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ARTICLE

Microevolution of Neisseria lactamica during
nasopharyngeal colonisation induced by controlled
human infection
Anish Pandey1, David W. Cleary 1,2,3, Jay R. Laver1, Andrew Gorringe4, Alice M. Deasy5,6, Adam P. Dale1,2,

Paul D. Morris5,6, Xavier Didelot7,9, Martin C.J. Maiden 8 & Robert C. Read 1,2,3

Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-

excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled

human infection with genomically-defined N. lactamica and subsequent bacterial micro-

evolution during 26 weeks of colonisation. We find that most mutations that occur during

nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-

variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA

promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy

metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypo-

thetical protein was often mutated in 27% of the subjects. In volunteers who were naturally

co-colonised with meningococci, recombination altered allelic identity in N. lactamica to

resemble meningococcal alleles, including loci associated with metabolism, outer membrane

proteins and immune response activators. Our results suggest that phase variable genes are

often mutated during carriage-associated microevolution.
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W
ithin-host selection of some bacterial species has been
investigated in a variety of human niches during
natural disease1. In the respiratory tract, startling

levels of genomic change have been observed in pathogens during
disease. Examples include diversifying hypermutation among
Burkholderia dolosa populations2 and convergent evolution in
Pseudomonas aeruginosa sub-lineages, both among sufferers of
cystic fibrosis3,4.

At the gene-level, mutations within a small number of loci,
mediating DNA mismatch repair systems, can lead to hyper-
mutation among host-pathogen interaction genes2. Genetic
diversity can also be caused by phase variation resulting from
random slipped-strand mispairing in hypermutable, repetitive,
polymeric sequences in ‘contingency loci’, such as the lipooligo-
saccharide biosynthetic genes5–7. These can drive host- or
population-specific, selection bottlenecks8. The result of this is
phenotypic and stochastic variation in both colonisation and
disease outcomes, which is enhanced by the acquisition of ben-
eficial genetic material from unrelated organisms through the
various mechanisms of horizontal gene transfer9.

Colonisation is an important prerequisite for disease6, but
beyond species-species interactions and clearance, very little is
known about how colonising species are impacted by the
cumulative challenges experienced when occupying a new niche.
Asymptomatic carriage of Staphylococcus aureus in the anterior
nares is associated with rare adaptive change, but invasive isolates
exhibit very little genomic variation compared to carriage
isolates10,11. Regarding the nasopharyngeal pathogen Neisseria
meningitidis, a study contrasting bloodstream and nasal isolates
from four individuals found no evidence of gene-specific con-
vergent evolution but detected phase variation in type IV pilus
biogenesis loci12.

Neisseria lactamica is an exclusively human nasopharyngeal
commensal with highest prevalence of carriage in infancy. Car-
riage of N. lactamica has an inverse epidemiological relationship
with infections caused by N. meningitidis13. Here, we used two
controlled human infection studies to examine the microevolu-
tion of N. lactamica, a harmless commensal, genetically and
phenotypically similar to N. meningitidis and Neisseria gonnor-
hoeae14. Initially, a short-term colonisation study was used to
contrast N. lactamica collected from in vivo and in vitro passage
over a period of 1 month. A second study, the purpose of which
was to explore the potential, protective effect of N. lactamica
colonisation in young adults, a demographic at risk of Neisseria
infection15, examined inoculated N. lactamica, other wild-type N.
lactamica and wild-type N. meningitidis collected16, over
6 months of carriage.

In this work, we determine the intra-host genomic diversifi-
cation of N. lactamica over time, comparing this with in vitro
dynamics. We contrast the contribution of non-synonymous
polymorphisms to that of mutations in contingency loci that
drive phase variation. In addition, we examine the frequency of
recombination, inferring horizontal gene transfer (HGT) events
between both inoculated and wild-type N. lactamica with N.
meningitidis. Using estimates of diversity, we determine the
effective population size in colonised individuals. These results
offer insights into the impacts on genomic structure and micro-
evolutionary processes in a bacterial coloniser of the human
respiratory tract.

Results
Mutations and effective population size. We recovered isolates
from throat swabs taken from volunteers who had been inocu-
lated with 104 CFU ml−1 of N. lactamica Y92–1009 cell bank
stock17 for a short period (1 month) of carriage and compared

them with isolates that underwent in vitro passage for the same
period of time (Supplementary Figure 1; additional data in Sup-
plementary Data 1). Isolates that had undergone passage in vitro
exhibited a greater number of non-synonymous and stop codon
single nucleotide polymorphisms (SNPs). There were also more
insertions (n= 6 base insertion events) observed during in vitro
passage. Isolates from colonised participants had marginally more
synonymous SNPs but no insertions, only one deletion and no
SNPs introducing premature stop codons. Deleterious mutations
observed in the in vitro isolates involved citrate synthase (gltA)
and pilin subunit (pilP) genes and, once fixed in the population,
were seen to recur in all subsequent isolates. This contrasts with
isolates recovered from volunteers who had undergone controlled
infection (ie in vivo), in which almost all SNPs occurred only
once per sampling point despite multiple colony sampling.
Mutations in mqo (Malate:quinone oxidoreductase) and phrB
which confers resistance to nalidixin and rifampicin in N.
gonorrhoeae18, were seen to occur in both datasets; however, the
position of mqo mutations differed while the synonymous phrA
mutation occurred in the same position in both the in vitro
controls as well 2/5 colonised volunteers (Supplementary Data 1)

A greater number of mutations in genes containing hypermu-
table, polymeric tracts, i.e. phase variable genes, were observed
in vivo. These were compared to those identified in vitro over a
month. No unique in vitro mutations were identified (i.e. these
were also seen in vivo); conversely, novel in vivo changes in
repetitive sequences were observed. Two of these genes were
primarily associated with the modification of lipooligosaccharide
(LOS), known to mediate host-pathogen response (glycosyltrasn-
ferases; lgtG gene). There was also phase variation detected in the
specificity subunit (hsdS) of the type 1, dual gene, NgoAV
restriction modification system and genes implicated in iron
acquisition among Neisseria spp. (hpuA and rubredoxin). Phase
variation was also observed in a conserved hypothetical protein
with putative glycosyl transferase activity (Table 1). No consistent
pattern of phase switching ON vs phase switching OFF was
observed among the isolates tested (Supplementary Data 2),
however, two genes, the haemoglobin receptor hpuA and
glycosyltransferase lgtG exhibited a significant shift from PHASE
ON - > OFF in weeks 8 and 4 respectively (<p= 0.05 Fisher’s
exact test).

Substitution rate estimates were five times greater in the
in vitro isolates (7.55 × 10−5 substitutions per site per year)
compared to the in vivo isolates (1.45 × 10−5 substitutions per site
per year, extrapolated from 1 month of carriage). Tajima’s D, a
comparison of pairwise differences and segregating sites in a
given population of alleles, was used to indicate whether the
population was undergoing positive (selective sweeps) or negative
selection. Here the statistic was negative (approximately −1) for
both in vivo and in vitro (Table 2), an indication of selective
sweeps and a function of rare mutations in the population.
Additionally, the estimates of effective population size (Ne) were
low (~18) and approximately the same for both sample sets.
Whilst differences appeared in both the rate and type of mutation
that occurred during in vivo colonisation, as compared to in vitro
passage, the overall impact on population genomic diversity was
similar.

Microevolution during long-term N. lactamica carriage in
humans. In a controlled human infection model, in which 149
volunteers were inoculated with N. lactamica intranasally, a total
of 95 isolates of N. lactamica Y92–1009 and 14 isolates of N.
meningitidis from 37 participants recovered over 6 months16 were
sequenced. An additional two individuals carried wild-type N.
lactamica belonging to sequence types other than the inoculum
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strain (ST-4192 and ST-11524, n= 9 isolates) and are discussed
later. In 91% (n= 32) of participants, N. lactamica was isolated
from more than one sampling point over the course of 6 months.
In 8 individuals both N. lactamica and N. meningitidis were
isolated, with 4 individuals having simultaneous carriage of both
species.

A total of 268 mutations were identified in N. lactamica
following isolation. The most prevalent (71.6%, n= 192), were
modifications to repetitive tracts in putatively phase variable loci.
A list of genes containing 6–14 nucleotide homopolymeric tracts
in the N. lactamica Y92-1009 are detailed in Supplementary
Data 3. From this list of 98 genes, 11 contingency loci were found
in which phase variation recurred longitudinally, within and
between volunteers (Fig. 1a, b). All contingency loci were found
to contain homopolymeric G/C tracts, despite evidence of A/T
tracts among the 98 candidate loci. Genes affected by these
mutations were involved in LOS and pilin subunit modification
(lgt and pgl loci), iron acquisition (hpuA) and type I restriction-
modification (hsdS). The hypothetical proteins were assigned
putative function as glycosyl transferases (hp and c-hp), and

transferrin binding activity (hp2). While most of these mutations
occurred in polymeric tracts located within coding sequence, 28/
192 were detected in an intergenic promotor region bordering the
fetA gene, potentially modulating transcriptional efficiency. All
isolates contained changes in the repeat tracts of at least two of
these contingency loci.

Transient SNPs in non-phase varying genes were the second
most abundant mutations (46/268, 17%). These occurred after
various intervals within different volunteers and were detected
once. A total of 29 non-synonymous SNPs, 15 synonymous SNPs,
3 insertions, 2 multiple base substitutions and 3 deletion events
were observed (Supplementary Data 4).

We defined a persistent mutation as one which was identified
in consecutive isolates. A total of 15 SNPs, disseminated among
five of the volunteers, were found to persist longitudinally. These
were found in lipid-hydrolase protein rssA, oxidoreductase nuoN,
energy synthase atpC and CRISPR-associated endonuclease cas1
and two hypothetical proteins. In addition to this, seven deletion
events appeared fixed in three volunteers, these affected a large
hypothetical protein and are discussed later in this section. The

Table 1 Phase-variable locus mutations observed in comparison of in vitro passage and in vivo colonization during short-term

carriage (1 month)

Position Common

genotypesa
In vivo only

genotypes

Locationb Gene/(s) Details

1,483,216 (G)10→9 (G)10→11 Coding NEIS1156 (c-hp) Glycosyl transferase

161,341 (C)12→13 (C)12→11 Coding NEIS2011 (IgtG)

glucosyltransferase

LOS subunit modifierby transferase activity

1,124,158 (G)9→10 (TACGCTGGAAGC)

1–2

Coding NEIS2362(36) hsdS Type I restriction modification system, specificity

subunit S

1,124,237 (G)9→10 (G)9→11 Coding NEIS2362(36) hsdS Type I restriction modification system, specificity

subunit S

1,483,216 N/A: in vivo

only

(C)10→11 Coding glycosyl transferase family 2 Glycosyl transferase gene

617,862 N/A: in vivo

only

(C)10→9 Coding hpuA Haemoglobin-haptoglobin utilisation protein

1,688,136 N/A: in vivo

only

(G)13 →12 Intergenic l-hp/rubredoxin Large multidomain proteinc/Rubredoxin: involved in

Fe2+ binding

1,717,988 N/A: in vivo

only

(C)10→9 Intergenic ybaB/MDP DNA binding protein /multidomain protein

1,933,087 (A)28→27 (A)28→26 Intergenic AutA /hp Autotransporter A

593,527 (G)10→9 (G)10→12 Intergenic FetA VRF4-8 ←/→ NEIS1949 Finetyping antigen/GroS chaperone protein folding

189,023 (A)20→19 (A)20→17 Intergenic NEIS2043: 2 (Thif) →/←

NEIS2044: 28

Enzyme activation/hp

837,301 (CTTG)9→10 (CTTG)9→11 Intergenic hp ←/→ NEIS0842:42 YadA-like C-terminal region/

conserved hypothetical protein

893,705 (T)18→17 (T)18→15 Intergenic NEIS0978 (396) ←/←

NEIS0528(112)

Putative surface fibrial protein/putative periplasmic

binding protein

893,707 (T)18→17 (T)18→19 Intergenic NEIS0978 (396) ←/←

NEIS0528(112)

Putative surface fibrial protein/putative periplasmic

binding protein

aCommon genotypes are those that were found in both in vivo and in vitro datasets
bLocations are wither within coding sequences or intergenic. For the latter this simply refers to a location outside a known CDS, no inference to upstream promoters has been made
cMulti Domain Protein contained the following domains (yadA Hia auto transporter, chromosome segregation ATPase, flagellin)

Table 2 Effective population size and Tajima’s D calculated for N. lactamica Y92–1009 sample sets

N. lactamica Y92-1009 sample set (n) Tajima's D θ Tajima (+/− s.d.) Effective population size (Ne)

In vitro passaged (n= 29)a −1.08 0.13 (+/−0.11) 18.74

In vivo (n= 31)a −0.92 0.12 (+/−0.12) 17.52

In vivo N. lactamica solo colonised (n= 97)b −1.02 0.20 (+/−0.18) 29.79

In vivo N. lactamica co-colonised with N. meningitidis (n= 19)b −0.96 0.26 (+/−0.23) 39.10

Sample sets marked with
aWere sourced from a short-term clinical study in which isolates were recovered from inoculated volunteers as opposed to in vitro passage. This study took place over a month. Sample sets marked with
bWere sourced from a long-term, 26-week colonization, experimental human challenge study. S.d. is standard deviation
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a

b
Volunteer Position Mutation Type Gene Description

Multiple 161341 PV-C Tract lgtG Lipooligosaccharide glycosyl transferase G

Multiple 617862 PV-C Tract hpuA Hemoglobin-haptoglobin utilization protein A

Multiple 1674201 PV-C tract fetA Iron regulated outer membrane protein

Multiple 256710 PV-G Tract pglA Pilin glycosylation A

Multiple 386523 PV-G Tract hp Hypothetical protein (putative transferase activity)

Multiple 659619 PV-G Tract lgtC Lipooligosaccharide glycosyl transferase C

Multiple 742750 PV-G Tract pglL Pilin glycosylation L

Multiple 776735 PV-G tract pglH Pilin glycosylation H

Multiple 1124237 PV-G tract hsDS Type-1 restriction enzyme specificity protein MPN_089

Multiple 1483216 PV-G tract c-hp Conserved hypothetical protein (glycosyl transferase, (NEIS1156))

Multiple 2004035 PV-G Tract hp2 Hypothetical protein (putative transferrin binding activity)

160 468817 SNP rssA NTE family protein RssA

AN Week 2 500676 SNP nuoL NADH-quinone oxidoreductase subunit L

190 505463 SNP nuoN NADH-quinone oxidoreductase subunit N

264 653511 SNP atpC ATP synthase epsilon chain

63 760996 SNP cas1 CRISPR-associated endonuclease Cas1

88 1804594 SNP recX Regulatory protein RecX

264 2123920 SNP hp Roadblock/LC7 domain protein

Multiple 1719272 Various l-hp Large multi domain protein

Hp 2 (m = 14, v = 10)

Hp 3 (m = 3, v = 1) IgtG (m = 36, v = 23)

pglA (m = 6, v = 6)

Hp 1 (m = 4, v = 3)

rssA (m = 2, v = 1)

nuoL (m = 4, v = 1)

nuoN (m = 3, v = 1)

hpuA (m = 7, v = 7)

atpC (m = 2, v = 1)

IgtC (m = 15, v = 11)

pgIL (m = 19, v = 17)

cas1 (m = 2, v = 1)

pgIH (m = 24, v = 16)

hsdS (m = 21, v = 17)

1000 kbp

1500 kbp

2000 kbp

500 kbp

C-Hp (m = 18, v = 15)

fetA (m = 28, v = 23)

L-hp (m = 9, v = 4)

recX (m = 2, v = 1)

Fig. 1 a, b Mutations that occurred in isolates recovered over 6 months of nasopharyngeal carriage are outlined as follows: changes to repetitive tracts of

phase-variable, contingency loci (Red), genes in which SNPs were persistently detected across multiple volunteers (Blue), including an example from the

short-term, in vitro VS in vivo study (Green) and the sole gene in which various mutations discovered across multiple timepoints and volunteers (Yellow).

m refers to the number of mutations detected in a given gene across v volunteers. The genes are placed in positions relative to their approximate location in

the N. lactamica Y92-1009 genome. b Volunteers in which Single-Nucleotide Polymorphisms (SNPs) were seen are specified in the Volunteer column.

Mutations which affected multiple volunteers are quantified in the accompanying figure above. Mutation locations are indicated in the Position column. The

type of mutation is given in the mutation column where C tract/G tract refers to a homopolymeric region of cytosine/ guanine repeats where insertions

and deletions occurred. PV denotes phase-variable
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non-synonymous mutation found in rssA has been seen in
another N. lactamica isolate found via BLASTp against the nr
database. The location and nature of the remaining mutations
were not identified in either sequence database blast of the entire
catalogue of pubMLST Neisseria or via non-specific BLASTp
against the nr database. Therefore, these are most likely novel
polymorphisms found during the course of this study. These
persistent mutations were shown alongside the phase variations
in Fig. 1a, b and tabulated in Supplementary Data 5.

Convergent mutation was rare in this dataset; however, twelve
mutations were found in eight (27%) of the volunteers that
localized to a single, large (~10 kb) hypothetical protein (herein
referred to as L-hp, accession: ARB05049.1) (Fig. 2). The
sequence of this gene is specific to this strain and not detected
outside of N. lactamica Y92-1009 in a sequence search among all
Neisseria isolates in the pubMLST.org/neisseria database or non-
specific BLASTp against the nr database. The locus is located at
position 1,719,272 in the N. lactamica Y92-1009 genome, with a
GC content (31.3%) that was skewed negatively, compared to the
overall GC content of the genome (52.2%) closer towards the
mean GC content for Haemophilus influenzae(~G+C: 38%).
This was the only coding sequence devoid of phase variable tracts
found to be targeted by mutation across multiple volunteers. L-hp
contained 8 conserved protein domains which included an
extended signal peptide of the type V secretion system
(pfam13018), A tryptophan-ring motif (pfam15401), supporting
a HiaBD2 trimeric autotransporter adhesin (pfam15403), Yad-A
like, left-handed beta roll (cl17507) and four YadA-like C
terminal regions (3 copies of cl27224 and pfam03895). Five of
the twelve mutations persisted in volunteers 158 and 227,
reducing the predicted protein size by 84–93%. Only two of the
twelve mutations identified were seen to occur within the
domains and both targeted YadA-like C terminal regions.
CDART analysis, which contrasts the positions and functions of
protein domain architecture but not necessarily sequence
similarity, revealed significant homology with other N. lactamica
strains (score= 5/5, three sequences) and H. influenzae (Mean
GC content: ~38, score 4/5, thirteen sequences) and Neisseria
cinerea ATCC 14685 hep/hag repeat protein (score= 4/5, two
sequences) but only marginal or non-existent matches to other
members of the Neisseriaceae. This indicates that three other N.
lactamica strains possess this exact protein architecture (with
regards to domain dissemination and function throughout the
protein) with all five domains present, but that fifteen sequences
from both H. influenzae and N. cinerea genomes possess proteins
with very similar domain architecture. Protein BLAST analysis
identified significant matches (>95% identity) only among other
N. lactamica Y92-1009 genomes.

Effect of recombination. ClonalframeML was used to detect loci
in N. lactamica affected by recombination in the core genome (n
= 1595 core loci) and to quantify the total effect of recombination
compared to mutation (r/m) (Table 3). A total of 18 loci were
detected as recombinant over the course of this analysis (Table 4).
Three of these loci affected by recombination were identified in
volunteers (n= 27 volunteers) carrying only N. lactamica Y92-
1009. These included a hypothetical protein (NEIS1708,
NMB0444), a putative mafs3 cassette (NEIS1794) and an intra-
cellular septation protein (NEIS1828, NMB0342). The effect of
recombination (r/m) was 3.62, based on all volunteer isolates
experimentally challenged with N. lactamica Y92-1009. Eight
volunteers co-carried the experimentally inoculated N. lactamica
Y92-1009 strain, however isolates from one volunteer were
excluded from recombination analysis as only one isolate from N.
meningitidis and N. lactamica was recovered leaving seven

volunteers (n= 19 isolates) with wild-type N. meningitidis
(Table 3). Here the average r/m value was 3.84, which was similar
to that seen when the bacterium was not co-colonised with N.
meningitidis. Only small (<20 bp) importations were detected in
volunteers co-carrying experimentally inoculated N. lactamica
Y92–1009 and N. meningitidis. As a result, there were no
recombinant loci identified in co-colonised individuals who were
experimentally inoculated with N. lactamica.

Mutation rates and effective population size. Given the above
mutation parameters we estimated the effective population size
for the N. lactamica inoculum. We inferred a mutation rate in
terms of SNPs per site per year. Sixty-four SNPs were detected
among twenty-seven volunteers carrying only N. lactamica
Y92–1009. This yielded a mutation rate of 2.21 × 10−6 substitu-
tions per site per year. Seven SNPs were detected among seven
volunteers co-colonised with N. meningitidis and were used to
infer a mutation rate of 9.32 × 10−7 substitutions per site per year.
Therefore, no evidence of an enhanced mutation rate was
observed in volunteers co-carrying the inoculated N. lactamica
and strains of N. meningitidis. Tajima’s D was found to be
negative (approximately −1) for N. lactamica isolates examined
with or without meningococcal co-colonisation (Table 2). The
estimations of effective population size (Ne) were found to be
consistently low in all four sets (Table 2).

Recombination between co-colonising N. lactamica and N.
meningitidis. Two volunteers (36 and 291) were found to co-
carry naturally acquired N. lactamica (ST-4192 and 11524, n= 9
isolates) in addition to commensal N. meningitidis (ST-41 and
ST-10457, n= 6 isolates) (Supplementary Table 1). Together,
these volunteers accounted for the majority of recombinant loci
detected (n= 15/18 loci, Table 4). Volunteer 255 was the only
individual who was observed to carry more than one N. menin-
gitis ST during this period: a-ST-10478 meningococcus at the first
sampling point, followed by a ST-213 N. meningitidis. In contrast
to the N. lactamica Y92-1009 challenge strain, the r/m values
were between 3–5 times higher for wild-type N. lactamica and N.
meningitidis (Table 3). The largest r/m (overall effect of recom-
bination calculated as described in Table 3 legend.) detected was
18.06 and was calculated for volunteer 291 wild-type N. lactamica
and may imply the organism was subject to a recent, interspecific
recombination event although it is impossible to verify whether
the event occurred before or during the course of the study.

Six recombinant alleles were identified in the N. lactamica
isolated from volunteer 291 that were also found in the co-carried
N. meningitidis (Supplementary Figure 2). Of these six alleles,
four (NEIS0071, a putative lipoprotein; NEIS0072 & NEIS2514,
hypothetical proteins; and NEIS0899, lst, a LOS subunit
sialyltransferase) were shared by N. lactamica and co-colonising
N. meningitidis recovered from the second and third sampling
points. By week 16 however a different allele for these loci was
identified in the recovered N. lactamica. In contrast, for two loci
(NEIS1834, an acyl carrier protein and NEIS1835, a succinyl-
transferase) it was the week 16 isolates that were found to share
the same allele as the meningococci. This might suggest that these
recombination events reflect independent exchanges, however
this is not possible to determine from this data alone.

Discussion
As anticipated from previous in vitro studies of the meningo-
coccus19, phase variation was the principle mechanism by which
microbial diversity arose in the commensal carried by individuals
over 6 months. With the assumption that the mutation rate
estimate acquired from the largest number of volunteers (n= 97)
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over the longest period (26 weeks) is the most accurate, the value
of 2.21 × 10−06 substitutions per site, per year is in agreement
with estimates detected in N. gonorrhoeae20–22 and N. meningi-
tidis23. Our values for effective population size in the four sample
sets (long-term carriage of N. lactamica with and without co-
carriage of N. meningitidis; short-term carriage in vivo; in vitro
passage) were much lower (Ne= 1–25) than those recently
described among Escherichia coli examined over a year24, but
comparable to those observed in Vibrio cholerae25. These latter
two studies, however, examined different organisms in different
niches, with the Vibrio observations collected during acute
infection. A low effective population size may indicate the pre-
sence of severe bottlenecks or growth limitation, and our

observations may be an outcome of the dynamic antagonistic and
commensal processes that occur among members of the micro-
biota of the upper respiratory tract26. It is worth noting, too, that,
at least in murine models of pneumococcal colonisation, Ne was
also found to be low, between 11 and 203, and thus comparable to
our findings 27,28. Although these numbers are derived from
single colony isolates, and thus may not reflect the true genomic
heterogeneity of the population [29] the low number of mutations
observed longitudinally within individuals suggests the estimation
of both mutation rate and Ne are accurate. Moreover, a similar
substitution rate of 1.45 × 10−5 SNPs per site per year was
observed when multiple colonies were sampled among six
volunteers in the short-term study (1 month), this is in contrast to

Domains, mutations and mutation ranges introduced in large-hypothetical protein (ARB05049.1) 

b

a

Mutation information

Volunteer
Timepoint

(week)
Mutation type Mutation annotation Position 

Protein size
reduction (%)

Methionine start
sites introduced

172 26 SNP E102K (GAA→AAA) Coding (304/10197 nt) 0 0

172 16 Deletion ∆997 bp Coding (0574-1570/10197 nt) 94 1

158 8 Deletion ∆461 bp Coding (0747-1207/10197 nt) 93 0

158 26 Deletion ∆461 bp Coding (0747-1207/10197 nt) 93 0

227 4 Deletion ∆1 bp Coding (1539/10197 nt) 84 1

227 8 Deletion ∆1 bp Coding (1539/10197 nt) 84 1

227 16 Deletion ∆1 bp Coding (1539/10197 nt) 84 1

315 16 Insertion GGGGG→GGGGGG Coding (1577/10197 nt) 84 1

113 16 Deletion ∆1bp (AAAAA→AAAA) Coding (5638/10197 nt) 45 1

221 26 Deletion ∆1 bp Coding (6762/10197 nt) 34 0

201 26 Insertion +GG Coding (9803/10197 nt) 2 5

104 16 Deletion ∆1 bp Coding (9990/10197 nt) 2 5

0

ESPR

Protein domain

YadA_anchor YadA_anchor HiaBD2 YadA_anchor YadA_anchorTAA-Trp-ring L-β

300 600 900 1200 1500

Amino acid position

1800 2100 2400 2700 3000 3300

Mutation sites

Fig. 2 Domains, mutations and mutation areas of effect introduced in Large-Hypothetical Protein (ARB05049.1) (a) with the distribution found between

volunteers (b). Mutations are coloured blue and white and are listed in b in the order they occur along the protein depicted in a

Table 3 Relative recombination effect (r/m) of isolates in colonised volunteers and the parameters used to infer them

Colonisation Organism ST Isolates (n) R/theta Deltaa Nu r/m

N. lactamica N. lactamica (I) (Y92-1009) 613 97 0.48 (5.7 E−4) 35 (2.8 E−2) 0.22 (1.6E−5) 3.61

Co-colonised N. lactamica (I) (Y92-1009) 613 19 0.40 (9.1 E−3) 138 (4.5 E−6) 0.11 (9.1 E−4) 3.84

N. lactamica (WT) 11524 3 0.68 (3.0 E−2) 585 (2.1 E−7) 0.05 (6.4 E−6) 18.06

N. meningitidis (WT) 41 3 0.38 (1.8 E−3) 403 (7.4 E−7) 0.07 (1.2 E−6) 10.69

N. lactamica (WT) 4192 6 0.39 (9.1 E−3) 123 (3.5 E−6) 0.19 (1.4 E−4) 9.21

N. meningitidis (WT) 10457 3 0.28 (1.2 E−2) 420 (9.4 E−7) 0.07 (4.3 E−5) 8.32

The table displays recombination parameters among wild-type (WT) N. lactamica and N. meningitidis in addition to inoculated (I) N. lactamica Y92-1009 in single and co-colonised volunteers. The

parameters include the relative rate of recombination to mutation (R/theta), the mean length of detected recombinant regions (Delta) and mean divergence level between recipient and donor (Nu).

Standard deviations are indicated for these values in the accompanying brackets (X.X E−X). The parameters were multiplied together to generate the relative effect of recombination compared to the

relative effect of mutation (r/m). The sequence type (ST) of each collection of organisms is also given
aDelta is calculated by ClonalFrameML as 1/Delta. This has been resolved in the table to show clearly how r/m was calculated. Standard deviations for this value are for 1/Delta
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the finding of a substitution rate of 2.21 × 10−6 SNPs per site per
year in the long-term study (6 months) across many more
volunteers, albeit over a much shorter period of colonisation.
Additionally, the bulk (70%) of the mutations observed in the
short term in vivo (Supplementary Data 1) cohort occurred once
per colony sampled. Mutation prevalence over all colonies at a
given time point and mutation recurrence across time points were
observed to be rare events.

Purifying selection acts to remove non-beneficial mutations,
and our observation that most SNPs were transient, non-
recurrent events, combined with a negative Tajima’s D value,
suggest that diversity was lower than expected, consistent with the
population being subject to bottleneck events. Despite this, some
non-synonymous SNPs persisted longitudinally in some volun-
teers, becoming fixed in the sample and staying for at least one
further time point. These included non-novel mutations in rssA
and novel mutations in the nuoN, rssA, 2 hypothetical proteins
and cas1 loci. The nuo operon, which encodes subunits for
NADH dehydrogenase complex I, is among those genes upre-
gulated in iron replete conditions in N. gonnorhoeae29 and N.
meningitidis incubated in human blood30. Cas1 acts as a dsDNA
endonuclease in a minimal, self-promoted, CRISPR-Cas type II-C
system in N. lactamica, that has been postulated to provide
adaptive protection to its host from unbeneficial, exogenous,
horizontal gene transfer31. The persistent mutations in phos-
pholipase RssA represent the first evidence of this gene adapting
to the oropharyngeal environment.

Most of the insertion and deletion events not present in con-
tingency loci affected one gene: a large, (~10,000 bp) multi
domain hypothetical protein (L-hp). An in-silico simulation of
how these mutations might affect protein coding revealed frame-
shifted introductions of interproteomic methionine residues and
overall reductions in predicted protein size. The L-hp locus was
the only region in which mutations were seen to persist in some
volunteers. The low GC content of this locus relative to N. lac-
tamica Y92-1009 suggests that it may have been horizontally
acquired by N. lactamica from another nasopharyngeal coloniser,
perhaps H. influenzae, based on the results from CDART and the

possession of a H. influenzae autotransporter domain. This is not
uncommon and there are other examples of genes postulated to
have been acquired by N. lactamica 020-06 from H. influenzae,
including phosphroylcholine biogenesis genes licABCD, ATPase
gene slpA, protease gene slpB and putative surface fibril protein
NLA1260032. The presence of trimeric autoadhesins such as the
YadA -like and Hia conserved domains, suggest this protein may
have a role in initial attachment of the bacterium to a human
host33. Post-colonisation, it may be that the deletion of these
proteins is beneficial, perhaps metabolically or as it is a site for
host-recognition.

In conclusion, N. lactamica Y92–1009 possesses a stable gen-
ome that undergoes stochastic mutation, at a low mutation rate
with minimal evidence of recombination or interspecific inter-
action with co-colonising meningococci, as was demonstrated by
wild-type N. lactamica. However, the observed genetic changes
indicate an important role of phase variation among genes
associated with host-commensal interaction and iron acquisition
in sustained colonisation of human hosts. A lack of micro-
evolutionary evidence in N. lactamica isolates co-colonised with
N. meningitidis suggests that the meningococcal carriage sup-
pression induced by N. lactamica may be due to outcompeting
the pathobiont for essential resources in the nutrient-limited,
nasopharyngeal niche.

Methods
Controlled human infection with N. lactamica. N. lactamica Y92–1009 was ori-
ginally isolated during a 1992 carriage study of school pupils in Londonderry,
Northern Ireland. Its use in an experimental human challenge model (Clinical Trial
Registration: NCT02249598) has been reported previously [16]. The study was
approved by the National Health Service Research Ethics Committee (11/YH/
0224), was overseen by an independent safety committee, and was conducted in
accordance with the Declaration of Helsinki. Written informed consent was gained
from participants prior to inclusion in the study. Briefly, 149 participants received
nasal challenge with 104 CFU of N. lactamica. In this group, natural N. meningitidis
carriage at baseline was 36/149 (24.2% [95% CI, 17.5%–31.8%]). Natural carriage of
N. lactamica prior to inoculation was observed in 3/149 individuals (1.9% [95% CI,
.4%–3.5%]). Following challenge, oropharyngeal swabs were taken at 2, 4, 8, 16,
and 26 weeks and were plated directly onto gonococcus (GC)-selective media
(E&O Laboratories, Scotland) and incubated at 37 °C in 5% CO2. After 48 hours,

Table 4 Genes undergoing recombination

Organism Volunteer Recombinant NEIS loci Gene alias Annotation Direction of

recombination

N. lactamica (I) 166 NEIS1708 NMB0444 hp Unknown

N. lactamica (I) 133 NEIS1794 N/A Putative mafS3 cassette Unknown

N. lactamica (I) 38 NEIS1828 NMB0342 Intracellular septation protein A Unknown

N. lactamica (WT) 36 NEIS1795 NMC1795 Mafl immunity gene: type o2MGI-2 Unknown

N. lactamica (WT) 291 NEIS0069 NMB0085 Sodium glutamate transport Unknown

N. lactamica (WT) 291 NEIS0073 NMB0088 Outer membrane transport Unknown

N. lactamica (WT) 291 NEIS1837 NMB0334 (pgi2) Glycolysis pathway enzyme Unknown

N. lactamica (WT) 291 NEIS2437 NMB0336 Putative lipoprotein Unknown

N. lactamica (WT) 291 NEIS0071 NMB0071 Putative lipoprotein Interspecific

N. lactamica (WT) 291 NEIS0072 NMB0087 hp Interspecific

N. lactamica (WT) 291 NEIS0899 NMB0922 (lst) LOS alpha-2,3-sialyltransferase Interspecific

N. lactamica (WT) 291 NEIS2514 hp — Interspecific

N. lactamica (WT) 291 NEIS1834 NMB0336 Enoyl-(acyl carrier protein)

reductase

Interspecific

N. lactamica (WT) 291 NEIS1835 NMB0335 N-succinyltransferase Interspecific

N. meningitidis (WT) 36 NEIS2149 NMB0011 Peptidoglycan (cell wall)

biosynthesis

Unknown

N. meningitidis (WT) 36 NEIS2859 hp — Unknown

N. meningitidis (WT) 291 NEIS0210 NMB0018 (pilE) Pilus component synthesis Unknown

N. meningitidis (WT) 291 NEIS1402 hp — Unknown

The table lists genes identified as recombinant in the dataset following analysis by ClonalFrameML. Isolates of N. lactamica are differentiated with the labels wild-type (WT) and artificially-inoculated (I).

Gene names are given as found on PubMLST Neisseria (NEIS loci), in addition to more commonly recognised gene aliases. The label interspecific, refers to loci that shared the same recombinant allele

with their co-colonising species during the course of the study
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possible Neisseria spp. colonies were subjected to API-NH strip testing (bioMér-
ieux, France) and PCR16. The isolates were not extensively passaged. Growth was
limited to two passages (one for isolation from the host and one for preparation of
sequencing). Two weeks after inoculation, oropharyngeal swabs from 48 indivi-
duals challenged with N. lactamica yielded cultivable N. lactamica (33.6% [95% CI,
25.9%–41.9%]), but colonization with N. lactamica was detected as late as week 26,
by which time colonisation with N. lactamica at some point in the study had been
confirmed in 61 of 149 (41.0% [95% CI, 33.0%–49.3%]) of the challenge group. All
isolates of N. lactamica and N. meningitidis were cryostored. The study flow is
summarised in Supplementary Figure 3.

Choice of Neisseria isolates for genomic analysis. The inclusion strategy
prioritised the following: (a) isolates from individual volunteers that were recovered
from multiple sampling points; (b) isolates from volunteers co-colonised with N.
meningitidis; and, (c) isolates recovered either early (week 2) in the study or later
(week 26), with the rationale that the isolates from earlier time points had
undergone adaptation and selection more recently and the isolates at the late time
point would have a greater chance of demonstrating signs of convergent evolution,
having colonised their respective hosts for the longest period of time. In total 97N.
lactamica Y92–1009, 14N. meningitidis and 9 non-Y92–1009 N. lactamica isolates
were chosen for sequencing and analysis. These isolates are summarised in Sup-
plementary Data 6

Comparison of in vitro passage vs. in vivo colonisation. To compare stochastic
mutation during in vitro passage with variation observed intra-host, 10 additional
volunteers were intra-nasally inoculated with 104 CFU ml−1 N. lactamica
Y92–1009 stock. Oropharyngeal swabs were used to take samples at days 1, 2, 3, 14
and 28. Colonisation was established in five of the ten volunteers. In vitro serial
passages were done in duplicate and in parallel with the in vivo colonisation study.
Isolates, consisting of 1–5 colonies, were subcultured on Columbia blood agar every
weekday for 28 days. A maximum of five colonies of N. lactamica from each
sampling point were selected and sequenced.

Culture. Bacterial samples were recovered from cryostorage (−80 °C) and streaked
onto Columbia+ horse blood plates and cultured overnight at 37 °C. N. lactamica
colonies were confirmed using X-gal (Sigma Aldrich, USA) in PBS. Two blue
colonies were then subcultured into bijoux tubes, each containing 2 ml Tryptic Soy
broth with 0.2% yeast extract (Sigma Aldrich, USA). The cultures were grown
overnight with agitation at 37 °C.

Genomic DNA extraction. Genomic DNA was extracted using the Wizard
Genomic Purification Kit (Promega, USA). Sample purity and concentration (OD
260/280) were assessed using a Nanodrop 1000 spectrophotometer (ThermoFisher,
UK) and Qubit 2.0 fluorometer with the BR dsDNA kit (Invitrogen, UK). For long
read sequencing of the reference genome, a sample of cell bank purified stock was
cultured and extracted using the Gentra Puregene yeast/bacteria kit according to
manufacturer’s instructions (Qiagen, Germany) to produce 30 µg of high molecular
weight (>40 kDA) DNA.

Sequencing. All isolates of N. lactamica were sequenced using an Illumina HiSeq
2000 instrument as described previously34 to generate 2 × 151 bp PE libraries. For
the reference genome, high molecular weight DNA was pooled and sequenced
using the Pacific Biosciences RSII instrument as outlined in17 (Earlham institute,
Norwich). Data for the reference strain is available on NCBI with accession
CP019894.

Genome assembly, correction and annotation. Reads were assembled using
velvet optimiser and added to the PubMLST Neisseria database35 [https://pubmlst.
org/neisseria/]. The resultant contigs were annotated using automated processes to
identify specific loci using the PubMLST.org/neisseria ‘NEIS loci’ catalogue36 The
reference genome was assembled at the Earlham institute (as described in17). Error
correction of the reference was done with Illumina reads using Pilon v1.1737.
Annotation was done using Prokka v1.1138 aided by a curated protein list from N.
lactamica 020-06 (accession: FN995097).

Mutational and recombination analyses. Mutational analysis was performed by
mapping reads against the reference genome assembly using the breseq v0.23b
pipeline39. In addition, in order to determine the novelty of persistent, volunteer-
specific, and in one case, non-specific non synonymous mutations identified in this
study, the specific location and amino acid changes relative to that position of
mutants were searched via sequence database BLAST of the entire Neisseria loci
catalogue hosted on pubMLST Neisseria database and via non-specific BLASTp
against the nr database.

Recombination analysis was done using ClonalFrameML v1.25 (CFML)40 using
core XMFA alignments and a core genome, maximum-likelihood (ML) tree as
input. The genome comparator tool [https://pubmlst.org/neisseria/]was used to
determine core NEIS loci. Before generating an alignment, the NEIS loci were
exported in FASTA format and screened for paralogues using CD-HIT v4.6.641

which were excluded from the pool of core NEIS loci. The genome comparator tool
was then used to output core XMFA and FASTA alignments, the former to be used
as input to CFML, the latter to be used to construct a ML tree. The ML tree was
created by converting the FASTA alignment to PHYLIP format using EMBOSS
seqret v6.642 and running PHYML v2013102243 on the PHYLIP alignment using
the HKY85 model. This process also outputted a transition/transversion ratio to be
used as the -kappa input parameter in CFML. ML trees were converted to binary
format using the R package ape v3.044. The use of XMFA files with CFML
introduced 1000 bp spacer segments between each gene in the alignment. The
subsequent data on the location of recombinant alleles was adjusted to correctly
confirm their identity. Any recombinant alleles were examined manually using
mView45 to confirm significant divergence suggesting recombination instead of
false positives due to interspersed, minor mutation events.

Phase variation ON VS OFF statistics. Six genes, lgtG, lgtC, pglA, pglH, hsdS and
hpuA were tested for significant differences in phase ON vs phase OFF status in
weeks 2, 4, 8, 16 and 26. These six were tested as we limited the analysis to those
that underwent at least one phase variation and where putative ON/OFF expres-
sion status data was available in the literature from other Neisseria spp.46,47. In
addition, fetA was excluded as this is not an ON/OFF phase variable event but a
promotor-dependent modulator for transcriptional efficacy, the role of which is
unconfirmed in this Neisseria spp. Fishers exact tests using 2 × 2 contingency tables
were tested in GraphPad Prism contingency table calculator48. The input into the
table was the number of isolates for an early time point which had putative phase
ON copy numbers vs putative phase OFF copy numbers. The second row of the
contingency table contains the isolates with ON/OFF copy number for the later
time point to be tested. When testing isolates in week 2, null values were used in
place of week zero samples in the contingency table.

Protein sequence analysis. Where applicable, hypothetical proteins were inves-
tigated using the conserved domain architecture tool49, which was used to meta-
analyze the predicted protein domains. These domains, alongside any mutations
that were seen to occur during longitudinal carriage, were used as input for plot
protein50 to generate a protein diagram. In silico translations to determine effects
of mutation on protein size were examined using ExPASy translate51.

Effective population size, selection and mutation rate calculations. Core loci
alignments, generated as described above, were used as input for the R package
PopGenome52 to test for selection using Tajima’s D53 and to calculate diversity via
Tajima’s theta (θ). The mean values for Tajima’s D and θ were taken and the
standard deviation of the population was calculated. Mutation rate (m) was cal-
culated as the number of SNPs per site per year. Effective population size (Ne) was
estimated by rearranging the formula θ= 2gNemL to Ne= θ / (2mgL)54, where θ is
the mean genetic diversity using Tajima’s theta, m is the mutation rate per site per
year, g is the generation rate (estimated to be roughly one cell division per day: 1/
365) and L is the genome length (2,146,723 bp).

Data availability
The complete reference genome is available17 as published work and on GenBank
(accession: CP019894.1). One of the major proteins of interest dubbed “l-hp” can
be found at accession number ARB05049.1. Sample assemblies and reads from the
long-term study have been deposited in the European Nucleotide Archive (ENA)
and can be accessed using the study access code PRJEB9839. A full list including
volunteer codes, isolates, and ENA accession codes is shown in Supplementary
Data 7. Sample assemblies and reads can also be accessed by searching for the “ID
number” (displayed in Supplementary Data 7) in the PubMLST Neisseria isolate
search page [https://pubmlst.org/bigsdb?db= pubmlst_neisseria_isolates&page=
query]. The database can be queried in the following manner. The Isolate Prove-
nance Field must be changed to “ID”. The value in the middle must be left as an “

= ” sign. The ID number can be now entered and submitted. Other data supporting
the findings of the study are available in this article and its Supplementary
Information files, or from the corresponding authors upon request.
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