New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

FAST TRACK COMMUNICATION « OPEN ACCESS

Spatially localized quasicrystalline structures

To cite this article: P Subramanian et al 2018 New J. Phys. 20 122002

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 129.11.22.59 on 04/02/2019 at 15:34


https://doi.org/10.1088/1367-2630/aaf3bd
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/944538868/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
12 August 2018

REVISED
29 October 2018

ACCEPTED FOR PUBLICATION
26 November 2018

PUBLISHED
14 December 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New J. Phys. 20 (2018) 122002 https://doi.org/10.1088/1367-2630/aaf3bd

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

FASTTRACK COMMUNICATION
Spatially localized quasicrystalline structures

P Subramanian' @, A J Archer’®, E Knobloch’ and A M Rucklidge'

! Department of Applied Mathematics, University of Leeds, Leeds LS2 9] T, United Kingdom
> Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
* Department of Physics, University of California at Berkeley, Berkeley CA 94720, United States of America

E-mail: p.subramanian@leeds.ac.uk

Keywords: quasicrystals, spatially localized states, phase field crystals, soft matter crystallization

Supplementary material for this article is available online

Abstract

Soft matter systems have been observed to self-assemble, over a range of system parameters, into
quasicrystalline structures. The resulting quasicrystals (QCs) may minimize the free energy, and be in
thermodynamic coexistence with the liquid state. At such state points, the likelihood of finding the
presence of spatially localized states with quasicrystalline structure within the liquid is increased. Here
we report the first examples of metastable spatially localized QCs of varying sizes in both two and three
dimensions. Implications of these results for the nucleation of quasicrystalline structures are
discussed. Our conclusions apply to a broad class of soft matter systems and more generally to
continuum systems exhibiting quasipatterns.

1. Introduction

Soft matter is capable of organising into complex structures even when the underlying interactions between the
individual constituents are simple. These structures can be described by the phase field crystal (PFC) model [1].
The PFC model represents a simplification [2—4] of the more accurate density functional theory (DFT) approach
[5-7] and has proved useful in understanding the formation and properties of soft matter crystals under various
conditions. Our work analyses structure formation in a PFC model of a broad class of soft matter systems, such
as dendrimers or block copolymer micelles, but is relevant more generally to the field of pattern formation. Such
macromolecules can interact through an effective pair potential that is isotropic, i.e. a potential that depends on
the distance between the centres of the particles and not their relative orientation [8, 9]. When the constituents
have two inherent length scales, DFT shows that density modulations with two distinct length scales feature
strongly [10-13].

We analyse structure formation in such soft matter systems using a PFC approach, which consists of a
gradient expansion of the DFT, equivalent to a Taylor expansion of the pair direct correlation function in
Fourier space [14, 15]. In earlier work, it was shown that the presence of two length scales in the interactions
promotes the formation of quasicrystals (QCs), i.e. structures with rotation symmetries on average but no
translation symmetries, and a dense point diffraction spectrum [10-13, 16—19]. QCs are formed when the ratio
of the two length scales is near particular values specified below. Two length scales can arise in other pattern
forming soft matter systems due to the interaction of particles with short-range attraction and long-range
repulsion [20, 21] or other forms of frustration in the interactions [22]. Just as in the QC-forming systems of
interest here, the liquid state static structure factor S(k) in the above systems has two distinct peaks,
corresponding to the two different length scales, but their ratio is different from the values required for QC
formation.

Soft matter QCs are often dodecagonal in two dimensions (2D) and icosahedral in three dimensions (3D).
QCs have been found in nanoparticle [23] and polymeric [24—28] soft matter systems. Our earlier work [18]
shows that QCs can be in thermodynamic coexistence with the liquid, suggesting the possibility of finding
spatially localized QCs [29]. Of course, alocalized structure cannot, strictly speaking, be a QC. In the following
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we use this terminology to refer to localized structures that have the dodecagonal or icosahedral symmetry of a
QC, but do not fill the domain completely. Such states can be thermodynamically stable, metastable or unstable.
In this paper, we show that spatially localized QCs not only exist but can be thermodynamically metastable.
These metastable spatially localized QCs come in a variety of sizes, which change continuously from one to
another, via unstable states, when one of the system parameters varies.

The relative simplicity of the PFC approach means that it is increasingly widely used to model systems in
which more precise treatments are difficult or impossible, for example, liquid—solid transitions, colloid
patterning and liquid crystals (see [1] and references therein). In adopting a PFC model, we make a
simplification of the physics of dendrimer interactions. As a result, our model provides a generic description
of the crystallization of soft matter into QCs, but no comparison can be made with any specific material.
Nonetheless, the results in our work provide a proof of concept, focusing on the most important aspects in the
problem, namely the interaction of density modulations on two length scales and thermodynamic coexistence of
QCs with the liquid. Moreover, the simplicity of the model implies that it may be considered to be a generic
model for pattern formation in systems with two length scales, an energy (or free energy) minimization principle
and conserved dynamics.

The PFC model is a theory for a scalar density-like order parameter U (x) with grand potential (Landau free
energy) functional Q[U (x)]. Minimizers of Q[ U (x)] with nonconstant U (x) are identified with the solid phase,
while those with constant U (x) correspond to the liquid phase. The simplest PFC model takes the form of the
conserved Swift—-Hohenberg equation and the steady states of this model have been studied in detail in 1D, 2D
and 3D [30]. The model exhibits coexistence between the liquid state and various crystalline states over a range of
temperatures [1, 14]. In this regime one also finds thermodynamic equilibria corresponding to spatially localized
structures that bifurcate from the periodic crystal, and exhibit homoclinic snaking [29-31]. Suitably modified to
allow interaction between two different spatial scales [ 18, 32] the PFC model also forms spatially extended QCs.
Both dodecagonal QCs in 2D [32] and icosahedral QCs in 3D [18] have been identified and these can be
thermodynamically stable under appropriate conditions, that is, at these state points, they are global minima of
the grand potential free energy (2. In contrast, the localized QCs that we have found are only metastable, i.e. they
correspond to local minima of 2. Note that throughout this work, we do not refer to the localized QCs that we
find as either ‘grains’ or ‘clusters’, since this word is associated with various different meanings in the context of
QCs. For further discussion on this point, see the appendix. Instead, we use the word ‘motif’ to refer to the
aperiodically repeating local arrangements of density peaks observed in our QCs.

2. Model and numerical details

Our model describes the space—time evolution of a dimensionless scalar field U (x, t) that specifies the location
and magnitude of density perturbations from a homogeneous state [1]. The system is described by the
Helmholtz free energy

Q

— _l _ =173 l 4 d
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The time evolution of U conserves mass, i.e. U = fD U dix is fixed, where D is the system volume, and follows

oUu  _,(6FIUTY ) ) 5
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The linear operator £ is chosen to promote the growth of density modulations at two wave numbers, hereafter
k = landk = q < L. Thischoice of £ is aimed at modelling generic soft matter systems where the liquid state
static structure factor S(k) is isotropic, i.e. S(k) depends only on the magnitude of the wave vector k = |k|. The
structure factor is an important quantity in the present context, since it is proportional to the Fourier transform
of the linear density response function [5]. Moreover, for an equilibrium liquid, the structure factor also
determines the dispersion relation that specifies the growth or decay rate o(k) of infinitesimal sinusoidal density
perturbations with wave number k: o (k) ~ 1/S(k) [33].

For dendrimers or any other such soft particles with isotropic effective pair interaction potentials and two
inherent length scales, density modulations with two distinct length scales can feature strongly [10-13]. This
important qualitative property is captured by the generic choice (see figure 1 in [18])

_ k*[nA k) + 7,B(k)] n k%0
q4(1 _ q2)3 q4
Weadopt the choice A (k) = [k*(q> — 3) — 2¢* + 41(q*> — k?)’)q*and B(k) = [k*(3q> — 1) + 2q* — 4q*]

(1 — k*)*asin[18, 34] and use the two temperature-dependent parameters r; and r, to control the linear growth rates
ofthe modes with k = 1 and k = q.In addition, the parameter o, < 0 controls the sharpness of the peaks in the

o (k) (1 — k*(q* — k»)~ 3
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growth rate at these two wave numbers. Our model allows independent control of these three quantities, in contrast to
models based on the Lifshitz—Petrich free energy [32, 35].

In general, when the temperature decreases, both r; and r, increase. In the following, we vary ry, plotting
results for fixed r,, asa function of ry.In particular, when n, = 1, = U = 0, modes with wave number
k = g, 1decayas o (k) = opk*(1 — kH)*(g* — k»?/q*. When r; = 0 or r, = 0 there are additional terms
in o(k) and when U = 0 the growth rate o(k) is also influenced by the parameter Q [18]. This important
parameter also controls the strength of three-wave interactions. With appropriate choice of g, such as
q=1/Q2cos(r/12)) =~ 0.5176 or g = 1/(2 cos(n/5)) ~ 0.6180, the model promotes the formation of
dodecagonal QCsin 2D (d = 2) or icosahedral QCs in 3D (d = 3), respectively [18, 35].

In view of equation (2), the evolution of the free energy F with time is given by

ar _ f5_f3_Uddx _ f‘s_fvz(‘s_f)ddx _ _ﬂ v

dt oU ot oU oU oU
where we have used the functional chain rule and an integration by parts, assuming no boundary contributions.
This result implies that the free energy decreases monotonically with time, until it reaches alocal or global

minimum. Thus at equilibrium V(6 F/6U) = 0, implying that the quantity u = 6 F/6U is constant. This
quantity is the chemical potential. The equilibrium states of the dynamical system (2) therefore satisfy

2
dix, 4)

LU+ QU? - U? = —pu. (5)

In the following we characterize equilibrium structures in terms of the grand potential

QU] = FAIU] - p f Udx, 6)

whose minima correspond to metastable states. The global minimum amongst all equilibrium states
corresponds to the thermodynamically stable state. All results presented here are computed at ;1 = 0, so states
that minimize € also minimize F.For a given value of y, there can be several possible bulk extended equilibria;
we focus on the one with lowest Q2. With i = 0, the only homogeneous equilibrium for our parameter values is
the liquid state with U = 0 and Q2 = 0,inwhich case o(1) = ryand 0 (q) = g%

2D direct numerical simulations of equation (2) are carried out in a periodic square domain of side 607. In
the 3D calculations, we used a periodic cubic domain of size 327 chosen in a similar fashion to [18]. These
choices of the domain size allow the formation of extended (but still approximate) QCs [36]. In our
pseudospectral approach we use FFTW [37] employing 256 Fourier modes in each direction in 2D (192 in 3D),
and time-step using second-order exponential time differencing (ETD2) [38]. Starting from smoothed random
initial conditions, we find (in 2D) several qualitatively distinct equilibria: the liquid state, lamellae (lam) and
hexagons (hex) at each of the two possible wavelengths (27 and 27r/g), and a dodecagonal QC. In 3D, we find in
addition body-centred cubic crystals and body-centred icosahedral QC. These equilibria are then used as initial
conditions for numerical continuation of equation (5) using pseudo-arclength continuation [39] employing a
biconjugate gradient stabilized method [40] and an induced dimension reduction method [41] to solve the large
linear systems that arise in the Newton iteration up to an accuracy of O(10~1%). This procedure allows us to trace
out connected branches of equilibria with the same y (but different U') as r; varies and to explore the space of
possible equilibria of the model irrespective of their dynamical stability.

3. Results

3.1. Spatial localization of a 3D icosahedral QC

In [18], we showed that minima of the grand potential €2 in 3D domains correspond to periodic structures such
aslamellae, columnar hexagons, and body-centred cubic crystalline phases, as well as abody-centred icosahedral
QC ssuch as that shown in figure 1(a). These extended states fill the domain, but for parameter values where the
homogeneous liquid phase and the icosahedral QC state are both linearly stable, we also find states that
minimize §2and correspond to spatially localized QCs, i.e. states in which the QC phase fills only part of the
domain. Figure 1(b) shows one such state. This metastable state retains icosahedral symmetry and the slice is
chosen to reveal its (approximate) 5-fold symmetry. One may think of such localized QC structures as a QC with
asuperposed envelope that locally picks out a particular motif from the QC and suppresses the pattern

further away.

Such spatiallylocalized equilibria lie on a continuous solution branch along which the size of the region
occupied by the QC phase changes. The solution branch can be found using numerical continuation techniques
that minimize Q[ U (x)] and more generally find stationary solutions, while varying parameters. These include r;
and r,, which determine the peak growth rates of wave numbers 1 and g, and the chemical potential .

3
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Figure 1. The 3D density U (x) sliced perpendicular to the 5-fold symmetry axis for (a) a thermodynamically stable extended
icosahedral QCand (b) a metastable localized quasicrystal at the same parameters: r; = r, = —0.51, 9 = 1/(2cos(7/5)),Q = 2,

0o = —100and chemical potential ;¢ = 0. See the supplementary information, available at stacks.iop.org/njp/20,/122002/mmedia,
for more details on the structure of the extended and spatially localized QCs.

0.5

T

Figure 2. (a) Thermodynamically stable 2D structures in the (r,, 7,,) plane, computed as global minima of the grand potential {2 when
the chemical potential vanishes, » = 0. The dashed lines indicate the axes. The dotted line represents a path corresponding to

ry = —0.412 explored in detail in subsequent plots. Panels (b) and (c) show stable states along this path, g-hexatr, = —0.6181 and
QCatr; = —0.3112, respectively. The remaining parameters are: ¢ = 1/(2 cos(7/12)), Q = 2and 6y = —10. The colour scale
indicates the value of the order parameter U (x) in panels (b)—(c).

Analogous behaviour is present in 2D, and since most soft matter QCs are planar, we focus on 2D dodecagonal
QCsin the remainder of the paper.

3.2. Phase diagram for 2D dodecagonal QCs

Figure 2(a) shows the (ry, ;) parameter plane for 4 = 0, indicating the global minimum of the grand potential {2
ateach point. When both r; and r, are strongly negative, the liquid state is the global minimum. When r; orr,,
increase we obtain hexagons with lattice spacing 27[1-hex] or 27/q (q-hex, figure 2(b)) and a region of g-
lamellae when both are positive. Of particular interest is a substantial region in the third quadrant with stable
dodecagonal QCs (figure 2(c)). In this region the liquid state is linearly stable, as r; and r,, are both negative, albeit
metastable with respect to the QC. Parameter values where the grand potentials of two different states are equal,
i.e. the Maxwell points, separate the different regions (solid lines in figure 2(a)). Maxwell points are ideal starting
parameter combinations for locating spatially localized states consisting of a patch of one state embedded ina
background of another.
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Figure 3. (a) Specific grand potential {2/A as a function of r, (dotted line in figure 2(a)), with 4 = 0 and r; = —0.412. The remaining
parameters are as in figure 2. (b) Norm || U|| of the state U (x) as a function of r; for the same parameters as in (a). In both figures,
spatially extended states include the liquid (black line), 1-lam (brown line), 1-hexagons (blue line), g-hexagons (green line), the QC
state (red line), while the magenta line indicates a branch of spatially localized QC states with dodecagonal symmetry. The portions of
this line where localized states are metastable are indicated with arrows. These portions correspond to the lower parts of the ‘swallow-
tails’ in (a), which are displayed in greater detail in figure 4(a).

3.3. Branches of spatially extended and localized states

In order to investigate the effect of varying ry, we setr, = —0.412 and 1 = 0 (dotted line in figure 2(a)) and study
the bifurcation behaviour of the system. Figure 3(a) shows the specific grand potential {2/A (A is the area of the
domain) as a function of r, for spatially extended states: liquid (black line), 1-lam (brown line), 1-hex (blue line),
q-hex (green line), the dodecagonal QC (red line) and a branch of spatially localized QC states with dodecagonal
symmetry (magenta line). The 1-lam, 1-hex and QC structures originate at the spinodal (threshold for linear
instability of the liquid state) point, r; = 0. The hexagonal and the QC states arise via transcritical bifurcations
and so are found on either side of r; = 0. However, linearly stable states are only found along parts of the
branches below the prominent cusps in panel (a).

Figure 4(a) shows a magnification of a portion from figure 3(a) in the vicinity of the coexistence between the
QC states (red line) and the liquid (black line). The QC and liquid are in thermodynamic coexistence at the
crossing point of these lines at r; =~ —0.6. Spatially localized QC states, shown by the magenta line, are found
nearby. In figure 4(a), dashed magenta lines indicate linearly unstable spatially localized QCs while solid
magenta lines indicate metastable spatially localized QC states. Panels (b) and (c) show zoomed-in views of two
of the swallow-tails.

Panels (d)-(g) of figure 4 show sample solutions along this branch at the locations indicated in the inset of
panel (a). These states arise via long wavelength modulational instabilities [42], in which long wavelength
modulations suppress the QC amplitude in different parts of the spatial domain. States (e)—(g) do not depend on
domain size: identical states are found in boxes of size 1647. With increasing 1, the branch of localized states
undergoes fold bifurcations creating three ‘swallow-tails’ close to locations (d)—(f), before connecting to the
unstable small amplitude extended QC branch close to the QC spinodal, near location (g).

Panel (d) shows an example of a spatially modulated QC, where the QC structure is suppressed in the vicinity
of the four corners of the domain. The state shown is metastable and is organized around a dodecagonal
structure at its centre. As one follows the branch of modulated QC states (magenta line) to the next swallow-tail,
these holes deepen, suppressing the QC structure further and leaving a spatially localized QC in a background
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Figure 4. (a) Zoom of figure 3(a) showing the dependence of the specific grand potential (/A on the parameter r;. In addition to the
spatially extended states shown in black (liquid state), blue (1-hexagons) and red (QC state), the magenta line indicates the branch of
spatially localized QC states with dodecagonal symmetry. The solid line indicates regions of metastability while dashed lines indicate
unstable equilibria. Further zoomed-in views of the swallow-tail behaviour close to (b) r; = —0.62and (c) r; = —0.415, corresponding
to the states shown in panels (d) and (£), respectively, are also shown. (d)—(f) Metastable localized QC states on each swallow-tail at the
locations indicated by O in the inset in panel (a), corresponding tor; = —0.5954, —0.4926 and —0.4151, respectively. (g) Unstable
localized stateatr; = —0.14. The remaining parameters are as in figure 2.

liquid state. Panel (e) shows a metastable state of this type. As r; increases from the left fold close to (e), the
structure starts to lose the outer ring of 12 peaks. This process is almost complete by location (f), where there is
only one ring of 12 peaks surrounding a single central peak. This state is also metastable. With further increase in
r1, the state gradually decreases in amplitude, while the interface becomes more diffuse, as the spatially
modulated structure approaches an unstable low amplitude but spatially extended QC solution near the
spinodal. Panel (g) shows an example of an unstable localized state just prior to the merger with the unstable
extended QCstateatr; = —0.11.

Metastable localized states are found only on the lower branch in each of the three swallow-tail regions, and
these regions are a reflection of slanted snaking that is expected of localized structures in mass-conserving
systems [30, 43, 44]. Indeed, if we replot the data shown in figure 3(a) in terms of the L> norm || U|| of the order
parameter U(x) we find a slanted snaking diagram (figure 3(b)) of the type that is present in other conserved
system such as the conserved Swift—-Hohenberg equation [30] and binary fluid convection in a porous medium
[45], a system in which temperature gradients and fluid flow redistribute a conserved amount of solute [46].
Moreover, [30] shows that if the slanted snaking data from the one-dimensional Swift—-Hohenberg equation are
replotted as a function of the chemical potential 14 the snake is ‘straightened out’ and an upright snaking
bifurcation diagram is recovered. For structures confined in two or more spatial dimensions the snaking
behaviour is not as clear owing to the greater number of ways the structure may grow but the same relation
between swallow-tails, slanted snaking and upright snaking is expected. In figure 3(b) we indicate the location
of the solutions that correspond to local energy minima and hence the swallow-tails in figure 3(a). This
correspondence in turn shows that the number of swallow-tails will grow as the localized QC or quasicrystalline
patch grows following the solution branch. In the numerical continuation the ultimate size of such a patch is of
course determined by the size of the computational domain. We find that both the size of the patch and the
behaviour of the corresponding solution branch are insensitive to the domain size (and the conditions applied at
its boundary) provided the pattern does not grow so large as to come within several wavelengths 27r/q of the
boundary. Weak effects of the square symmetry of the domain can in fact be detected for smaller patches—these
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Figure 5. (a) Specific grand potential /A as a function of ;. In addition to branches of spatially extended solutions (black, blue and
red lines) and the symmetric spatially localized states (magenta line) from the inset in figure 4(a), we show a branch of localized states
with hexagonal central motif (dashed—dotted dark grey line), and a branch of localized states with square central motif (dashed
mustard line). The line decorations in this figure serve only to distinguish the different branches and are not indicative of stability. The
profiles U (x) corresponding to (b) r; = —0.2388, (c) r; = —0.4926 and (d) r; = —0.5954 are on the dashed—dotted dark grey line
with hexagonal central motif while (e) r; = —0.2937, (f)r; = —0.3495 and (g) r; = —0.4859 are on the dashed mustard line with
square central motif. The remaining parameters are as in figure 2.

are present because of exponentially weak interactions with ‘image’ patches outside the depicted domain—but
do not fundamentally alter our conclusions.

We anticipate therefore that in larger domains the number of swallow-tails in figure 3(a) will be greater since
each is associated with the appearance of a new layer of structure around the central dodecagonal motif. Similar
spatially localized but crystalline structures are associated with the periodic structures also shown in figure 2.
Thus patches of hexagons, etc are also present, as is the case in non-conserved systems [31].

3.4. Spatially localized states with reduced symmetry

The dodecagonal symmetry about the central peak visible in figures 4(b)—(e) is retained all along the branch of
localized QC shown by the magenta line in figure 4(a). Additional branches of localized QC with reduced
symmetry are also present. Figures 5(b), (e) show two such equilibria with hexagonal and square central motifs,
for r; values near where the associated localized states merge with the unstable extended QC state. In general the
growth of these structures with decreasing r; does not maintain the symmetry of the central motif—these states
are, after all, quasicrystalline and hence aperiodic—unless enforced by the shape of the domain. We show
examples of equilibria that have broken the (approximate) hexagonal or square symmetry of the central motifin
figures 5(c), (d), (), (g).

The branches of localized solutions associated with each of the symmetry-broken motifs also display
swallow-tails, as shown in figure 5(a). The numbers and parameter ranges of the swallow-tails along each branch
differ. Among the branches of localized solutions, the branch with hexagonal motif has the lowest grand
potential €2 over most of its range.

4. Concluding remarks

We have shown that localized patches of QCs surrounded by bulk liquid can be metastable both in 2D and 3D. In
2D these structures are located on the swallow-tails in figures 3—5 and we expect similar behaviour in 3D. As
shown in figure 3(b), the swallow-tails in figure 3(a) (zoomed in view shown in figure 4(a)) correspond to slanted
snaking when replotted in terms of the norm || U||. This applies to regular crystals as well, although in both cases
the overall snaking structure becomes more complex as one goes from 1D to 2D and then to 3D, with the
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‘wiggles’ in the snake becoming less regular [29-31]. This is because with increasing dimensionality there is an
increase in the number of sites around a localized structure where new peaks can appear as the size of the
structure grows along a solution branch. In the case of QCs (as opposed to hexagons) this complexity is greater,
owing to the variety of different ways the additional density peaks can be placed and removed. Interestingly, we
find that as the symmetric localized QC (figure 4) increases in size, the growth leads to a snaking with fewer
wiggles than one might expect. The growth is more akin to that observed for circularly symmetric ‘target’
patterns than the growth of hexagonal localized states [31], presumably because the energy to locate a new peak
on the surface of the localized QC depends very little on its location on the surface. Note also that in figure 3(b)
the lower two wiggles in the localized QC branch are smoother than the higher wiggles because these are for
localized states that do not interact with the domain boundary. Once the localized QC approaches the boundary
and starts to interact with its images, the wiggling becomes more complex.

The fact that some of these spatially localized QCs are metastable (i.e. local minima of the free energy) has
significant consequences: their stability will make these structures longer lived in an environment with thermal
fluctuations. One should therefore expect that some of these will play the role of ‘stepping-stones’ on the path
through phase space either side of the critical nucleus and on towards forming the bulk QC phase, thereby
greatly influencing the rate of QC nucleation. In other words, the existence of these localized QC willlead to the
timescale for forming the bulk QC to be shorter than it might otherwise be, thereby enabling the QC, for some
parameter values, to out-compete the regular crystal in the race to form from the liquid. In this manner, these
structures will suppress the formation of the regular hexagonal crystal [47]. Moreover, since they have a different
symmetry from the regular crystal, the latter is unlikely to form in any region of the liquid containing alocalized
QC. We expect this to be very much akin to the role played by the so-called locally favoured structures (LFS)
discussed, e.g. in [48—50]. In 3D, icosahedral LFS are believed to be linked to dynamic arrest [50], i.e. the
avoidance of crystallization, because these LES do not have the symmetry of the crystalline phase. Indeed, based
on the large spatial extent of some of the stable localized structures we find, we conjecture that in general quite
large LFS may be present in systems of this kind.
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Appendix. Terminology

In this appendix we briefly comment on several uses and concepts in the literature relating to the word ‘cluster’
[51]. (i) Some soft matter systems freeze into a so-called cluster crystal, in which each density peak corresponds to
the average location of the centres of mass of several polymeric macromolecules [9, 52]. The soft matter systems
we consider here are of this type. (ii) Finite collections of attracting particles in a vacuum can minimize their
potential energy by forming clusters, and for certain small numbers of particles, these clusters have icosahedral
symmetry [53, 54]. Our metastable localized QCs are, in contrast, states that minimize the free energy and are
surrounded by the liquid. (iii) In simple one-length scale molecular potential systems, icosahedral structures
can be the minimal energy structures in small finite size collections of simple molecules [53—55]. However, as the
number of particles increases, the icosahedral minimum energy states generally first transform into anti-Mackay
clusters for intermediate numbers of particles, and finally transform into close-packed fcc or hep structures for
large particle numbers. In contrast, the localized states we observe retain the QC symmetry over a range of sizes,
until they fill the entire domain and form a QC. (iv) In the QC context, the word ‘cluster’ is often used to denote
aparticular arrangement of atoms or molecules that is regularly repeated throughout the system [51]. We
instead refer to aperiodically repeating arrangements within our QCs as ‘motifs’. (v) Icosahedral clusters of
atoms in some supercooled liquids are known to influence the process of crystallization [47]. Our work is
relevant to this; see section 4. (vi) Other authors speak of spatially localized grains. For example, in [56] such
grains are fabricated by manipulating nanoparticles, e.g. by stirring. However, in this system the particles are
polydisperse and the quasicrystalline grains that form are the result of different sized particles. In contrast, in our
system all particles are identical. In order to prevent confusion between these various uses of the words cluster
and grain (or patch in 2D), we avoid the use of these terms altogether.
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