts a maximum extractable work

W = kT log 2 for a quasistatic process, which holds as a strict upper bound in the fully quantum mechanical case
and is attained only in the classical limit. We also address the problem of emergent local time dependence in a

joint system with a globally fixed Hamiltonian.
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I. INTRODUCTION

The concept of work plays a crucial role in thermo-
dynamics. It can be seen as a highly ordered form of
energy, as opposed to the very disordered heat which (in
macroscopic thermodynamics) is essentially random motion
of particles. Yet in quantum physics the notions of order and
disorder are very subtle. Hence it might not be too surprising
that a generally accepted notion of work has not yet been
established for quantum systems. Various considerations and
proposals do exist (see, e.g., Refs. [1-7]), but no consensus
has been reached, and it is not inconceivable that multi-
ple complementary notions of work exist at the quantum
scale, as is the case for other quantities such as the free
energy [1].

In this article we shall attempt to further bridge the
gap between classical and quantum thermodynamics by
generalizing a well-known semiclassical model of work
extraction to a fully quantum-mechanical model. By do-
ing so, we attempt to narrow in on a more operational
definition of work at the quantum scale, highlight concep-
tual and technical obstacles and pave the way for further
investigations.

A. The dogma

Given a qubit in a known pure state, say, the state |0),
it is possible to convert the information about the state
into work. The protocol that is generally quoted (see, e.g.,
Refs. [7,8]) employs an external classical field, usually a
magnetic field in the case of spin-qubits, which is gradually
coupled to the system in order to raise the unoccupied
state to a high (or ideally infinite) energy E. This rais-
ing process is schematically depicted in the top half of
Fig. 1.

After raising the unoccupied level, the qubit is coupled to a
thermal bath at temperature 7' and allowed to equilibrate. If the
level was raised to a sufficiently high energy in the previous
step, such that £ > kT, this equilibration is a quasistatic
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process.! The level is then lowered back to zero, slowly
enough so the system stays in thermal equilibrium with the
bath throughout the entire lowering process, i.e., the qubit
undergoes a quasistatic, isothermal transformation. The final
state of the qubit is maximally mixed, with equal population
in both levels, corresponding to a change in (von Neumann)
entropy of AS = log2. Applying the first and second laws of
thermodynamics [9], the work obtained in the process is thus
said to be

W = kT log 2. (1)

Running all the processes in reverse gives the well-known
Landauer erasure protocol [10—14], with cost of erasure W =
kT log?2.

This protocol is almost universally accepted, yet it raises
some very obvious questions. Particularly, what actually
happens to the extracted work? And what if the field is not
classical and of infinite strength but also a finite-sized quantum
system which can evolve and develop correlations with the
qubit? The first question is usually answered by saying that
the field gains in its ability to do work, whereas the second
question has to our knowledge not been seriously addressed in
the literature. Another question that arises is what it even means
for a classical field to gain in its ability to do mechanical work,
since one could easily argue that a classical field already has an
infinite ability to do work by simply driving Rabi oscillations
on an arbitrary number of qubits and raising them to their
excited state. We want to address these questions in a fully
quantum-mechanical framework.

B. Outline

This article is structured as follows. In Sec. I we give a
brief overview of the constituents of our model and the
mathematical structure underlying them. In Sec. III we study

1k is the Boltzmann constant. In the remainder of this article we
shall use k7 and B~! interchangeably.
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FIG. 1. (Color online) Top: The qubit starts in a known pure state
|0). The unpopulated level |1) is then raised to a high energy without
any work cost. Bottom: The qubit is now coupled to a thermal bath
and allowed to equilibrate. The raised level is then gradually lowered
back to its originally position while keeping the qubit in equilibrium
with the bath. Eventually the qubit is in a completely mixed state, with
an increase in (von Neumann) entropy of AS = log 2, and an amount
of work W = kT log 2 is said to be extracted during the process.

this model using a specific Hamiltonian, with a time-dependent
coupling between the system and field. We study the amount of
extractable work and the back-action on the field and compare
the results with the semiclassical protocol. We show that the
explicit time dependence will raise some questions about
external control. Section IV will then look at an alternative
coupling-Hamiltonian without any explicit time dependence
and a minimum amount of external control. In Sec. V we
depart from the idealized notion of the bath and introduce a
more realistic bosonic bath into the time-independent model.
Finally, in Sec. VI, we add a potential work storage system in
the form of a quantum weight.

II. THE MODEL

The semiclassical model described in Sec. I consists of three
very basic building blocks. At the heart of the protocol is the
qubit, initially starting in a know pure state. This qubit is then
coupled to two additional systems, the first being the classical
external field and the second the thermal bath at temperature
T. In our model we retain the qubit as in the original
protocol,” realizing it as a spin-1/2 particle. We associate this
spin-1/2 particle with the usual angular-momentum operator
S, obeying the SU(2) commutation relations, with components
§; proportional to the Pauli matrices 6;. We further assume that
the qubit is initially in the state

xo = 10) (0] = 1(1 — 62), 2)

the eigenstate of S, with negative eigenvalue. We can think
of this as the particle being fully polarized in the negative z
direction.

The classical field that provides the level splitting of the
original model is replaced by a quantum system. In particular,
we model the field by a spin-spin coupling to a directional

’In the following we will use the words “qubit” and “system”
interchangeably unless it is obvious that “system” refers to the joint
system of quit plus external reference.
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spin-/ spin-1/2
po = [l,m) (I, m| ® u Xo = 10} (0|
I S

FIG. 2. (Color online) Schematic of the joint system, consisting
of a spin-/ reference frame and a spin-1/2 qubit, associated with the
angular-momentum operators L and S, respectively, in the particular
initial state oy = |[,m) ([,m| ® |0) (0].

quantum reference frame [15-20], a spin-/ system® described
in as similar way as the qubit, with angular-momentum
operator L. Even though our considerations allow for a more
general treatment, we shall assume for simplicity that the
reference starts in a state |/,m), the eigenstate of lA,Z with
eigenvalue m, or in one of these states rotated around the y axis.
The generator of this rotation is ﬁ),, hence the most general
initial state we consider for the reference can be written as

po = e L L m) (Im| &>, (3)

where ¢ denotes the angle of rotation with respect to the y
axis. We will come back to this general state in Sec. IV, but
for the preceding sections will assume the even simpler initial
state with ¢ = 0. Figure 2 schematically shows the qubit and
reference for exactly this case of ¢ = 0. We shall refer to the
combined initial state as

00 = Po ® Xo- @

The third ingredient, the bath, is modelled in two different
ways. In Secs. III and IV we shall consider the bath simply as
a black box system which can instantaneously replace another
system’s state with its respective Gibbs state,

(5
where
Z =tfe PH], (6)

is the partition function, H is the Hamiltonian of the system
under consideration, and 8 = 1/kT 1is the bath’s inverse
temperature. This version of the bath is equivalent to the one
considered in the semiclassical protocol. It is a reasonable
approximation to the actual situation as long as the actual
thermalization time scale is very short compared to the system
dynamics, and the spectrum of the bath is sufficiently broad.
This model is still very idealized, though, and depends
on various assumptions such as infinitely strong coupling (or
infinitely slow processes). From Sec. V onwards we shall
depart from this idealized notion and replace it with a more
realistic bosonic bath coupled to the qubit. One might be
tempted to do so right away by simply deriving and solving
a Markovian master equation, but in Sec. V we show that it
is not as straightforward as one might expect, due to the fact

3This system is referred to as the “field” or “reference,” as
it reproduces the coherent interactions and level-splitting of, for
example, a spatially extended magnetic field.
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that the bath only interacts with a subsystem of a larger joint
system. The Markovian master equation approach seems to be
unable to make this distinction. Hence we defer discussion of
a more realistic bath to Sec. V and start with the simplified
bath model outlined above to first provide some intuition of
the systems behavior.

III. TIME-DEPENDENT HAMILTONIAN

In the absence of any coupling the qubit’s (and the
reference’s) energy levels are fully degenerate. However, if we
introduce a coupling between the two systems we can break
the degeneracy. Specifically, we consider a time-dependent
coupling Hamiltonian of the form

H(t)= f()L -8, (7)

where f(¢) is some tuneable coupling strength, which we
assume to be zero initially, f(0) = 0.

Since there is initially no population in the state |1) of
the qubit [cf. Eq. (2)], we can freely raise or lower this state
without any energy cost. We do so by turning on the coupling
to the reference (see Appendix A for more details). Wherever
we present any explicit calculations in this section, we shall
assume the coupling to be linear in time for simplicity,

f=Cxt, ®)
where the 1// factor was chosen to make the level splitting
induced by different size references comparable and C is some
constant offset. The reference frame is assumed to be initially
in a state of the form given by (3).

Once we have the states split, say, we wait for r = 1, we
couple the qubit to a heat bath at temperature T and thermalize
it. As mentioned in Sec. II this thermalization process is
assumed to occur instantaneously.

From this time onward we keep the system coupled to
the bath and slowly (i.e., quasistatically) tune down the
coupling to the reference to extract work from the system. We
consider this process in infinitesimal steps, each consisting
of a thermalization of the qubit followed by a change of the
Hamiltonian and an infinitesimal joint evolution, and finally
integrate over all the steps to get the full evolution. We may
thus study what the back-action on the reference frame is and
how much work we can extract.

A. The protocol

Given the Hamiltonian in Eq. (7) we can look at the energy
levels of the qubit. In order to do so we define a reduced
Hamiltonian, which is found by taking the product of the total
Hamiltonian and the other subsystems state tensored with the
identity and tracing over the other subsystem. We justify this
definition in Sec. V. Hence the qubit’s reduced Hamiltonian is
given by

H(t) = tr,[(p(t) ® DH®)] = f(t) (L) - S, )

where tr,[...] refers to a trace over the reference’s Hilbert space.
This Hamiltonian has two eigenvalues, E(¢) and E_(¢). In
order to make our model conceptually as close as possible to
the original protocol of Sec. I, we want to fix the state |0)
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during the evolution. To do so we can add an additional term
of the form g(#)1 to the Hamiltonian, specifically

H(t) = f()L -8 — E_(1, (10)
which gives us

Ey(t) =0, E\@)=E@)—E_(0), (1)

as the energies of the states |0) and |1), respectively. This
addition of a constant energy offset does not alter the actual
physics, such as the evolution of the systems or the extractable
work. In this sense, the Hamiltonians (7) and (10) can be
considered equivalent.

As a specific example, consider the case where (L,) =
(Ly) = 0. Then from (10) and (11) we find for the system’s
reduced Hamiltonian and corresponding energy levels

Hy(t)= f(O(L,) S, + L F( (L)1 (12)
and

Eyt) =0, E@)=f@)(L). 13)

Since Ey(t) = 0V t we shall drop the subscript 1 from E(¢)
and simply refer to it as the energy splitting E(¢) henceforth.

This shows that our Hamiltonian achieves the desired effect.
Keeping the occupied |0) level at fixed zero energy, we can
freely raise or lower the initially unoccupied |1) state either
directly by varying the coupling strength f(¢) or indirectly by
varying the reference’s polarization in the z direction.

Having covered the basic ideas related to this particular
Hamiltonian, we now take a closer look at the evolution of the
joint system during the work extraction process. In Appendix A
we show that the initial part of the protocol, the raising of
the unoccupied level, can be made trivial so the joint system
remains in the state oy.

The lowering process is less straightforward to analyze.
At t = T, with the state |1) raised to an energy E(7) given
by (11), we couple the qubit to our thermal bath at inverse
temperature 8 and gradually reduce the coupling f(7) between
qubit and reference back to zero. We do this in infinitesimal
steps of duration dt, each consisting of a thermalization
of the qubit, which is assumed to happen instantaneously,
followed by a joint evolution of system and reference at fixed
Hamiltonian, for a time d¢. We consider again a total transition
time 7 and a coupling function f(¢) = (7 — t)/l, where for
convenience we have resett = 0 to coincide with the beginning
of the lowering process.

We now want to take a look at the thermal state of the qubit.
From (10) we find for the system’s reduced Hamiltonian

Hy(t) = f()(L)- S — E_(n)]1. (14)

When coupling the qubit to the bath and thermalizing it at time
t we thus find, according to (5), the system to be in the Gibbs
state,

1 I .
x(t) = %e‘f‘*’“’) = po®)|0) O] + p1()1T) (1], (15)

where Z(t) = trfe ##®] is the partition function, |0) and
|1) are the eigenstates of the reduced Hamiltonian (14) with

052136-3



MAX F. FRENZEL, DAVID JENNINGS, AND TERRY RUDOLPH

eigenvalues 0 and E(¢), respectively, and

po(t) = pi() =1 = po(2). (16)

1+ e PED’

Considering again, as above, the specific case for which
(Ly) = (Ly) =0, we find that |0) = |0) and |1) = |1) and

e—BIOILY)

1+ e BrOL) a7

po(t) = pi(t) =

1+ e-BrOL)”
In the infinitesimal time step from ¢ to ¢ 4+ dt the composite
system evolves according to the unitary

dU®t) = U(t,t + dt) = e OS5, (18)

Using L -§ = 3[IT1; — ( + DII_] as shown in Ref. [19],
where [1 are projectors onto the |j =1 & %) eigenspaces, we
find, analogously to the expressions for the evolution operator
during raising derived in Appendix A, that

dU(1) =TI, + e 'O _, (19)
where we have defined
dy®) = f( + 3)dt. (20)

B. Work extraction

At the core of all our considerations is the question of
how much work we can extract during the entire process.
At this point, following the common convention (see, e.g.,
Refs. [7,21,22]), we simply define the work extracted from the
joint qubit-reference system in the infinitesimal time step dt
as

AW () = trlo(t)dH ()], @21)

where o () is the state of the joint-system at time r and d H(¢) =
H(t) — H(t — dt) is the change in the Hamiltonian during the
infinitesimal step dt. One of the main aims of the current
investigation is to give work at the quantum scale a more
operational meaning, and thereby test and justify (21), which
forms the basis for many studies in quantum thermodynamics.
We shall return to this thought from the end of Sec. IV onward,
but for the present considerations we simply accept (21) and
use it as our definition of work.

The above steps give us all the ingredients to numerically
study the work extraction process. Figure 3 shows the entire
process (including the raising) schematically, analogously to
Fig. 1, for the specific case of / = 1 and the reference starting
in the fully spin coherent state |1,1).

One of the first observations from our numerical studies
is that the qualitative features of the protocol seem to be
entirely independent of the initial angle ¢ of the reference
relative to the system [cf. Equation (3)]. Thus we shall in
the following simply limit ourselves to the choice ¢ = 0 to
simplify the problem. This observation is in line with our
expectations, due to the rotationally invariant Hamiltonian
(10). When the system gets thermalized, it simply thermalizes
“along the direction” of the reference, independent of what
exact direction in space this is. For ¢ = 0 we also find that
neither system nor reference obtain any nonzero polarization
in the x and y directions. The problem is thus fully confined
along a single axis.

PHYSICAL REVIEW E 90, 052136 (2014)

No coupling;
Fully degenerate

Coupling turned on;
Energy levels shifted

End of protocol;
Fully degenerate;
Entropy of both
'| systems increased

FIG. 3. (Color online) Schematic of the time-dependent Hamil-
tonian protocol using the example of an / = 1 reference starting in the
fully coherent state |1,1). Initially, without the coupling, f(0) =0,
both the qubit’s and the reference’s states are fully degenerate. When
the interaction strength is turned up, the degeneracy is broken as the
energy levels shift. Once the maximum desired coupling is reached the
qubit is couple to a thermal bath and the qubit-reference interaction
f(z) is slowly tuned back to zero again. As in the semiclassical
protocol the qubit is maximally mixed after the protocol is finished.
But, in addition, the population of the reference has also shifted and
the reference is not in a pure state anymore, having lost some of its
polarization and gained in entopy.

Another immediate observation is that during the entire
protocol, the polarization of the reference frame, i.e., the value
of (L), appears to be monotonically decreasing, with a faster
decrease for smaller / as would be expected. Figure 4 shows
(L.) /1forthree representative sizes of [, over several iterations
of the protocol, with the reference starting in the fully coherent

o
N
T
wonon
S
=)

Time

FIG. 4. (Color online) Scaled expectation values of the refer-
ence’s z component of angular momentum as a function of time
for the same process as shown in Fig. 5. One unit of time is chosen to
correspond to one iteration (ignoring the time required for raising the
unoccupied level), i.e., this plot corresponds to the first 10 iterations in
Fig. 5. We observe a direct correlation between the value of (ﬁz) and
the extracted work in the corresponding iteration but also between the
rate of polarization loss of the reference and a surplus in the extracted
work beyond the semiclassical result.
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FIG. 5. (Color online) Work extracted from the joint qubit-
reference-system over a single iteration, plotted against the number
of iterations. The same reference is used for consecutive iterations
but with a new pure qubit. This plot clearly shows the trade-off
between single-shot work extraction and reference degradation. For
small / a large amount of work is initially extracted, but the reference
rapidly loses its ability to induce a level splitting and extract further
work (cf. Fig. 4). For large / the reference is nearly unperturbed and
we approach the semiclassical W = kT log 2 result, repeatable over
many iterations with the same reference.

state |1,1) (1,I| before the first iteration.* For each iteration we
reuse the same reference but introduce a new qubit in the
pure state (2). We see that for small / the reference loses its
polarization, and hence its ability to split the qubit’s energy
levels, very rapidly. For large [ such as / = 50 in Fig. 4 the
reference barely experiences any back-action during the work
extraction process and is almost unaffected for many iterations
of the protocol. This is in good agreement with the intuition
that [ — oo corresponds to a classical field as in the original
protocol, which is unaffected by the process.

In Fig. 5 we show the work extracted from the joint qubit-
reference system per iteration, as defined in (21), for the same
values of / and other parameters as used in Fig. 4. There are
various aspects that are to be considered in this plot. The most
obvious one being the fact that for small / we appear to be
extracting work W > kT log 2 from the system during the first
few iterations, breaking the limit set by the classical protocol.
The simple explanation is in the degradation of the reference.
In the original protocol the qubit turns into a maximally mixed
state, extracting work at the expense of maximizing its entropy.
The same happens in our quantum protocol. But, in addition to
the qubit’s entropy, the reference’s entropy also increases as is
schematically depicted in Fig. 3, with a more rapid increase for
smaller reference sizes. This is reflected in the extracted work.>
A small reference initially gives a large surplus in extractable
work due to its rapid increase in entropy, but exactly this
rapid entropy increase makes it useless as a reference very
quickly. This is the second immediate observation, a direct

“The simulations were done with n = 7 /dt = 200 discrete time
steps for the lowering process and 7 & 5.013. This very specific
choice of 7 is explained in Appendix A. An inverse temperature
B = 1 was assumed for this and all other numerical results presented
in this section.

5In fact, if we only consider work extracted from the qubit, d W, (1) =
tr[ x (t)d Hy(¢)], we find W, < kT log?2
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trade-off between initial work extraction and repeatability of
the protocol. For very large references, which barely increase
their entropy during one iteration due to the negligible back-
action, the extracted work is barely changed from iteration
to iteration and in the limit / — oo we essentially recover
the semiclassical result of W = kT log 2, repeatable over an
arbitrary number of iterations.

We can also think of this surplus work extraction from the
reference in a slightly different way. It seems fairly obvious that
to create a highly asymmetric state such as the spin coherent
state |/,1) (I,I| we are assuming here, work has to be invested.
It might be possible to think of this work as being locked or
stored in the asymmetry of the state, and our protocol is able to
release it again as extractable work. This is a very interesting
notion since it seems to hint at a very close connection between
different resource theories [23,24], namely thermodynamics
and asymmetry [25]. We appear to have a flow of asymmetry
from the reference to the bath, analogously to heat flow in
the case of energy considerations. Currently, these thoughts
are mostly speculations which need much more careful
consideration but at least point in interesting directions.

Looking solely at the work (21) extracted from the qubit
we do not find any particularly surprising results. We find that
in general it obeys both the classical limit W < kT log2, as
well as the classical relation to the change in free energy. As
expected, how close the work approaches kT log?2 and how
fast this value decreases over several iterations depends solely
on the polarization of the reference, i.e., on the amount of
degeneracy breaking that can be induced in the qubit.

C. The issue of external control

Our main motivation in quantizing the reference was to get
a better picture of what exactly happens to the extracted work
in the protocol. However, this question still remains open. In
some sense it could be said that we have merely shifted the
problem to the next level of abstraction. In the semiclassical
protocol one could have said that the work is gained by the
field. We have now explicitly quantized the field and can
see that this is not the case for our reference model of the
field, since the reference simply degrades and increases in
entropy. However, in our model one could say that the work is
transferred to the entity controlling the coupling strength f(¢).

We can think of what it physically means to change the
coupling between the qubit and the reference. The simplest
explanation is that the coupling f(¢) is simply a function of
the distance between the two systems. Thus we can increase
(decrease) f(r) by moving the two systems closer together
(further apart). Assuming our initial starting states, the total
energy is actually lowered by turning on the coupling (see,
e.g., Fig. 3), thus there is a force pulling the systems towards
each other. We could imagine attaching “weights” to our spins
and using this force to lift the weights. Then as the qubit is
being thermalized and the joint system’s populations start to
shift, less force is needed to reduce the coupling back to zero,
i.e., less work needs to be done. Thus over the entire protocol
this leads to a positive net gain in work.

These considerations give a nice intuitive feeling but are not
real explanations. We cannot simply attach weights to spins.
In addition, we have in some sense implicitly used equation
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(21), which we are trying to justify. The problem lies in the
explicit time dependence of the Hamiltonian (7). It requires
external control, some entity which we do not include in our
quantum description. In the following section we introduce a
way to avoid these issues and reduce any external control to a
minimum by means of a time-independent Hamiltonian.

IV. TIME-INDEPENDENT HAMILTONIAN

So far we have studied the work extraction from a single
pure qubit coupled to a quantum-field modelled by a spin-/
directional reference frame. The two systems were coupled via
a Hamiltonian of the form (7). The explicitly time-dependent
coupling is the issue of this model, since it requires external
control. It does achieve quantization of the external field to
some extent, as opposed to the semiclassical model, but the
question of what happens to the field is just replaced by
the question of what happens to the entity that controls the
parameter f(¢).

To minimize external control and the issues arising through
it outlined in Sec. III, we can consider a modification of
our original model, free of any time-dependent parameters.
Specifically, we shall look at the qubit-reference coupling
Hamiltonian

H=sin0L, ®6, +cosbL, ®1, (22)

where 0 < 6 < /2 is a free parameter that allows for tuning
the relative strength of the two terms and &, is the Pauli z
matrix. The first term is the coupling between the qubit and
the reference, where we have now assumed a z axis bias of the
coupling, as opposed to the rotationally invariant (7) previously
considered. The second term can be interpreted as the free
Hamiltonian of the reference, with an energy associated to y
polarization. This induces a precession of the reference around
the y axis which in turn leads to the desired evolution of the
systems’ states, without any external control. More precisely,
under free evolution the reference’s y-axis precession leads to
a periodic increase and decrease in the value of (L,), which
due to the coupling given by the first term in (22) induces a
periodic raising and lowering of the qubits energy levels. The
full evolution of the joint system is now encoded in the states
of qubit and reference, with no hidden information such as the
state of the entity controlling f(¢) in Sec. III.

A. The protocol

As before, we start the protocol with the qubit in the known
pure state xo = |0) (0, i.e., fully polarized along the negative
z axis. The reference now starts in the initial state,

= Ry (2Z) tmy i R 2E (23)
Po = Ky ) ,m ,m W\ )

where |[,m) is the L, eigenstate with eigenvalue m and
I@y(%”) = exp (—i%”iy) is a rotation by 37” around the y axis.
This is exactly the form (3) with ¢ = 37 /2. Thus py is an
eigenstate of L, with eigenvalue m, pointing in the negative
x direction (assuming m > 0). Note that due to the fact
that the reference is polarized along —x only, the value of
(L.) is initially zero, which implies that the qubit’s levels

Z

are completely degenerate, as should be the case at the
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beginning of the protocol. We again denote the joint system by
00 = po ® xo. The joint system now freely evolves for a time
t into the new state,

o(t) = Ut)ooU(t)', 24)
where
U@t) = e 1 (25)

and H is the Hamiltonian (22). However, we can note that
the qubit is in an eigenstate of 6, (with eigenvalue —1) and is
thus invariant under the evolution (25). As long as the qubit
remains in this state we can hence simplify the evolution of
the joint state to

(1) = Ur(poUr(®)' ® xo, (26)
where
Ug(t) = e "1kt 27
and
Hp = —sin@l:z—i-cos@f,y. (28)

Taking a closer look at (27) we see that it closely resembles
the rotation operator

D@, ¢) = e 9L, (29)

corresponding to a rotation around the axis defined by the unit
vector 7 through an angle ¢ [26]. In fact, we can rewrite (28)
as

Hr=#d-L, (30)
where we have defined
0
A=\ cosf |. a3n
—siné

Substituting (30) into (27) and comparing it with (29) we see
that the evolution of the reference is simply a rotation around
an axis i = (0, cos 8, — sinf) through an angle

¢(t) = t mod 27. (32)

In other words, the reference experiences a rotation in space
around the 4+y and —z axes, the amount of contribution
of the two rotations being determined by the parameter 6.
As discussed above, the former leads to an increase in the
reference’s polarization along the z axis, which in turn induces
a level splitting in the qubit, as can be seen from the qubit’s
reduced Hamiltonian

Hs =sin@ (L) 6, +cos@ (L) 1. (33)

Note that the second term just leads to a constant energy offset,
which is exactly large enough to keep the occupied |0) state
fixed at zero energy. Also note that this reduced Hamiltonian
(33) is time dependent due to the time dependence of the
expectation values, despite the time independence of the total
Hamiltonian.

We want to raise the unoccupied |1) state of the qubit as
high as possible before starting to thermalize. We can thus ask
again at which point in time this condition is satisfied. We shall
again denote this time of maximal level splitting as 7, in line
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with the equivalent point in time in the protocol outlined in
Sec. III. As can be seen from (33) the level splitting of the qubit
is directly proportional to (L.), we thus define 7 as the time
where (ﬁz> reaches its (first) maximum. This occurs when the
reference has rotated through an angle ¢(7) = 7 /2 around 7.
From (32) it is immediately obvious that this happens at a time
T = /2, for all values of . In addition, we can determine
the value (L) takes at this point. From (31) we see that the
rotation axis 7 is at an angle & measured from the y axis to
the negative z axis. At time 7, (I:Z) thus reaches a maximum
value of (I:z>7 = [ cos 6 where we have assumed that we are
starting in a fully coherent state with m = [. From (33) we see
that this implies a maximum level splitting,

Er = 2lsin6 cos 6 = [ sin(20). (34)

A small value of 6, 6 < /4, implies that the rotation axis 7
given in (31) will be very close to the negative z axis. This will
lead to a smaller value of (L.); and hence a smaller energy
splitting E7 in the qubit. A large value 6 > /4 on the other
hand leads to an effective rotation axis 7 very close to the y
axis, which implies that the initially x polarized reference will
be almost fully rotated into the z direction after quarter of a
period, but the energy gap will still be a small factor in front
of 6,. These considerations suggest that the ideal choice is
6 = mr /4, giving both terms in the Hamiltonian equal weight.

(One might worry about the rotation breaking the assump-
tion that the process is quasistatic. However, in our simple
model we assume that the bath can thermalize the qubit
instantly. In Sec. V we consider a more realistic version of
the bath and explore its effects on the process. However, for
the numerics in the current section, we simply need to make
our time steps dt small enough in order to guarantee that the
process is approximately quasistatic.)

B. Work extraction

As before, at exactly this time t = 7 we couple the qubit
to a thermal bath at inverse temperature 8 and thermalize it,
which again simply amounts to replacing its current state by
the Gibbs state

efﬂHS

Z

X = (35
where Hy is the qubit’s reduced Hamiltonian (33) and Z is the
corresponding partition function as defined in (6).
Analogously to the previous model, the protocol now
proceeds in infinitesimal steps of duration d¢, each consisting
of an evolution of the joint system through the unitary U (dt) as
defined in (25), followed by a thermalization of the qubit with
the new reduced Hamiltonian. Note that now the evolution
cannot be simplified as in Eq. (26) since the qubit is no longer
in an eigenstate of .. Taking dt — 0 gives us the quasistatic
limit. The protocol is complete when (L) returns to a value
of zero, at which point the energy levels of the qubit are
degenerate again and the qubit is in a maximally mixed state.
This stage of the protocol is again less straightforward
to analyze than the raising process since the qubit’s state is
now constantly changing, which in turn leads to a constantly
changing axis and angular velocity of the reference’s rotation.
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FIG. 6. (Color online) Scaled expectation values of the angular-
momentum components of the qubit (dashed blue) and reference
(dash-dotted red) as a function of time for / = 10, 6 = 7 /4, and
dt = 107>, Initially at t = O the reference starts fully polarized along
—x and the qubit along —z. Subsequently, the reference rotates around
an axis in the y-z plane determined by the value of 0 (cf. Fig. 8). At
the time where (f,z) reaches a maximum (vertical dashed line), the
level splitting in the qubit is maximal and we begin thermalizing
it. This in turn affects the rotation of the reference, leaving it with
some finite (lA,_,,.) after completion of the protocol, i.e., when (ﬁz) =0
again and the qubit is maximally mixed. By this mechanism, energy
is transferred from the bath to the reference (cf. Fig. 7).

We now have all the basic building blocks to put together
one complete iteration of our protocol. In the following we
present results of a numerical analysis of the problem. Figure 6
shows the scaled expectation values of the components of the
angular-momentum operators of both the qubit (blue) and an
[ = 10 reference (red) for a single iteration of the protocol. We
see that, as expected, the reference starts out fully polarized
along —x and then rotates around the axis 7 given in (31).
For this particular choice of parameters, 6 = /4, the rotation
axis is exactly between the y and negative x axes. At the end
of the raising process the reference has been rotated into the
y-z plane with <£Z>T = +/2l inducing a qubit energy gap of
exactly E7 = [ in accordance with (34).

As expected, the qubit stays fully polarized along —z during
the raising process. Once we start to thermalize the qubit
at t = /2 and the reference keeps rotating, thus reducing
the energy splitting again, the qubit gradually, approximately
quasistatically through many equilibrium states, approaches
the maximally mixed state and the end of the protocol. Looking
at Fig. 6 the reference appears almost unaffected by this. Yet,
at the end of the protocol there is a small but finite polarization
along the y direction remaining after (L) has returned back
to zero. We can also define a reduced Hamiltonian for the
reference

Hg =sin6 (6,) L, 4 cosOL,. (36)

Thinking in terms of this reduced Hamiltonian helps us get a

feeling for why a finite (£ y) remains at the end of the protocol.
As the magnitude of (6,) decreases over the course of the
protocol, the effective rotation axis tilts more and more towards
the y axis, until it coincide with it at the end of the protocol. We

~

also see that this finite (L) corresponds to a finite energy being
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FIG. 7. (Color online) Energy stored in the reference as a func-
tion of time over one iteration of the protocol for 6 = /4 and
dt = 107° for different reference sizes. At t = 7/2, (L,) reaches
a maximum and the thermalization or lowering process begins.
We find that even with a comparatively low value of / such as
[ = 10 [green (middle)] we get very close to the semiclassical limit
W = kT log?2. In this specific case, we find that for / = 10 an
energy E ~ 0.9998kT log?2 is transferred from the bath into the
reference, accompanied by and entropy gain of only AS &~ 7.9 x
10~*1og 2, resulting in AE — kT AS ~ 0.9990kT log 2. However, if
the reference is too small, a considerably lower energy is transferred
to the system. The discontinuous gap for / = 2 is due to the idealized
notion of an infinitely strong bath coupling. The inset shows the power
as a function of time.

stored in the reference. Figure 7 shows the energy Ex(t) =
tr[o(¢) Hg(2)] stored in the reference over the full iteration.

In fact, we see that at the end of the protocol an energy nearly
approaching kT log 2 has accumulated in the / = 10 reference.
This is particularly remarkable considering the small size
of the reference (compared to the semiclassical case which
essentially corresponds to an infinite size reference). We also
see that the small / = 2 reference experiences such a large
perturbation during the thermalization stage that its rotation
period is noticeably prolonged. For completeness, Fig. 7 also
shows the power P = dEg/dt.

Again considering the reduced Hamiltonian (36) we see
that at the end of the protocol, with (S.) = 0, the energy stored
in the reference is given by

Eg =cos6 (L,). (37)

This shows that the larger we choose 6, the more the reference
must be polarized along y after the protocol in order to store
the same amount of energy. It also shows that if 6 is too large
for any given [/ we cannot, even in principle, store a value of
kT log 2 in the reference. This consideration gives a maximum

value for 6
kT log?2
6 < cos! (%)

This maximum value of 0 is, however, no guarantee that we
actually get close to pumping and energy k7 log?2 into the
reference. Ideally, we want 6 to be as close to zero as possible
in order to minimize the perturbation of the reference along
the y direction. However, a small 6 also leads to a smaller
energy gap and we have to be careful that the condition
E7 > kT remains satisfied. These competing notions lead to
an optimal value of @ = /4 as can be seen in Fig. 8. Again we

(38)
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FIG. 8. (Color online) Same plot as Fig. 7 but for fixed / = 10,
dt = 1075 and different values of 6. We see that for § = /4 we
extract the maximum amount of energy. As 6 tends to either zero
or /2 a lower amount of energy is transferred to the reference. The
maximum level splitting is also considerably smaller for these values,
as is evident from the discontinuity at the start of the thermalization
process.

notice that the rotation period can be prolonged if the reference
is perturbed considerably.

The gain in energy we observe also leads us back to the
question of whether the energy gained by the reference can
really be seen as work. We believe that this is the case to
some extent but that a part of the energy will also have to be
classified as heat. If one were to apply the notion that work
is an energy transfer which is not accompanied by entropy
changes and identify W = AE — kT AS with the notion for
work, the energies presented in Fig. 7 would almost entirely
correspond to work, since for all three examples presented in
the figure the entropy gain is on the order of 8 x 10~*log 2.
However, so far these thoughts are merely speculation and a
more detailed future analysis is necessary to settle these issues
decisively. We have, however, shown that we are able to fully
quantize all the constituents of the protocol and are thus able
to account for all the energy flows without having to rely
on Eq. (21). In addition, our considerations are conceptually
very similar to those of Ref. [2], giving a very intuitive and
operational picture of work at the quantum scale. We have also
been able to avoid the issues of external control we uncovered
in Sec. III. The only external control which is required in the
protocol (assuming one iteration) is to turn on the coupling
between qubit and bath. We believe, however, that this is not
an issue since the evolution leading up to this step is fully
deterministic and we do not need to interact with the system
in order to determine the time at which the coupling has to
begin. There are no external entities which might gain or lose
work in any process involved. Everything is accounted for in
the states of our qubit and reference.

In Appendix C we analyze the possibility of reusing one
reference frame for multiple work extraction processes, as
discussed for the time-dependent model in Sec. III.

V. BOSONIC BATH

The considerations above give us a good intuition for how
the systems in our model generally behave, but, as alluded to
previously, the idealized notion of the bath can lead to rather
unphysical behavior such as the discontinuities in Figs. 7 and 8.
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In this section we will replace the idealized bath with an actual
bosonic bath coupled to the qubit to add a further element of
realism to the model. In order to do so we extend the Hilbert
space of our model to H = Hier @ Hauvit ® Hpath, Where Hypam
is the Hilbert space of the bath. Its free Hamiltonian is

Hy=1®1® Y waja, (39)
l

where a; and a,T are the creation and annihilation operator of
the /th mode with frequency ;. In addition, the bath is coupled
to the qubit via the interaction Hamiltonian

Hy=1®0,® Y gi(a +a)). (40)
l

The full Hamiltonian, where for simplicity we shall from here
on assume § = /4, is thus given by

L
V2

+1®0,® Y gila +a). (41)
1

H=—[L:®0+L,@1R1+1801® Y waa
1

When presented with a Hamiltonian of this form the most
obvious approach seems to be to derive a Markovian master
equation and solve it. Our calculations, however, showed that
this approach does not work in the present case where the bath
is only coupled to one subsystem (the qubit) of a larger system.
Despite the bath not being directly coupled to the reference, the
Markovian approximation leads to the reference experiencing
a direct thermalization, and the entire qubit-reference joint
system simply thermalizing to the Gibbs state given by the
fixed level structure of the free Hamiltonian (22). In fact, using
the Markovian master equation approach, qualitatively this
evolution is independent of the precise coupling between bath
and joint system. Even if we couple to the reference instead of
the qubit (or a combination of both) by changing the final term
in the Hamiltonian (40) to, e.g., L, ® 1 ® Y_ g/(a; + a;) the
behavior qualitatively does not change. The Markovian master
equation approach appears to be oblivious of the emergent
local time-dependent structure of the individual subsystems
and only sees the temporally fixed level structure of the joint
system, thus driving the entire system to the Gibbs state with
respect to the full Hamiltonian, as opposed to driving the local
system (in this case the qubit) towards thermal equilibrium,
and only indirectly thermalizing the remaining part of the joint
system, as we would expect and as we explicitly show in the
remainder of this section.

One might suggest that a possible approach to circumvent
this issue is to decrease the qubit-bath coupling while de-
creasing the qubit-reference coupling. However, this leads
to a change in the dynamics and never completely avoids
the issue, only decreasing its severity. Instead, we are able
to provide a better way of understanding the thermalization,
based on resonance between qubit and bath-mode, which does
not involve any approximation techniques.

If we want to thermalize only the qubit directly, with the
precise thermalization dependent on both the bath and the state
of the reference, we need to approach the problem differently.
The reason to use Markovian master equations in the first place

PHYSICAL REVIEW E 90, 052136 (2014)

is the impossibility of simulating the infinite number of field
modes, each with an infinite number of states. To avoid the
first problem, we simply assume that we are dealing with a
single-mode bath, thus getting rid of one of the infinities. The
other infinity can be reduced to a finite number by truncating
the mode’s local Hilbert space to the lowest D energy levels,
where D is a finite integer. This approximation can be made
arbitrarily accurate by choosing a larger D. The lower the
temperature is relative to the bath’s energy level spacing, given
by the mode frequency w, the smaller D can be chosen. In
addition, the interaction time between bath and system has
to be limited. Both these restrictions assure that the highest
levels never accumulate any non-negligible population and
keep the bath close to being thermal at its characteristic inverse
temperature S.

The simplest way to introduce a single mode bath into the
model is to simply take a D-level system in the Gibbs state
Ty given by (35) with respect to the Hamiltonian Hz = wa'a,
where w is the frequency of the mode, couple it to the joint
qubit-reference system at the point where we want to start the
thermalisation, and unitarily evolve the total system under the
full Hamiltonian (41). In doing so, the bath will lose some
of its “bathness,” since it will evolve away from the original
thermal state, but this will still give us some useful insights into
the general behavior of our new three-body system and guide
us towards a more sophisticated treatment of the problem. In
the context of a large thermal bath this corresponds to taking
a (essentially negligibly) small sample of the bath which is
“wasted away.”

We shall denote the state of the new three-body system by
o, which is initially in oy = Ug (7'[/2),00UR(7T/2)T ® xo0 ® 10,
where Uy is defined as in Eq. (27) and the states py and
Xo are (3) and (2), respectively. Subsequently, the system
evolves under the unitary U(t) = exp[—i Ht], where H is the
Hamiltonian (41), where the interaction part now consists of a
single term,

Huy=1®o0, ® ala+a'), (42)

with coupling strength .

As the system evolves we again find that the reference
undergoes a rotation very similar to what happened in the
case of the idealized bath, thus gradually decreasing its L,
expectation value to zero. The behavior of the qubit is very
interesting in this case. Its (o) expectation value is plotted in
Fig. 9 for a reference of size I = 75 and baths of dimension
D = 7 with different frequencies.® Despite being constantly
coupled to the bath, it only “sees” the bath if the reference is
in the correct state. More precisely, the qubit’s state remains
mostly unaffected, except around the time where (L,) =~ %,
where the qubit experiences an evolution towards a thermal
state (35).

Under closer examination we can see the importance of
this result. In fact, it gives justification to the notion of reduced
Hamiltonians that was used in the preceding sections of this
paper. From Eq. (33) the reduced Hamiltonian predicts that the

%The bath dimension D = 7 was chosen since for all D > 7 no
noticeable difference was found in the simulations.
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FIG. 9. (Color online) Expectation value (o,) for the qubit as a
function of time, when coupled to a single-mode bosonic bath of
frequency w. From right to left, the dashed vertical lines mark the
times at which (L) = % for w = 10, 30, and 60, respectively. We
see that these points exactly coincide with the times at which the qubit
is most affected by the bath, i.e., they are in resonance. The dash-
dotted black line gives (o) as it would be obtained from using the
idealized bath and reduced Hamiltonian presented in the previous
considerations. The reference used in this plot is of size [ = 75, and
the bath mode dimension is D = 7. Other parameters are g = 0.05
and o = 2.

qubit has a level splitting of 2sin(%) (L;) = ﬁ(LZ). Now
we find that the qubit is affected most by the bath, when
w = /2 (L.). Putting these two observation together implies
that the qubit indeed has an effective level splitting of /2 (L)
and only interacts with the bath when it is resonant with
it, i.e., when the level splitting roughly matches the bath’s
frequency w. In addition, its evolution towards a state that
resembles the thermal state as would be given by the reduced
Hamiltonian, is a further factor supporting the validity of the
reduced Hamiltonian picture. These results are also somewhat
reminiscent of the idea of virtual qubits presented in Ref. [3],
where the system only interacts with certain energy levels in
the bath which are in resonance with the system. To summarize,
we can say that the reduced Hamiltonian picture appears to be
the correct description in the limit of a bath that instantaneously
thermalizes a system, which is exactly the assumption made
in the previous sections.

VI. LIFTING A QUANTUM WEIGHT

The above considerations all convincingly show how an
amount of energy on the order of k7T log?2 is transferred to
the reference system during the work extraction protocols.
However, so far there is no convincing reason to believe that
this energy can indeed be considered as work. To address
this final gap in our considerations we introduce another new
system, a quantum weight, similar to the approach in, for
example, Ref. [2].

The weight is initially not involved during the actual work
extraction process described in the previous sections. Once
this initial part of the protocol is finished we throw away
the (approximately) maximally mixed qubit and couple the
reference to the weight to try and convert the reference’s excess
in (L,) it gained during the work extraction process into an
unambiguous gain in mechanical energy, by raising the weight.

PHYSICAL REVIEW E 90, 052136 (2014)

The weight itself might simply be modelled by a particle in
(one-dimensional) free fall with the Hamiltonian

Hy = W + gk, (43)

where & and p are the position and momentum operators, [ is
the weight’s mass, and g the gravitational acceleration. This
problem has been analyzed in Refs. [27-29].

In order to use the reference to lift the weight we need to
introduce a coupling between the reference and the weight.
We choose a Hamiltonian of the form

52
Hrw=1Q [57 +p,g)€] +cosOL, ®@1+kA® p, (44)

where « is a tuneable coupling strength and A is some
Hermitian operator on the reference Hilbert space Hg. The
first and second terms of the Hamiltonian are the weight and
the references’ free Hamiltonians, respectively, whereas the
third term represents a coupling between the reference and the
weight, which induces a translation of the weight dependent
on the state of the reference.

One question is what operator A to choose to convert
the excess energy stored into the (L) expectation value of
the reference into positive translation of the weight. Finding
an illuminating A is more awkward than might initially be
assumed, and we do not construct one here, since it is more
an engineering issue than one of fundamental physics. In
particular, it amounts to pure mechanics, not thermodynamics,
which is our main concern in this paper. However, it is
straightforward to see how the energy can be transferred from
the reference to the weight. For conceptual simplicity one can
approximate the continuous energy spectrum with a discrete
one, and then the joint Hilbert space splits up into its energy
subspaces H g with constant energy E as

Hr ® Hw = P He- (45)
E

We can then define unitaries of the form

U= @ Ug, (46)
E

where Ug acts on Hpg. Unitaries of this form are energy
conserving and essentially represent swap operations between
the reference and the weight, thus lifting the weight to higher
energies while shifting the reference’s population to lower
energy levels. This approach is again reminiscent of the ideas
proposed in Ref. [2], and, as in Ref. [2] and similar approaches,
we have to be aware that while the weight will in general be
lifted, it also experiences an energy spreading effect. The moral
of this is that when using a large, but finite-sized, system to
hold extracted thermodynamic work we unavoidably face a
probabilistic distribution over energies, and while there is a
clearly a gain in usable mechanical energy, the “quality” of the
energy requires further consideration. We contrast this average
work extraction from the deterministic work extraction put
forward in Refs. [1,30], for example.
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VII. CONCLUSION

We set out on this research with the goal to get closer to
understanding what it means to do work at the quantum scale.
Our approach to doing so was to take a fresh look at an old
protocol, the well-known semiclassical protocol of exacting an
amount of work W = kT log 2 from a pure qubit. This protocol
has the weakness that not all its constituents are fully quantum
mechanical, and what happens to the work is not accounted
for in a quantum mechanical framework. Our model extends
the original approach by replacing the semiclassical field with
a finite-sized quantum reference frame, a spin-/ particle.

Using this new building block, we looked at two specific
incarnations of the model. The first of them uses a time-
dependent Hamiltonian to couple the qubit and reference.
Using this we were able to show that the reference (i.e.,
the external field) suffers from back-actions during the work
extraction process, which lead to a degradation. These degra-
dations have two distinct effects. On the one hand, they allow
us to extract more work than the semiclassical kT log?2 from
the joint system (although the work extracted from the qubit
remains less than kT log 2, so this provides a useful illustration
of a scenario that cheats the system). On the other hand, the
degradation of the reference leads to a diminished ability to
split the qubit’s energy levels, which is crucial to extract further
work. Hence there is a trade-off between maximum single-shot
work extraction and repeatability of the protocol. In general,
as the size of the reference [ gets larger, we approach the
semiclassical scenario as would be expected. The problem
with this model is that, despite giving some new insights in the
behavior of a quantum mechanical field, does not answer
the initial question. There is still an external entity receiving the
work which is not accounted for in the quantum description.

To get rid of this external entity, we introduced a new
coupling Hamiltonian which does not depend on time. In this
model every flow of energy is fully encoded in the states of
the qubit and the reference. It allowed us to show that (at least
in this particular model) energy is indeed transferred onto the
reference, i.e., the field, as is usually assumed in the semiclas-
sical protocol. In addition, we were also able to recover the
value kT log2 as an upper bound for this energy and show
how the energy depends on the parameters of the model.

We added an additional element of realism to our model by
introducing a bosonic bath coupled to the qubit and, using this,
were able to both pave the way to more sophisticated realiza-
tions of the model as well as confirm the validity of previously
made assumptions such as the reduced Hamiltonians.

Finally, we outlined a roadmap towards answering the
question which part of the extracted energy can be considered
work. In conclusion, we were able to uncover many subtleties
that were previously either unknown or simply ignored,
such as the issue of disordered energy flow into the field.
The system we introduce still allows for many interesting
questions, and promises to be a flexible, and tractable, model
with which to study various fundamental aspects of quantum
thermodynamics.
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APPENDIX A: RAISING THE UPPER LEVEL

We assume the system evolves freely under the Hamiltonian
(10) from an initial time ¢ = 0 to a final time ¢ = 7. Thus,
assuming f(¢#) to be a monotonic function such as our
particular choice in (8), the value of 7 determines the maximal
level splitting. We can ignore the —E_(¢)1 term in (10) since
it does not contribute to the evolution and essentially use (7)
for our present considerations. We see that this Hamiltonian at
different times commutes with itself, [H (¢),H(t)] =0V t,¢'.
Thus, we find that the system evolves according to the unitary

U(T) = exp[—i ®(T)L - 81, (A1)
where we have defined
T
(7)) = / f(t)dt. (A2)
0

Analogously to a very similar derivation presented in Ref. [19],
we were able to show that this can be written as

UT)=T; +eTDr_, (A3)

where

N(T) = (1+ 1o (Ad)

and 1. are the projectors onto the |j =/ + %) subspaces of
the joint Hilbert space H; = H; ® Hs, where H; and Hg are
the Hilbert spaces of the reference and qubit, with dimension
d =21 + 1 and 2, respectively.

In the main text we generally assume a linearly increasing
coupling during the raising of the form (8) with C =0, i.e.,
f(2) = . In this case we get

Tz
(7)) = > (A5)
and thus
r(7)= 4-11(2 + %)TZ. (A6)

From (A3) we see that if we choose I'(7) = 27n for any
n € N, the evolution simply reduces to the identity and we
can essentially ignore the entire raising part of the protocol,
apart from noting that it induces the desired raising of the
unpopulated state. In Appendix B we take a closer look at the
specific choice of 7.

APPENDIX B: IMPOSSIBILITY OF PERFECT WORK
EXTRACTION FOR THE TIME-DEPENDENT
HAMILTONIAN MODEL

Most protocols that use a work extraction (or erasure)
scheme which is based on splitting energy levels, say, through
an external (classical) field such as in the standard one
presented in Sec. I, generally assume raising the state to infinite
energy. This would correspond to 7 — oo in our protocol.
It can generally be noted that £ — oo is an unphysical
assumption, but with our specific model we are in a position
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to give a much more detailed and well-founded study of this
issue. Note that in this section we shall only consider work
extracted from the qubit itself, ignoring the reference.

In general, again only assuming that f(¢) is monotonic, we
find that the larger the value of 7, the quicker the reference
frame degrades, leading to a diminished ability to extract
further work. This makes intuitive sense, considering that
larger 7 implies stronger coupling’ between the thermalized
system and the reference, leading to quicker loss of asymmetry.
However, if 7 is too small, we do not raise the level particularly
far, not satisfying the condition £ > kT, and are unable to ex-
tract much work, giving a change in free energy A F' (and hence
by the inequality d W < —d F also W) considerably lower than
the optimal AF = kT log2. We see that there is yet again a
trade-off between maximal work extraction in a single-shot
scenario on one hand and rapidly depleting the reference on
the other. This raises the question about the optimal value of 7.

From the consideration in Appendix A we know that we
require I'(7") = 27 n to avoid nontrivial evolutions during the
raising and keep the process as simple as possible. For our
specific coupling function f(¢) = ¢/ this gives us from (A6)
the first constraint on 7,

8mn
24170
Let us further assume that we want to have a potential change
in free energy during the entire protocol no less than

AF = c[kT log2]

(BI)

(B2)

for some 0 < ¢ < 1. After some manipulations this gives us a

second constraint on 7,
T > —kTlog[2'™¢ —1]. (B3)

To satisfy both conditions, we want 7 to be as given by (B1),
where n is the smallest integer satisfying

241! :

> log (2'"¢ = DT%. B4
n > g log( ) (B4)

For large / we can approximate these equations by
T ~2mn, (B5)

where n is the smallest integer satisfying
1—c 2

n 2 golloe @ = DP. (B6)

For example, if we want A F' to be at least 99% of its optimal
value, i.e., ¢ = 0.99, we find that n 2 1.96, i.e., we choose
n =2, giving 7 =~ 5.013, which is the value of 7 we have
used for the results in Figs. 4 and 5.

Generally, we can conclude from these consideration of
T that perfect work extraction (and in a similar way also
perfect erasure) is impossible using a reference of finite size /,
since it requires an infinite energy splitting, which immediately

"Note that for our specific choice of f(t) stronger coupling
also implies longer coupling. If we demand our protocol to be
approximately quasistatic, a correlation between maximal strength of
coupling and duration of the protocol seems to be a sensible choice.
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“destroys” the reference that creates this splitting. One has to
accept a trade-off between longevity of the reference, i.e.,
repeatability, and maximum work extraction. An interesting
extension to this analysis might be to consider the cumulative
work that can be extracted over a large or infinite number of
iterations and then finding the ideal 7 which maximizes this
value for a given /.

APPENDIX C: MULTIPLE ITERATIONS FOR THE
TIME-INDEPENDENT HAMILTONIAN MODEL

Minimizing the perturbation along the y direction becomes
particularly important if we want to reuse the reference for
multiple iterations of the protocol. To keep extracting work,
i.e., to keep increasing the reference’s energy, we must be

~

able to further increase (L,). However, for small / we see that
(iy) saturates quickly with the reference reaching a state fully
polarized in the y direction, at which point the protocol breaks
down as we cannot extract any more work. In this short section
we shall look at the idea of multiple iterations of the protocol
in more detail.

There are three distinct ways in which we can repeat the
protocol after finishing the first iteration. In all of them we first
discard the previously used qubit which is now in a maximally
mixed state. Removing this qubit does not affect the energy
or state of the reference, hence this is a trivial process. The
simplest way to proceed is to bring in a new pure qubit in a state
similar to o in (2), but polarized in the positive z direction,
the state |1) being the occupied level and |0) the unoccupied
one. We assume that this can be done instantaneously (or at
least fast relative to the evolution of the reference frame). The
reference now keeps rotating, this time acquiring a negative
polarization (L,). Thus, by taking the qubit also polarized
in the opposite direction we essentially return to the original
situation. The protocol then follows the same steps as above
until (L,) reaches zero again and the new qubit is in the
maximally mixed state. We then iterate the process, using a
qubit starting in |0) for every odd iteration and one starting in
|1) for even iterations.

The second method is mathematically essentially equiva-
lent and leads to exactly the same results. Here we keep using
qubits starting in the state |0) but keep flipping the Hamiltonian
from H to —H after every iteration, reversing the references
rotation. We shall use this method for our numerical analysis.

The third method also uses only qubits starting in the
state |0). Here, after completing an iteration, we wait for the
reference to freely evolve for an additional half period, at
which time it is pointing in the original direction again (plus the
perturbations it gained during the previous iterations). We then
couple it to the new qubit. Again, this seems to conceptually
differ from the other methods, but mathematically it amounts
to exactly the same procedure. In the following we shall present
results numerically obtained using the second method.

Figure 10 shows the evolution of the expectation values
of the angular-momentum components over five iterations of
the protocol for / = 10 and 6 = 7 /4. As predicted, we see an
accumulation of (£, ) over consecutive iterations, which in the
limit of many iterations completely saturates to (L =1y
t. This is also reflected in Fig. 11, which shows the energy
of the reference as a function of time for the same process.
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FIG. 10. (Color online) Scaled expectation values of the angular-
momentum components of the qubit (dashed blue) and reference
(dash-dotted red) as a function of time for/ = 10,0 = 7 /4, and dt =
10~*. The same reference is reused for five iterations, each with a new
pure qubit. A clear accumulation of the reference’s polarization in the
y direction is visible. The specific parameters were chosen to show a
slow but visible degradation of the reference over the five iterations.
Higher (lower) values of [ lead to slower (faster) degradation.

We see that during the first iterations an energy of almost
kT log?2 is gained by the reference. However, after a few
iterations the energy gain starts to decrease. The plot of the
power shows this effect most clearly. In addition, Fig. 11 also
contains a plot of the reference’s von Neumann entropy, which
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FIG. 11. (Color online) Energy stored in the reference as a
function of time over five iterations of the protocol for / = 10,
0 =m/4, and dt = 107" as in Fig. 10. During each consecutive
iteration we transfer less and less energy onto the reference and the
power drops. In the limit of infinitely many iterations, the reference
completely polarizes in the y direction, saturating the amount of
energy it can store. The green inset shows the (von Neumann) entropy
of the reference, which is monotonically increasing, also hinting at
the constant degradation of the reference.

is monotonically increasing, while its purity (not shown) is
constantly decreasing. Generally, we find that the larger /, the
more often we can iterate the process without seeing major
signs of degradation of the reference. In the classical limit of
| — oo we find that we can repeat the protocol an arbitrary
number of times without any degradation of the reference, as
we expected.

[1] M. Horodecki and J. Oppenheim, Nat. Commun. 4, 2059
(2013).
[2] P. Skrzypczyk, A. J. Short, and S. Popescu, arXiv:1302.2811.
[3] N. Brunner, N. Linden, S. Popescu, and P. Skrzypczyk, Phys.
Rev. E 85, 051117 (2012).
[4] N. Linden, S. Popescu, and P. Skrzypczyk, arXiv:1010.6029.
[5] N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. Lett. 105,
130401 (2010).
[6] R. Alicki, J. Phys. A: Math. Gen. 12, L103 (1979).
[7]1 R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki, Open
Syst. Inform. Dynam. 11, 205 (2004).
[8] L. del Rio, J. Aberg, R. Renner, O. Dahlsten, and V. Vedral,
Nature 474, 61 (2011).
[9] E. Fermi, Thermodynamics (Dover, New York, 1956).
[10] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[11] C. H. Bennett, Stud. Hist. Philos Mod. Phys. 34, 501 (2003).
[12] P. Faist, F. Dupuis, J. Oppenheim, and R. Renner,
arXiv:1211.1037.
[13] S. Hilt, S. Shabbir, J. Anders, and E. Lutz, Phys. Rev. E 83,
030102 (2011).
[14] M. B. Plenio and V. Vitelli, Contemp. Phys. 42, 25 (2001).
[15] S. Bartlett, T. Rudolph, and R. Spekkens, Rev. Mod. Phys. 79,
555 (2007).
[16] D. Poulin and J. Yard, New J. Phys. 9, 156 (2007).
[17] J.-C. Boileau, L. Sheridan, M. Laforest, and S. D. Bartlett,
J. Math. Phys. 49, 032105 (2008).
[18] R. M. Angelo, N. Brunner, S. Popescu, A. J. Short, and
P. Skrzypczyk, J. Phys. A: Math. Theor. 44, 145304 (2011).

[19] M. Ahmadi, D. Jennings, and T. Rudolph, Phys. Rev. A 82,
032320 (2010).

[20] D. Bhaumik, T. Nag, and B. Dutta-Roy, J. Phys. A: Math. Gen.
8, 1868 (1975).

[21] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-
namics, Lecture Notes in Physics Vol. 784 (Springer, Berlin,
2010).

[22] J. Aberg, Nat. Commun. 4, 1925 (2013).

[23] E. G. S. L. Branddo, M. Horodecki, J. Oppenheim, J. M.
Renes, and R. W. Spekkens, Phys. Rev. Lett. 111, 250404
(2013).

[24] M. Horodecki and J. Oppenheim, Int. J. Mod. Phys. B 27,
1345019 (2013).

[25] M. Lostaglio, D. Jennings, and T. Rudolph, arXiv:1405.2188.

[26] J. Sakurai and J. Napolitano, Modern Quantum Mechanics,
2nd ed. (Addison-Wesley, San Francisco, 2010).

[27] A.Y. Voronin, H. Abele, S. BaeBler, V. V. Nesvizhevsky, A. K.
Petukhov, K. V. Protasov, and A. Westphal, Phys. Rev. D 73,
044029 (2006).

[28] V. Nesvizhevsky, H. Borner, A. Gagarski, G. Petrov, A.
Petukhov, H. Abele, S. BaBler, T. Stoferle, and S. Soloviev,
Nucl. Instrum. Methods A 440, 754 (2000).

[29] V. V. Nesvizhevsky, H. G. Borner, A. K. Petukhov, H. Abele,
S. Baessler, F. J. Ruess, T. Stoferle, A. Westphal, A. M.
Gagarski, G. A. Petrov, and A. V. Strelkov, Nature 415, 297
(2002).

[30] F. G. S. L. Brandao, M. Horodecki, N. H. Y. Ng, J. Oppenheim,
and S. Wehner, arXiv:1305.5278.

052136-13


http://dx.doi.org/10.1038/ncomms3059
http://dx.doi.org/10.1038/ncomms3059
http://dx.doi.org/10.1038/ncomms3059
http://dx.doi.org/10.1038/ncomms3059
http://arxiv.org/abs/arXiv:1302.2811
http://dx.doi.org/10.1103/PhysRevE.85.051117
http://dx.doi.org/10.1103/PhysRevE.85.051117
http://dx.doi.org/10.1103/PhysRevE.85.051117
http://dx.doi.org/10.1103/PhysRevE.85.051117
http://arxiv.org/abs/arXiv:1010.6029
http://dx.doi.org/10.1103/PhysRevLett.105.130401
http://dx.doi.org/10.1103/PhysRevLett.105.130401
http://dx.doi.org/10.1103/PhysRevLett.105.130401
http://dx.doi.org/10.1103/PhysRevLett.105.130401
http://dx.doi.org/10.1088/0305-4470/12/5/007
http://dx.doi.org/10.1088/0305-4470/12/5/007
http://dx.doi.org/10.1088/0305-4470/12/5/007
http://dx.doi.org/10.1088/0305-4470/12/5/007
http://dx.doi.org/10.1023/B:OPSY.0000047566.72717.71
http://dx.doi.org/10.1023/B:OPSY.0000047566.72717.71
http://dx.doi.org/10.1023/B:OPSY.0000047566.72717.71
http://dx.doi.org/10.1023/B:OPSY.0000047566.72717.71
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1016/S1355-2198(03)00039-X
http://dx.doi.org/10.1016/S1355-2198(03)00039-X
http://dx.doi.org/10.1016/S1355-2198(03)00039-X
http://dx.doi.org/10.1016/S1355-2198(03)00039-X
http://arxiv.org/abs/arXiv:1211.1037
http://dx.doi.org/10.1103/PhysRevE.83.030102
http://dx.doi.org/10.1103/PhysRevE.83.030102
http://dx.doi.org/10.1103/PhysRevE.83.030102
http://dx.doi.org/10.1103/PhysRevE.83.030102
http://dx.doi.org/10.1080/00107510010018916
http://dx.doi.org/10.1080/00107510010018916
http://dx.doi.org/10.1080/00107510010018916
http://dx.doi.org/10.1080/00107510010018916
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1088/1367-2630/9/5/156
http://dx.doi.org/10.1088/1367-2630/9/5/156
http://dx.doi.org/10.1088/1367-2630/9/5/156
http://dx.doi.org/10.1088/1367-2630/9/5/156
http://dx.doi.org/10.1063/1.2884583
http://dx.doi.org/10.1063/1.2884583
http://dx.doi.org/10.1063/1.2884583
http://dx.doi.org/10.1063/1.2884583
http://dx.doi.org/10.1088/1751-8113/44/14/145304
http://dx.doi.org/10.1088/1751-8113/44/14/145304
http://dx.doi.org/10.1088/1751-8113/44/14/145304
http://dx.doi.org/10.1088/1751-8113/44/14/145304
http://dx.doi.org/10.1103/PhysRevA.82.032320
http://dx.doi.org/10.1103/PhysRevA.82.032320
http://dx.doi.org/10.1103/PhysRevA.82.032320
http://dx.doi.org/10.1103/PhysRevA.82.032320
http://dx.doi.org/10.1088/0305-4470/8/12/003
http://dx.doi.org/10.1088/0305-4470/8/12/003
http://dx.doi.org/10.1088/0305-4470/8/12/003
http://dx.doi.org/10.1088/0305-4470/8/12/003
http://dx.doi.org/10.1038/ncomms2712
http://dx.doi.org/10.1038/ncomms2712
http://dx.doi.org/10.1038/ncomms2712
http://dx.doi.org/10.1038/ncomms2712
http://dx.doi.org/10.1103/PhysRevLett.111.250404
http://dx.doi.org/10.1103/PhysRevLett.111.250404
http://dx.doi.org/10.1103/PhysRevLett.111.250404
http://dx.doi.org/10.1103/PhysRevLett.111.250404
http://dx.doi.org/10.1142/S0217979213450197
http://dx.doi.org/10.1142/S0217979213450197
http://dx.doi.org/10.1142/S0217979213450197
http://dx.doi.org/10.1142/S0217979213450197
http://arxiv.org/abs/arXiv:1405.2188
http://dx.doi.org/10.1103/PhysRevD.73.044029
http://dx.doi.org/10.1103/PhysRevD.73.044029
http://dx.doi.org/10.1103/PhysRevD.73.044029
http://dx.doi.org/10.1103/PhysRevD.73.044029
http://dx.doi.org/10.1016/S0168-9002(99)01077-3
http://dx.doi.org/10.1016/S0168-9002(99)01077-3
http://dx.doi.org/10.1016/S0168-9002(99)01077-3
http://dx.doi.org/10.1016/S0168-9002(99)01077-3
http://dx.doi.org/10.1038/415297a
http://dx.doi.org/10.1038/415297a
http://dx.doi.org/10.1038/415297a
http://dx.doi.org/10.1038/415297a
http://arxiv.org/abs/arXiv:1305.5278



