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Abstract (149 words) 23 

The elucidation and prediction of how changes in a protein give altered 24 

activities and selectivities remains a major challenge in chemistry. Two hurdles 25 

have prevented accurate family-wide models: i) obtaining diverse datasets and ii) 26 

suitable parameter frameworks that encapsulate activities in large sets. Here we 27 

show that a relatively small but broad activity dataset is sufficient to train 28 

algorithms for functional prediction over the entire glycosyltransferase 29 

superfamily 1 (GT1) of the plant Arabidopsis thaliana. Whilst sequence analysis 30 

alone fails for GT1 substrate utilization patterns, our chemical-bioinformatic 31 

model, GT-Predict, succeeds by coupling physicochemical features with isozyme 32 

recognition patterns over the family. GT-Predict identified GT1 biocatalysts for 33 

novel substrates and allowed functional annotation for uncharacterized GT1s. 34 

Finally, analyses of GT-Predict decision pathways revealed structural modulators 35 

of substrate recognition, informing mechanism. This multifaceted approach to 36 

enzyme prediction could guide streamlined utilization (and design) of biocatalysts 37 

and discovery of other family-wide protein functions. 38 

 39 
  40 
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Introduction 41 

 Subtle evolutionary divergence within a protein family allows an enormous 42 

breadth of functional activities to occur within a versatile core scaffold.1,2 The 43 

reutilization of common scaffolds in the design of de novo protein functions is 44 

also a current major goal. Several large, architecturally-related protein families 45 

are known amongst which the group-transfer enzyme proteins are of particular 46 

interest since several utilize multiple modular domains upon which relevant 47 

functional groups are evolutionarily-selected.1 Multiple group transfer enzyme 48 

superfamilies, including certain acetyltransferases and glycosyltransferases 49 

(GTs), share a conserved β-sheet/α-helical core upon which they exploit variable 50 

domains to generate selectivity towards (in some cases thousands of) 51 

substrates.3,4 Some have binding sites that are readily understood by virtue of 52 

their narrow substrate range (e.g. the lysine acetyltransferases that necessarily 53 

bind acetyl CoA and lysine) and hence are easily tractable to accurate substrate 54 

prediction.5 In contrast, GTs represent the other extreme in that their activities in 55 

vitro unite highly variable substrates and phylogenetic analyses have provided 56 

only limited insights into the evolution of substrate recognition and specificity.6,7 57 

This is despite high scaffold conservation among GTs,8 exploited in only select 58 

examples,9 suggesting therefore that subtle mutations in the background of these 59 

scaffolds have profound effects on chemical function. Thus, there remains a 60 

general difficulty in understanding the basis for active site plasticity within many 61 

enzyme families10 and GTs in particular represent a striking example of this limit 62 

to our understanding exacerbated by a dearth of solved three-dimensional 63 
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structures.11 This example is made all the more pertinent by the existence of an 64 

excellent database for GTs in CAZy;4 indeed, the curators of CAZy have 65 

highlighted functional prediction as an important future goal.4 66 

As a primary hurdle, there remains no general informatics strategy to 67 

accurately assess functional effects of changes between key features of 68 

otherwise similar isoforms of biocatalysts equivalent, for example, to strategies 69 

able to model and predict subtle stereoelectronic effects in homogeneous small 70 

molecule catalyst performance.12 Notably de novo protein design methods, whilst 71 

powerfully allowing the creation of rigid structural scaffolds for housing putative 72 

function, still fail on the finer details associated with positioning of key catalytic 73 

residues.13 Therefore, bridging this gap between prediction and structure of 74 

precise active site features might allow valuable additional insight into the 75 

discovery of desired protein functional activities. 76 

Here we show that functional profiling (Figure 1) using broad, unbiased 77 

sampling methods of a full GT family present in a single species (the 107-78 

member GT1 family of the plant Arabidopsis thaliana) allows construction of 79 

chemical-bioinformatic models that encapsulate family-wide recognition patterns 80 

for both electrophilic sugar donor and nucleophilic acceptor substrates. We 81 

observe extreme scattering in activity patterns as scored by phylogenetic linkage 82 

analysis alone, confirming that sequence-based assessments cannot explain 83 

substrate recognition. However, by incorporating relevant physicochemical 84 

parameters such as size, hydrophobicity, and nucleophilicity predictive 85 
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algorithms can be trained to annotate function with high accuracy for these 86 

promiscuous dual-substrate enzymes.  87 

 88 

  89 
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Results 90 

 91 

Strategy for Functional Profiling of Enzyme Superfamily  92 

 To date, informatics or computational strategies for predicting GT1 enzyme 93 

activity have made only limited progress, further exacerbated by the small 94 

numbers of solved 3-dimensional structures.11 High-confidence phylogenetic 95 

trees for a complete GT1 family were previously reported by some of us,6 96 

wherein a limited set of substrates was tested for common activity. Little 97 

correlation was found between primary sequence alignment and enzymatic 98 

function over a 39-enzyme/3-coumarin substrate panel probing gains, losses, 99 

and regiochemical switching of activity even among closely-related subfamilies. A 100 

screen of Medicago truncatula GT1s over 23 benzopyran(one) substrates, 101 

similarly, gave only sporadically clustered activity throughout the 8-enzyme 102 

dataset.7 We reasoned therefore that any successful approach (Figure 1) would, 103 

in essence, require sufficient threshold of unique activity patterns of individual 104 

isoforms to be directly coupled with iterative (‘learning’) algorithms. This 105 

functional-informatic method, in turn, would require a sufficiently diverse array of 106 

chemical substrate recognition motifs to avoid bias plus a method allowing the 107 

measurement of many (semi-)quantitative activity ‘events’ unencumbered (‘label-108 

free’) by structural bias or perturbation (e.g. by virtue of installed chromo-/fluoro-109 

phores6,7). The resulting dataset would subsequently be tested for utility in its 110 

ability to build and train classifier algorithms to correlate chemical and/or 111 
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biological properties with the observed patterns for the protein library (here 112 

Arabidopsis thaliana GT1 proteins).  113 

We reasoned that a diverse, unbiased substrate usage coupled with broad, a 114 

priori examination of properties would allow the primary algorithmic focus to be 115 

intentionally generated by protein sequence (Figure 2A). We employed a 116 

decision tree (DT) learning approach, using a ‘deviance’ splitting criterion 117 

implemented using a cross-entropy function (the optimal score function for 118 

classification, being the (negative) log of the multi-nomial probability distribution 119 

for correct/incorrect decisions into 1 or K categories). Such strategies 120 

advantageously allow interpretable insight into the key parameters (i.e. for the 121 

branching of the trees) for successful prediction, if any – essentially allowing us 122 

to learn how our putative models learnt. Importantly, in such an approach any 123 

lack of statistical power from insufficient breadth in substrate variation or poor 124 

choice testing (chemo-/biological) correlate would also be directly revealed by 125 

non-robustness or poor performance in the emergent algorithms. 126 

We have previously demonstrated a potentially general, label-free HT/MS-127 

based assay for (semi-)quantitative kinetic characterization of individual enzymes. 128 

14-17 We considered that, in theory, combining the speed and broad, unbiased 129 

detection capabilities of this HT/MS assay with proteins from an entire multigene 130 

family of GTs, could, for the first time, feasibly catalog a sufficiently diverse 131 

chemical dataset from a complete family to allow algorithmic correlation (Figure 132 

2B), thereby allowing mechanistic and predictive insight to emerge regarding 133 

both substrates and sequences (Figure 2C).  134 
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 135 

Screening of Diverse Substrates Against an Enzyme Family 136 

GT1 group-transfer enzymes couple two substrates through the transfer to 137 

nucleophile ‘acceptors’ (1-91) of electrophilic glycosyl ‘donor’ moieties (92-104) 138 

(Figure 2). Electrophilicity is generated in the donor by the presence of a 139 

nucleotide diphosphate leaving group. Three corresponding modes of substrate 140 

diversity, corresponding to three potential structural selectivity elements were 141 

explored: (i) configurational and constitutional (i.e. hydroxyl replacement) 142 

variation in glycosyl moiety of donor; (ii) nucleobase variation in the leaving group 143 

moiety of donor; and (iii) nucleophile heteroatom type (O, NH, S) and constitution 144 

of scaffold (Figure 2A). Such an approach is consistent with the few structures of 145 

GTs that reveal corresponding pockets and their primary engagement with 146 

substrates via these three distinct moieties in Michaelis complexes.18,19 In this 147 

way we were able to create a broad substrate scope that would test sufficiency 148 

for a predictive model for the GT1 enzyme superfamily (Supplementary Figure 149 

1). 150 

Configurational and constitutional alterations of the donor substrate library 151 

(92-104, Figures 2B, 3 and Supplementary Figure 1) were designed to explore 152 

the logical variation of the glycosyl moiety from a canonical Glc starting point 153 

(Figure 3A). For example, Glc→Man, Glc→Gal allowed exploration of C-2 and 154 

C-4 configuration, respectively; Glc→GlcNAc, Glc→Xyl, Glc→5-S-Glc allowed 155 

exploration of altered functional groups OH-2→NHAc, CH2OH-5→H, O-5→S; as 156 

well multiply-combined alterations e.g. Glc→Fuc and Glc→Rha (OH-6→H 157 
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combined with multisite configurational variation at C-2,3,4,5) intended to provide 158 

even greater structural diversity.  159 

Second, the nucleobase moiety of donor substrate was varied (e.g 92, 99, 160 

102) from canonical pyrimidine uracil (U) in UDP to explore both other pyrmidines 161 

(e.g. thymine (T)), Glc-UDP→Glc-dTDP purine (e.g. guanine (G)) usage Glc-162 

UDP→Glc-GDP (Figure 3A). This necessitated the creation of unnatural variant 163 

donor substrates designed to probe this nucleobase pocket in conjunction with 164 

natural variants (e.g. Glc-GDP cf Man-GDP, respectively) and variants that are 165 

species-specific (e.g. eukaryotic UDP cf prokayrotic dTDP).  166 

We designed the nucleophilic acceptor library (1-91) to probe chemical space 167 

(molecular shape, solvent-excluded volumes), electronics (logP ranges, polarity, 168 

lone-pair count), and reactivity (nucleophile type) (Supplementary Figure 1). 169 

Systematic variations in molecular shape (e.g. via hybridization alterations / 170 

unsaturations sp3→sp2; acyclic vs fused/bridged polycyclic substrates) created a 171 

systematically altered yet diverse range of ‘sizes’. Substrate series to reveal 172 

electronic effects included acidic, basic, and neutral variations of the same 173 

molecular cores. Finally, various O-, NH-, and S-based nucleophiles were utilized 174 

to evaluate heteroatom type. Accommodation of heteroatoms in active sites 175 

appears, in particular, to be connected with subtle mutations that are not readily 176 

understood and predictive understanding might allow the creation of catalysts for 177 

the formation of new C–X-bond-types.19 Diversity measures, based on principal 178 

moments of inertia analysis using energy-minimized structures,20 confirmed a 179 
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broad range of rod-like, disk-like, and spherical overall shapes (Supplementary 180 

Figure 1C). 181 

 We conducted a sequential screen to collect datasets for enzyme activity, 182 

donor utilization patterns, and acceptor recognition (Figure 2B). First, we 183 

established initial activity of the full family of 107 Arabidopsis GT1 enzymes using 184 

canonical, physiologically-relevant6 plant substrates UDP-D-glucose (Glc-UDP, 185 

donor) with known endogenous plant acceptors 23 and 31 against a panel of 186 

GT1 gene-derived lysates expressed in parallel under identical conditions6  187 

(Supplementary Figure 2). This initial survey revealed activity for 54 of the 107 188 

at levels and under conditions that would allow functional screening.  189 

 Next, the systematically varied 13-member sugar donor library was screened 190 

with the two optimal acceptors (23 and 31) that had shown full activity with Glc-191 

UDP over the entire 54-enzyme panel. This revealed ‘coarse-grain’ interaction 192 

patterns for the whole sugar/nucleoside library (Figure 3A): nucleoside 193 

component was more stringently regulated, with dTDP utilization (addition of a 194 

methyl group) at 25% and GDP (a purine) at only 7.4%. Alternative functional 195 

groups at C6, C4, and C2 could be utilized by 28-48% of the GT1 library, 196 

including more bulky sugar 2-N-acetylglucosamine-UDP (GlcNAc-UDP).  197 

Third, the canonical donor sugar Glc-UDP was used for an initial acceptor 198 

screen. Unguided, manual classification of the dataset based on some overall 199 

structural features (e.g. aliphatics, heterocycles, small aromatic acids, Figure 3B) 200 

and nucleophilicity patterns (Figure 3C) highlighted rough substrate functional 201 

group types with broad activity (e.g. polyphenolic compounds) or lower activity 202 
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(highly polar glycosides or amino acids). This critically revealed that up to half of 203 

these GT1s could use a range of nucleophiles that included more unusual 204 

functional groups such as acids, anilines, and thiophenols.  205 

 206 

Clustered Functional Trends Are Distinct From Phylogeny.  207 

This diverse activity dataset was used as the basis for training chemical-208 

bioinformatic classifiers to identify patterns useful for predictive modeling (Figure 209 

2C). The data were parsed according to threshold activity levels determined by 210 

product ion count signal-to-noise. Comparison of these data with the global 211 

amino acid sequence alignment of each active enzyme revealed only extremely 212 

scattered patterns for both donors and the acceptors (Figure 4A and 213 

Supplementary Figures 3-5), consistent with the poor correlations of observed 214 

activity patterns in prior genomic and phylogenetic analyses.6,7,21 To assess the 215 

fitness of biochemical clustering methods for our dataset analysis, we 216 

recapitulated the GT1 familial phylogenetic arrangement6 for the aglycone 217 

acceptor library (Figure 4A) and the sugar donor library (Supplementary Figure 218 

3A). Confirming earlier reports, we observed major discrepancies between 219 

related sequences and activities for both the sugar donors and acceptors (Figure 220 

4A and Supplementary Figure 3). Given the suggested, structurally-related 221 

nature of sugar donor binding in plant GT1s via the so-called plant secondary 222 

product glycosyltransferase (PSPG) motif,21 we expected ready clustering. The 223 

failure to observe this within our initial phylogenetic analyses strikingly highlights 224 

the seemingly shallow influence of sugar type on the enzymatic evolution of at 225 
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least this superfamily of GTs. Our results indicate that nucleotide diphosphate 226 

recognition, i.e. for UDP, was conserved; whilst 25% of the GT1s surveyed here 227 

used the more structurally similar dTDP, only 7% utilized GDP sugars. This 228 

suggests that, while the PSPG motif is useful for identifying UDP-binding regions 229 

within GT1s, this motif may fail to account for the recognition events of the 230 

carbohydrate portion of sugar nucleotide diphosphates.  231 

Similarly scattered activity patterns were observed for acceptors (full acceptor 232 

profile shown in Supplementary Figures 3B, 4). However, some pockets of 233 

conserved function could be assigned, at least partially, to phylogenetic 234 

groupings. First, polyphenolic flavonoids and coumarins were widely used 235 

throughout the GT1 panel. Small aromatic acids also made up a significant 236 

activity group, albeit scattered throughout the phylogenetic classes. For instance, 237 

roughly half (9/17) of the tested Group E enzymes utilized acid-containing 238 

substrates, but this was split into two subgroups over the tree rather than 239 

localizing in one defined subgroup, suggesting that overall amino acid 240 

conservation is not the major driver of substrate recognition. The Group D and 241 

Group L enzymes, the only two groups to have subsets of enzymes that process 242 

polar heterocyclic rings, were also divergent in overall sequence: the Group D 243 

UGT73C6 (see Online Methods for nomenclature) and the Group L UGT84A2 244 

have 26.5% identity, 48.5% similarity, and significant gaps (18.6% of the 245 

sequence), for example. Our results thus bolster the earlier hypotheses6 that 246 

parallel independent evolutionary events have led to both the frequent acquisition 247 

and loss of substrate recognition patterns and that sequence alignment alone is 248 
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therefore not predictive for functional activity. 249 

Next, a wholly sequence-naïve, stepwise analysis allowed activity-based 250 

clustering of GT1 isoforms and elucidation of common functional patterns from 251 

within the superfamily. First, threshold activities were used to assign activity 252 

commonality (full, partial, or no-activity) between each enzyme for each substrate 253 

molecule (Figure 4B, Supplementary Table 1 and Eqn. 1, Online Methods). 254 

Average linkage clustering (Eqn. 2, Online Methods) was then implemented to 255 

hierarchically arrange the interaction patterns for enzymes in a sequence-256 

independent fashion (Figure 4B, horizontal axis). Notably, such ‘activity 257 

clustering’, guided by each acceptor and donor substrates’ interaction patterns 258 

with GT1 proteins, allowed some manual classification of meaningful substrate-259 

enzyme subtypes directly, where phylogenetic analysis had wholly failed (Figure 260 

4B, horizontal axes). For each substrate library, clustering identified groups of 261 

GT1s with, for example, promiscuous donor substrate scopes (towards the right-262 

hand side of Supplementary Figure 3) that were unrelated to amino acid 263 

similarity or acceptor promiscuity (c.f. the right side of Supplementary Figure 5). 264 

Excitingly, robust substrate clusters also emerged for acceptor nucleophiles 265 

(Figure 4B) along with substrates with singular recognition patterns that 266 

suggested modes of GT1 isoform specialization towards e.g. N-heterocycles, 267 

bulky fused aliphatic ring systems, and polar glycosides. This ‘chemical 268 

clustering’, which emerged without the input of any physicochemical or structural 269 

information, importantly revealed the strong influence of substrate chemical 270 

properties as major drivers of substrate recognition in the GT1 superfamily.  271 
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 272 

Physicochemical Analyses Allow Algorithmic Prediction. 273 

To correlate and appropriately weight such physicochemical features 274 

rigorously, we developed an analytical process that would allow the discovery of 275 

overall quantitative structure-activity relationship (QSAR)-based classifiers for the 276 

GT1 family. Decision tree-based22 algorithms were trained on systematically 277 

varied combinations of physicochemical properties (cLogP, molecular volume, 278 

pKa) and structural parameters (functional group copy numbers: hydroxyl groups, 279 

carboxylic acids, amines) (Supplementary Table 2). Emergent algorithms were 280 

evaluated using a “leave one out cross-validation” (LOOCV) approach to rank the 281 

various models’ predictive abilities for each compound and GT1 enzyme (Figure 282 

5, Supplementary Figure 6,7 and Online Methods). From these, DT4 used a 283 

combination of physicochemical inputs (logP, molecular area, solvent-excluded 284 

volume, and number/type of nucleophilic groups) and structural information 285 

(scaffold type, mono/bi-cyclic variation (5-, 6-membered, [4.3.0], [4.4.0] bicycles, 286 

functional groups) that allowed prediction of interactions with 90% ± 1.3% 287 

accuracy for our Arabidopsis GT1 dataset. Further statistical benchmarking using 288 

the Matthews Correlation Coefficient (MCC, Online Methods), which analyzes 289 

the quality of correlations between -1.0 and +1.0 based on true positive/negative 290 

vs. false positive/negative for binary predictions gave an average value of 0.591 291 

for the DT4 model over all 59 acceptor molecules with experimental and/or 292 

predicted activity in this dataset (Supplementary Table 3). This confirmed a 293 
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strongly positive agreement of predicted and experimental results in a system we 294 

termed GT-Predict. 295 

 296 

GT-Predict Guides Functional Annotation in Other Species 297 

 Putative annotation of gene function remains a dominant form of predictive 298 

biological analysis,23 yet many superfamilies, such as those containing GTs 299 

remain essentially intractable to typical analyses.24 The failure of global amino 300 

acid sequence alignment (see above) to cluster accurately and rationalize GT 301 

substrate activity patterns, in striking contrast to the strong correlative success of 302 

our substrate physicochemical feature analysis (see above), suggested that 303 

putative assignment would require alternative strategies.   304 

The clear driving influence of substrate features that we observed suggested 305 

that a focused analysis of salient, corresponding protein features would allow 306 

suitable influence of substrate-interacting regions in an unbiased manner. Local 307 

sequence alignment can be used to rank short, highly-similar regions while 308 

ignoring large gaps or regions of sequence divergence more effectively than 309 

global sequence alignment.25 This, in principle would allow algorithmic focus 310 

upon more relevant (e.g. substrate-interacting) protein regions. Thus, use of the 311 

Smith-Waterman algorithm for local sequence alignment25 allowed us to 312 

interrogate novel sequences of GT1 enzymes outside of our dataset using our 313 

functionally-characterized enzyme library. To do this efficiently, we developed a 314 

program to perform combined local alignment and BLOSUM50 scoring of the 315 

novel GT1 amino acid sequence against each of the GT1 sequences in our 316 
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activity dataset. Merged use of the highest two ‘scores’ allowed predictive 317 

selection of the most likely set of substrates for the novel GT1 enzyme, and 318 

hence putative functional assignment that could be tested experimentally.  319 

 In this way, GT-Predict was first able to propose hypothetical activities for 320 

putative gene products individually selected from other species (Figure 6). First, 321 

four, individually-selected, GT1 gene sequences from legume Medicago 322 

truncatula (UGT71G1, UGT78G1) and cereal Avena strigosa (UGT74H5, 323 

UGT88C4) were analyzed, and the activities of the encoded enzymes 324 

(mtUGT71G1, mtUGT78G1, asUGT74H5, asUGT88C4, respectively, see Online 325 

Methods for use of nomenclature) predicted and then compared with results 326 

determined experimentally.26,27 These revealed (Figure 6) an 85-92% accuracy 327 

(Supplementary Table 4) for GT-Predict when tested against the subset of 44 328 

substrates that demonstrated robust activity in the Arabidopsis dataset 329 

(Supplementary Figure 13); corresponding MCC values were between 0.518-330 

0.910 (Supplementary Table 3), indicating very strong to excellent predictive 331 

correlation. 332 

 Next, we then extended the GT-Predict workflow to test prediction against all 333 

of CAZy-confirmed, gene members of the two complete families from Avena 334 

strigosa and Lycium barbarum (see Supplementary Figures 8-11, and 335 

Supplementary Tables 5,6). These again proved successful with accuracy rates 336 

of 79.0 (MCC +0.338) and 78.8% (MCC +0.319), respectively. 337 

Finally, as well as its utility against cognate kingdom species from different 338 

phyla, GT-Predict was tested against far more divergent sequences from two 339 
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different phyla within a different kingdom, the actinobacteria Streptomyces 340 

antibioticus and Streptomyces lividans GT enzymes saOleD and slMGT,28 341 

respectively (Figure 6). Strikingly, despite the sequence divergence and the 342 

change of kingdom (plant→bacteria) from the At GT1s in our dataset, GT-Predict 343 

was 69% (with a positive MCC value of +0.373) accurate for saOleD and 74% 344 

(with a positive MCC value of +0.414) for slMGT.  345 

 346 

GT-Predict Guides Synthetically-Useful Transformations. 347 

Next, we tested the predictive power of GT-predict on a model compound as 348 

potential substrate. Resveratrol (105) is an antioxidant and pan-histone 349 

deacetylase inhibitor29 currently in clinical trials for cancer prevention30 and 350 

neurodegenerative disease.31 Its poor solubility as free drug32 has prompted 351 

investigation into the production of resveratrol glycosides to improve its 352 

pharmacological properties.33,34 Moreover, for the purposes of validating GT-353 

Predict, resveratrol is endogenous only to berry-producing plant species, but is 354 

not found in Arabidopsis thaliana (At).35 355 

Using GT-Predict we identified several GT1s in the At-GT superfamily 356 

predicted to hypothetically glycosylate resveratrol as an acceptor nucleophile; 357 

usefully these included GTs predicted to also be capable of utilizing a selection of 358 

NDP-sugar donor electrophiles, allowing good diversity of elaboration. When 359 

experimentally tested in vitro, predicted biocatalyst atUGT73C6 proved most 360 

efficient from within the enzyme set, allowing regioselective and one-step 361 

synthesis of mono-glycosylated resveratrol on a preparative scale 362 
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(Supplementary Figure 12). Notably and importantly, these in vitro results 363 

confirmed elegant results previously determined when the Arabidopsis GTs were 364 

used in whole-cell biocatalytic transformation to glucosylate 105.34 365 

In an essentially similar manner, asUGT88C4 was identified as a novel 366 

biocatalyst able to glycosylate novobiocin (Supplementary Figure 13), a 367 

prenylated antibiotic36 biosynthesized by Streptomyces niveus, thereby 368 

demonstrating predictive activity discovery for not only non-endogenous 369 

substrates but even those outside of normal plant metabolism.  370 

 371 

GT-Predict Shows Site Features Modulating Selectivity. 372 

 Structural guidance insight remains a vital aspect for hypothesis-driven insight 373 

into biocatalyst mechanism and enzyme engineering.19 Whilst GT-Predict is 374 

founded on a comprehensive functional dataset, its use in conjunction with 375 

structural approaches also allowed identification of possibly important structural 376 

motifs and their roles within active sites. This was aided by a combined 377 

visualization tool and graphical user interface that highlighted patterns based on 378 

physicochemical property analyses (Supplementary Figure 14). In this way, for 379 

example, given acceptor substrates for a particular GT1 enzyme could be related 380 

to any two chosen chemical properties vs functional activity in three-dimensional 381 

plots (Supplementary Figure 14) to allow interrogation of emergent correlations. 382 

These, in turn, allowed discovery of intriguing observations and parameter 383 

determinants related to possible structural origins for observed activities. For 384 

example, activity plots of acid-containing acceptors revealed distinct, 385 
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dichotomous ‘allowed vs forbidden’ utilization of anionic substrates by GT1 386 

isoforms. These, in turn, prompted structural investigation through GT-Predict-387 

guided identification of relevant homolog sequences for which useful structural 388 

information is available in combination with homology-guided modeling (all 389 

models mapped closely onto known structures, with minor overall root-mean-390 

square deviations (RMSDs) of 0.73-1.25 Å (Supplementary Table 7 and Online 391 

Methods)).  392 

Unique chemical patterns were investigated to explore three hypothetical 393 

‘drivers’ of substrate recognition for several isozymes. First, the breadth of 394 

utilized substrate volume correlates with GT1 active site size (Supplementary 395 

Figure 14A,B), as judged by mapping the Accessible Volume vs. LogP – a 396 

surrogate for molecular surfaces – in the crystallized (atUGT72B1) or modeled 397 

(asUGT84A2) active sites. Second, selection of negatively-charged substrates 398 

(at pH 8.0) involves either engagement by cationic active site residue motifs 399 

and/or gating by anionic residue motifs Supplementary Figure 14C,D). For 400 

example, in carboxylic acid-utilizing GT1 atUGT84A2 (Supplementary Figure 401 

14D) this revealed a neutral active site cavity (Supplementary Figure 14B). 402 

Conversely, this showed that in two GT1s not able to glycosylate acids, 403 

atUGT72C1 and atUGT73C5, each displayed negatively-charged ‘gates’ 404 

composed of two acidic residues near the proposed substrate access cleft: 405 

D180/E187 of atUGT72C1 (Supplementary Figure 14C) and D92/E198 of 406 

atUGT73C5 (Supplementary Figure 15). Third, the utilization of sugar donors is 407 

modulated by the recognition of larger, polar substituents through hydrogen 408 
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bonding to polar amino acids in accommodating pockets (Supplementary 409 

Figure 14E). For example, the use by atUGT71C4 of more bulky, polar UDP-410 

GlcNAc donor substrate correlated with a unique arginine residue at position 292 411 

(Supplementary Figure 14E), adjacent to the UDP-binding PSPG motif at a 412 

distance of 7.4 Å from the C2 substituent nearly optimal for a hydrogen bonding 413 

interaction with the N-acyl group of GlcNAc. A hydrophobic residue or glycine 414 

occupies this position in the remaining Group E GT1s studied. Notably, this 415 

arginine substitution was not found to be general among all other plant UDP-416 

GlcNAc utilizing GT1s, highlighting that directed algorithmic functional annotation 417 

can suggest rare but functional protein features, perhaps picking up on a unique 418 

evolutionary direction taken by an individual isoform within the GT1 family. Other 419 

structurally-characterized UDP-GlcNAc-utilizing enzymes also appear to exploit 420 

arginine residues to mediate selectivity.37,38 421 

The residues pin-pointed by GT-Predict in these ‘gating’ interactions, namely 422 

sites D180/E187 in atUGT72C1 and R292 in atUGT71C4, were experimentally 423 

probed using site-directed mutagenesis (Supplementary Figure 15). Notably, 424 

consistent with drivers implicated by GT-Predict, mutation of Asp/Glu→Ala in 425 

atUGT72C1-D180A/E187A enabled activity towards acids (not present in WT) 426 

and mutation of Arg→Ala in atUGT71C4-R292A removed the ability to transfer 427 

GlcNAc (but not Glc). These not only confirmed the importance of these residues 428 

in controlling activity and but also directly highlighted the potential of GT-Predict 429 

in rational enzyme engineering. 430 

  431 
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Discussion 432 

 433 

Comprehensive predictive modeling of enzyme superfamilies has remained 434 

an unsolved challenge despite advances in genomics, proteomics, and 435 

metabolomic data gathering and analyses.39 Certain predictive attempts have 436 

found some success, such as a database of in silico docking data compiled for 437 

over 100 hydrolase enzyme structures40 and in the development of a structure-438 

guided metabolomic prediction system to annotate new protein functions.41 439 

However, these approaches to-date have been confined to proteins of known 440 

structure and with relatively narrow substrate variation. Substrate utilization and 441 

chemical properties have been linked to generate QSAR-based predictive 442 

models for individual proteins from large protein families42,43 and have long been 443 

applied also in inhibitor design.44 444 

Here, a structurally- and phylogenetically-naïve functional approach succeeds 445 

in a testing proof-of-concept family (the GTs) by using libraries designed to probe 446 

chemical space across enough members of a species-wide collection of 447 

enzymes sufficient to obtain a training set. In this way, combination of an 448 

extensive functional dataset and a chemical-bioinformatic analytical method 449 

allowed accurate modeling of a full protein family and, indeed, prediction, testing 450 

and validation of mechanistic hypotheses and synthetic activities. 451 

As an example of informatically-encapsulating a full protein family, several 452 

limitations to this approach should be recognized. First, regiochemical selectivity 453 

was not strongly considered when designing GT-Predict, which was based 454 
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around presence vs absence of chemical groups but not their 3-dimensional 455 

orientation. Some limitations can be noted when comparing seemingly highly-456 

related substrates where the relative position of an additional putative 457 

nucleophile may give rise to enhanced reactivity (e.g. kaempferol (23) >> 458 

resveratrol (105)). Additional strategies to exploit such regiochemical bias 459 

(‘substrate fit’) might further enhance accuracy6 (see e.g. Supplementary Figure 460 

4). Second, whilst our substrate library proved sufficiently broad for successful 461 

training, predictive scope might also be further enhanced by adding database 462 

input, for example DrugBank45 or metabolomic compound collections like the 463 

Plant Metabolome Database (PMDB),46 if sufficiently well curated and tested. 464 

Third, GT-Predict now allows the accurate prediction of GT1 activities correlated 465 

with local primary sequence alignment, in a manner not possible previously, with 466 

greatest accuracy for plant proteins. More advanced secondary structure 467 

prediction/alignment methods might be anticipated to extend this yet further (e.g. 468 

for low sequence homology but high predicted structural similarity). Similarly, 469 

validation of the mechanistic hypotheses suggested by GT-Predict using 470 

structural biology47 would clearly be of direct benefit in augmenting the promising 471 

mutagenic results we have obtained here. Given the existence of an excellent 472 

database for GTs (and other carbohydrate-processing enzymes) in CAZy,4 one 473 

might even anticipate further refinements and implementations based on this 474 

informatics environment. 475 

Given the apparently related structural nature of sugar donors, then it still 476 

remains surprising that direct phylogenetic clustering of their utility as substrates 477 
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fails. Yet, our results, like those of other studies7,47,48 show clearly that such 478 

analyses alone are not successful and are limited by, for example, sequence 479 

variability.47 This strikingly highlights the shallow influence of sugar type on the 480 

enzymatic evolution of, at least this superfamily, of GTs and/or the guidance of 481 

selectivity by other parameters that are not defined by ground-state (e.g. 482 

transition state conformation49). It is also clear that, nonetheless, 483 

physicochemical parameters provide a strong guide that emerges through their 484 

striking hierarchical influence upon clustering that we observe here, consistent 485 

with recent analyses of the evolution of function within certain conserved folds.50 486 

GT-Predict also allows rational selection with some confidence of scaffolds for 487 

desired transformations and so might complement some current de novo 488 

computational design algorithms, which succeed at creating defined packing and 489 

active site cavities but can fail on the finer points of active site residue identity 490 

and position.13 For example, augmentation of computational and forced 491 

evolution-based protein design methods might also use starting points for a 492 

desired function identified from within a large protein superfamily.  493 

Finally the strategy we present here of algorithmically coupling chemical 494 

interaction patterns with local sequence analysis might be readily extended to 495 

other protein superfamilies that remain currently intransigent toward predictive 496 

functional annotation and engineering. 497 

 498 
 499 
 500 
  501 
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Figure Legends 524 
 525 

 526 

Figure 1. Challenges and solutions for the rational prediction of 527 

multisubstrate enzyme reactions. (a) The glycosyltransferase GT1 superfamily 528 

couples electrophilic sugars with nucleophilic acceptors. These reactions span 529 

the full metabolome with many permutations, rendering current screening and 530 

prior informatics approaches insufficient for comprehensive predictive modeling. 531 

(b) Our function-based algorithmic learning approach, GT-Predict, utilizes a 532 

diverse training set of enzymes, electrophiles, and nucleophiles to create a 533 

physicochemical and local-sequenced based classifier for prediction of novel 534 

transformations and functional annotation of glycosyltransferase group transfer 535 

enzymes. 536 

 537 

 538 

Figure 2. Strategy for function-based chemical bioinformatic modeling of 539 

GT1 transformations. (a) The complete GT1 library of Arabidopsis was 540 

screened for activity against 13 sugar electrophiles and 91 potential nucleophiles. 541 

(b) This workflow identified 54 active GT1s, allowing dual substrate library 542 

profiling by HT-MS in under 6500 events. (c) This dataset was utilized to train 543 

decision tree models and validate cheminformatic and bioinformatic algorithms 544 

for functional prediction. 545 

 546 

Figure 3. Overall donor and acceptor utilization patterns for the active GT1 547 

library. (a) Sugar donor species arranged by the total number of positive 548 

utilization patterns with acceptor 23 and/or 31. The nucleotide in the NDP leaving 549 

group is listed according to colour: blue for UDP, magenta for dTDP, and orange 550 

for GDP. (b) Acceptor utilization by chemical classification with donor 92. (c) 551 

Nucleophile utilization examples from amongst the acceptor library. 552 

 553 
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 554 

Figure 4: Comparison of clustering techniques for acceptor dataset. A 555 

Phylogenetic global sequence analysis of the 54 active GT1s was coupled with 556 

the Green-Amber-Red (GAR) screening data heatmap. Activity scores were 557 

judged by total ion count (TIC) of MS traces and classified according to the key. 558 

Groups indicate reported subfamilies of plant GT1 enzymes.21 B Hierarchical 559 

clustering via average linkage analysis according to Equation 1 and Equation 2 560 

(Online Methods). Hierarchical clustering arrangement on the X-axis is arranged 561 

by the similarity of individual GT1 activity patterns against all other GT1s. The 562 

tree on the Y-axis is arranged via the association patterns of each substrate with 563 

the overall GT1 enzyme library against the other substrates’ patterns. Chemical 564 

groupings refer to the emergent interaction similarity clusters as discussed in the 565 

text. Full datasets available in Supplementary Figures 3-5; inactive acceptors 566 

removed for clarity. All high throughput GAR screening experiments were 567 

performed as single measurements. 568 

 569 

 570 

Figure 5: GT-Predict development, validation and utilization. Diagram of the 571 

optimal decision tree (DT4) used to classify information (see Supplementary 572 

Note). B Leave-one-out cross validation of all DT models. Shown is the % 573 

accuracy of the trained model for each member of the sugar acceptor library. 574 

Dotted error bars indicate the full range of the validation accuracy, with single 575 

outliers shown in red crosses determined by ranking predicted vs experimental 576 

results for each acceptor that showed activity with at least one GT1 enzyme. 577 

Median % accuracy values are shown in red lines for 59 acceptors tested in 578 

single measurements via high throughput GAR screening experiments (See 579 

Supplementary Table 3). The interquartile range (25-75%) are shown in blue 580 

boxes. The hashed lines indicate the full range of the dataset. Red crosses are 581 

singleton outliers that were not included in the statistics of the box plot but are 582 

shown here for completeness. DT1-DT5 are decision tree-based models (see 583 
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Supplementary Note, which includes further validation using Matthews 584 

Correlation Coefficient analysis). C A subset of the GT-Predict results (in the bold 585 

box) for compounds kaempferol (23) and application to prediction of enzymes for 586 

new the substrate resveratrol (105) alongside GAR activity for 105 glycosylation 587 

with various NDP-sugar substrates. Results confirmed predictions and allowed 588 

use of atUGT73C6 for these transformations on a preparative scale (see 589 

Supplementary Note). The variation in donor utilization by 23 and 105 highlights 590 

the essential discovery from DT4 of acceptor hydroxyl functional group (circled) 591 

presence (or not) as a key parameter for successful activity prediction for 592 

alternative NDP-donor substrates. All GAR screening experiments were 593 

performed as single measurements. 594 

 595 

 596 

Figure 6: GT-Predict extends functional annotation to other species, 597 

kingdoms, and GT families.  598 

A Summary of GT-Predict prediction results for six selected individual enzymes 599 

from differing species, including accuracy and Matthews Correlation Coefficient. 600 

Further details and analysis are found in the Supplementary Note. For other 601 

extensions to additional GT families from Avena strigosa and Lycium barbarum 602 

see also Supplementary Figures 8-11. Images generated in Pymol from PDB 603 

files (2ACB, 3HBF, 2IYF) or models created using I-TASSER.62 B Predicted vs. 604 

actual experimental results for acceptor utilization for single enzyme mtUGT78G1 605 

for 38 acceptors tested in singleton high throughput GAR screening experiments 606 

(See Supplementary Figures 8, 9, 13). C Representation of successful 607 

PredictEnzymeInteraction module, which combines the DT4 model for chemical 608 

interaction pattern prediction and ranking with a k-Nearest Neighbor (k-NN) 609 

algorithm for local sequence alignment matching. Coloured dots represent the 610 

GT1 training set for the DT4/k-NN model. The bold/pink circle represents the 611 

novel sequence of interest. The decision trees (DT) represent the activity sets 612 

and physicochemical property space of the nearest two GT1s in the training set, 613 

which are utilized for activity prediction.   614 
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Online Methods 783 

 784 

General Considerations. 785 

Unless otherwise noted, chemical reagents, media, and bacterial cell stocks were 786 

obtained from commercial suppliers (Sigma-Aldrich, Fluorochem, Carbosynth, 787 

VWR, Alfa Aesar, Fisher Scientific) and used without further purification. 788 

Sonication was performed using a Fisher Scientific Model 505 Sonic 789 

Dismembrator. Proteins were purified using an Äkta FPLC System UPC-900 (GE 790 

Healthcare, UK). High-throughput mass spectrometry (HT-MS) was performed 791 

using either a Waters Quattro Micro API (ESI- mode) or a Waters ZMD-MS (ESI- 792 

mode) detector, each equipped with a Waters 600 HPLC System and a Waters 793 

2700 autosampler capable of 96-well sampling format. Gel electrophoresis was 794 

performed using Invitrogen NuPAGE 4-12% Bis-Tris gels, Novex MiniCell tanks, 795 

and a BioRad PowerPac controller. Western blotting was performed using an 796 

iBlot gel transfer device from Thermo-Fisher. Thin layer chromatography was 797 

performed using Silica Gel 60 F254 plates (Merck) using 1-10% methanol in 798 

dichloromethane. Nuclear magnetic resonance spectra were recorded on a 799 

Bruker AVIII HD 400 nanobay (400MHz) spectrometer. Carbon nuclear magnetic 800 

resonance spectra were recorded on a Bruker DQX 400(100 MHz) spectrometer. 801 

All 1H NMR chemical shifts are quoted in ppm using residual solvent as the 802 

internal standard relative to TMS (d6-acetone: 2.09 ppm). All 13C NMR chemical 803 

shifts are quoted in ppm using the central solvent peak as the internal standard 804 

relative to TMS (d6-DMSO 39.3 ppm). Coupling constants (J) are reported in 805 

Hertz (Hz). Infrared (IR) spectra were recorded on a Bruker Tensor 27 Fourier-806 

Transform spectrophotometer. High-resolution mass spectra were recorded on a 807 

Micromass LCT (resolution = 5000 RWHM) using a lock-spray source. Protein 808 

crystal structures were analyzed and displayed using MacPyMOL v. 1.3 809 

(Schrodinger, Inc.). Synthetic genes for Medicago truncatula mtUGT71G1 and 810 

mtUGT78G1 were obtained from GeneArt Gene Synthesis (Thermo-Fisher) 811 

using Escherichia coli codon-optimized amino acid sequences as reported by 812 
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Wang et al.26,27 and sub-cloned into the pGEX2T vector (Amersham Pharmacia 813 

Biotech, Chalfont St. Giles, UK) using T4 DNA Ligase (New England BioLabs, 814 

Inc.). Mutagenesis was performed with a Q5® Site-Directed Mutagenesis Kit 815 

(New England BioLabs). Nucleotide sequencing was confirmed by Source 816 

Bioscience DNA Sanger sequencing services of Oxford University (UK). 817 

 UGT enzymes are named according to the UGT Nomenclature Committee’s 818 

latest guidelines51 as follows: Arabidopisis thaliana protein UGT73C6 encoded by 819 

gene UGT73C6 is written atUGT73C6. 820 

 821 

Plant GT1 production. 822 

Arabidopsis GT1 plasmids in pGEX-2T (as reported by Lim et al6) were 823 

transformed into Rosetta (DE3) pLysS Escherichia coli expression strains and 824 

produced essentially as reported.6,52 Cells were resuspended in glutathione S-825 

transferase (GST) purification buffer (50 mM Tris, pH 7.4, 1 mM DTT), lysed, 826 

centrifuged (10,000 ×g, 10 min, 4 °C followed by centrifugation at 25,000 ×g, 60 827 

min, 4 °C) and either used as the crude supernatant or taken forward for 828 

purification using a Sepharose 4B glutathione resin (GE Healthcare) as 829 

described.52 Western blotting was performed with mouse anti-GST (BD 830 

Biosciences) (Supplementary Figure 2A). GT1 protein-containing lysates could 831 

be flash-frozen and thawed once with activity remaining for up to 6 months’ 832 

storage at −80 °C. 833 

 834 

Green-Amber-Red (GAR) HT-MS Screening. 835 

Activity assays were conducted using reported MS methods14 on either a Waters 836 

Quattro Micro API (ESI- mode) or a Waters ZMD-MS (ESI- mode), each equipped 837 

with a Waters 600 HPLC System and a Waters 2700 autosampler capable of 96-838 

well format. Reaction mixtures were composed of 93 µL reaction buffer (1 mM 839 

Tris, pH 7.8, 50 µM MgCl2), 1 µL of NDP-Sugar (10 mg/mL stock), 1 µL of 840 

aglycone (10 mg/mL stock), and 5 µL cell supernatant or purified protein (ca. 1 841 

mg/mL). Glycosylation reactions were incubated at 37 °C overnight and 842 

monitored by MS full scan (150-1100 Da). A direct infusion of 10 µL of each 843 
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reaction mixture was injected into the MS with 50:50 MeCN:H2O (0.1 mL/min flow 844 

rate, 5.5 min flush). Data was ranked Green (signal/noise > 10), Amber (s/n 1-10), 845 

or Red (s/n < 1) from the total ion count integration of the full peak 846 

(representative data shown in Supplementary Figure 2B,C). The acceptor 847 

library is shown in Supplementary Figure 1 and the full acceptor dataset is 848 

shown in Supplementary Figure 3B. The full donor dataset is shown in 849 

Supplementary Figure 3A. Regioselectivities were based on comparison of LC-850 

MS elution time with internal standards as reported8 or as deduced from 851 

substitution patterns within the same chemical families (Supplementary Figure 852 

4). 853 

 854 

Chemical Diversity Calculations.  855 

Molecular shape calculations were used to design library features that sample a 856 

broad range of 3-dimentional chemical space (Supplementary Figure 1C). Each 857 

structure was energy minimized using the MM2 function of Chem3D 858 

(CambridgeSoft) and converted to .sdf format. The principal moment of inertia 859 

was calculated for the energy-minimized conformations of our library members 860 

using the Knime Analytics Platform53 with the “SDF Reader”→“PMI Calculation” 861 

(Vernalis)→“JavaScript Scatter Plot” nodes and compared to reference 862 

molecules for “rod” (octa-2,4,6-triyne), “sphere” (adamantane), and “disk” 863 

(benzene).54 Our compounds were found to lie primarily along the rod-disk axis, 864 

but sampled space well into the other principal chemical shape regions. 865 

 866 

 867 

Clustering of activity based on phylogenetic alignment or functional patterning.  868 

Phylogenetic analyses were performed with CLUSTAL_X55 or Clustal Omega56 869 

and fully matched reported analysis for the Arabidopsis UGT family.21 Pairwise 870 

alignment was performed using the EMBOSS Water program.57 Functional 871 

activity analysis used hierarchical clustering to score and re-group the acceptors 872 

and donors based on GT1 interaction patterns (Green: score of 1.0, Amber: 0.5, 873 
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Red: 0.0). Clustering proceeded via average linkage analysis58 (further details 874 

provided in Supplementary Note).  875 

 876 

Hierarchical Clustering of Activity.  877 

Functional activity analysis used hierarchical clustering to score and re-group the 878 

acceptors and donors based on UGT interaction patterns (Green: score of 1.0, 879 

Amber/‘Unclear’: 0.5, Red: 0.0). With our interaction data for each donor or 880 

acceptor molecule and the full collection of enzymes, each pair of enzymes i and 881 

j was assigned a distance score based on Equation 1 with parameters from 882 

Supplementary Table 1. 883 

 884 

Equation 1 885 

,࢏)ࢊ (࢐ = 	 ෍ ,࢏)࢓ࢊ ࡹ(࢐
ୀ૚࢓  

 886 

Equation 2 887 

,ܣ)ܦ (ܤ = 	∑ ∑ ݀(݅, ݆)௝∈஻௜∈஺ ஺ܰ ஻ܰ  

 888 

Hierarchical arrangement proceeded via average linkage analysis clustering 889 

according to Equation 2 in MATLAB. This provided distance trees for each 890 

enzyme as well as each substrate, which were utilized to construct the 891 

arrangements used in Supplementary Figure 5. 892 

 893 

 894 

GT-Predict – Classifying substrate interactions using quantifiable on 895 

physicochemical properties. A Decision Tree-based model was trained on 896 

various combinations of each substrates’ cLogP, molecular volume, solvent 897 

accessible area, and carboxylate pKa. Additionally, structural information such as 898 

number of hydroxyl groups or amines as well as substitution patterns on 899 
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coumarin, flavonoid, or phenylpropenoid scaffolds (the physicochemical 900 

parameters, calculated using Chem 3D version 16.0, are listed in 901 

Supplementary Tables 8, 9). GAR scores were input for each enzyme and 902 

classifier programs were written in MATLAB as part of the GT-Predict 903 

“PredictAcceptorInteraction” module. The cross-entropy function was used for the 904 

splitting criterion for the branching of the tree. Models were evaluated by 905 

determining the accuracy and Matthews correlation coefficient using leave-one-906 

out cross validation.59,60 907 

  908 

 909 

GT-Predict – Prediction of novel enzyme activities based on GAR dataset and 910 

alignment. 911 

A Smith-Waterman25/BLOSUM5061 pairwise alignment algorithm was 912 

implemented with the GAR scoring matrix in the GT-Predict module 913 

“PredictEnzymeInteraction”. A weighted k-nearest neighbor approach was used 914 

to predict substrate interactions for novel GT1 FASTA amino acid sequences 915 

using Equation 3 to obtain weighted votes from the closest protein sequences in 916 

our dataset and provide interaction predictions for novel sequences. The top two 917 

sequences in our dataset for a novel GT1 amino acid sequence input are used in 918 

a weighted vote for prediction, given a 1/“yes” for weighted votes (pm) of over 0.5 919 

or a 0/“no” for pm less than 0.5 (Equation 4).  920 

 921 

Equation 3 922 

௠݂ =	∑ ∑௠௝௞௝ୀଵݔ௝ݓ ௝௞௝ୀଵݓ  

 923 

Equation 4 924 

௠݌ =	 ൜0						݂݅		 ௠݂ 	< 0.51						݂݅		 ௠݂ 	≥ 0.5 

 925 
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In Equation 3, xmj is the interaction data for molecule m interacting with the 926 

jth nearest neighbor of the enzyme, and equals 1 if there is an interaction or 0 if 927 

there is not. Results of the prediction were tested against the interaction patterns 928 

of experimental GAR screens.  929 

We applied the GT-Predict module “PredictEnzymeInteraction” to two novel 930 

GT1 enzymes from the legume Medicago truncatula and the cereal grain Avena 931 

strigosa. Data for two “divergent” GT1 sequences from bacterial GT1 enzymes 932 

was adapted from our previous screen.28 Prediction and experimental validation 933 

data are shown in Supplementary Figure 13 with accuracies tabulated in 934 

Supplementary Table 3. Parameters and data from bacterial enzymes saOleD 935 

and slMGT were essentially those from previous studies.28 For details and 936 

validation see the Supplementary Note. Protein accession codes used for 937 

prediction: M. truncatula mtUGT71G1 (UniProt Q5IFH7), M. truncatula 938 

mtUGT78G1 (UniProt A6XNC6), A. strigosa asUGT74H5 (GenBank EU496509), 939 

A. strigosa asUGT88C4 (GenBank EU496511), S. antibioticus OleD (UniProt 940 

Q53685), S. lividans MGT (UniProt Q94FR0). All alternative GTs were expressed 941 

via our Plant GT1 production workflow. 942 

 943 

GT-Predict – Exploration of Other Complete Families.  944 

Two separate and complete GT1 families from Avena strigosa and Lycium 945 

barbarum, respectively, containing candidates given as ‘confirmed’ in the CAZy 946 

“Glycosyltransferases” database4 were selected for further benchmarking of 947 

“PredictEnzymeInteraction.” Each contain ca. 20-25 validated isozymes. Amino 948 

acid sequences were collected from Uniprot, DNA sequence-optimized for 949 

production in Escherichia coli, and ordered as synthetic gene fragments (Twist 950 

Bioscience, San Francisco, USA). GT1 sequences were flanked with restriction 951 

sites (N-terminal BamHI and C-terminal EcoRI) for for subcloning into pGEX-2t 952 

and a C-terminal hexahistadine tag was added for Western blotting and optional 953 

purification, although these were used as crude lysates for screening purposes. 954 

Fragments are listed in Supplementary Table 5 (Avena) and Supplementary 955 

Table 6 (Lycium). Synthetic gene adaptors: 5’–GGATCC–GT1 gene fragment–956 
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GCAGCAGCACTGGAACATCATCATCATCATCAT–TAA–GAATTC–3’ (BamHI 957 

site – GT1 sequence – linker/hexahistidine tag – stop codon – EcoRI site) were 958 

used for all sequences.  959 

GT1 fragments were dissolved in Tris-EDTA buffer and digested using EcoRI 960 

and BamHI (New England Biolabs) following recommended protocols and 961 

purified using Qiagen PCR Purification Spin columns. The vector pGEX-2t was 962 

digested with EcoRI and BamHI and purified on agarose gel and isolated using 963 

Qiagen Gel Purification Spin columns. Ligation was performed with T4 DNA 964 

ligase (New England Biolabs) following the standard overnight 16 °C protocol. All 965 

sequences were verified. Note: a minor number of GT1 gene fragments failed 966 

during DNA production or subcloning, but 16/18 Avena and 16/23 Lycium GT1 967 

expression plasmid were verified. The expansion plant GT1s were produced in 968 

Rosetta 2 (DE3) pLysS E. coli strains following our standard procedure (briefly, 969 

250 mL Terrific Broth cultures grown at 37 °C to OD600 ≈ 0.6, cooled to 20 °C, 970 

and induced for overnight expression with 0.1 mM IPTG and 140 rpm shaking). 971 

Cell pellets were isolated, sonicated, centrifuged at 12,000 × g for 15 minutes at 972 

4 °C and then 25,000 × g for 60-90 minutes at 4 °C. Gels and Western blots 973 

(using anti-poly-histidine—alkaline phosphatase clone HIS-1, Sigma cat. number 974 

A5588) are shown in Supplementary Figure 8.  975 

“GT-Prediction” of EnzymeInteractions and confirmatory screening reactions 976 

were performed as above. Aglycones were chosen as the ca. 40 substrates that 977 

showed positive reactivity with at least one GT1 in the Arabidopsis collection. 978 

The predicted/experimental datasets and summary are shown in Supplementary 979 

Figures 9-11. 980 

 981 

Homology model construction for confirmation of chemical recognition 982 

hypotheses. 983 

Structurally-characterized Michaelis complexes of GT1 enzymes (either 984 

UGT72B1, PDB ID: 2VCE19 or VvGT1, PDB ID: 2C1Z18) were input as templates 985 

for homology model construction using the I-TASSER server.48,62 Models were 986 

aligned to the corresponding structure in COOT.63 Structural images were 987 
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created in PyMOL (Schrodinger, LLC, Version 1.3). Model validations (RMSD) 988 

are listed in Supplementary Table 7 and fell between 0.73 and 1.25 Å. 989 

Physicochemical properties of the acceptor libraries were visualized in the GT-990 

Predict “AcceptorGUI” module, which highlights associations for each enzyme by 991 

property. 992 

 993 

Site-Directed Mutagenesis of UGT71C4 and UGT72C1.  994 

Enzyme engineering of the anionic substrate and UDP-GlcNAc activity was 995 

carried out using the Q5 Site Directed Mutagenesis kit (New England BioLabs) 996 

with the following primers: 997 

UGT71C4 R292A  998 

Forward: 5'- TTTCGGGAGCgcAGGAAGCGTTG-3'  999 

Reverse: 5'- CAGAGGAACACCACCGAT-3' 1000 

UGT72C1 D180A 1001 

Forward: 5'-CGGGCTCAAGcTCCGAGAAAATATAT-3'  1002 

Reverse: 5'- CTCAAACTTAACCGGGCTG-3' 1003 

UGT72C1 E187A 1004 

Forward: 5'- TATATTCGGGcACTCGCTGAG -3' 1005 

Reverse: 5'- TTTTCTCGGATCTTGAGC -3' 1006 

UGT72C1 D180A:E187A  1007 

Forward: 5'- tatattcgggcACTCGCTGAGTCTCAGCG -3' 1008 

Reverse: 5'- ttttctcggagCTTGAGCCCGCTCAAACTTAAC -3' 1009 

UGT72C1 G284R: 1010 

Forward: 5'- TTTTGGGAGTagaGGGGCACTAAC-3' 1011 

Reverse: 5'- GAAACATAAACCACTGACTC-3' 1012 

Mutagenesis reactions were processed according to the manufacturer’s protocol. 1013 

All transformants were confirmed by nucleotide sequencing. 1014 

 1015 

Biotransformation to prepare trans-resveratrol-4’-O-β-D-glucopyranoside.  1016 

Reactions were carried out in aqueous buffer (20 mM Tris, pH 8.0, 40 mM NaCl, 1017 

4 mM KCl, 2 mM MgCl2). A 50 mL Falcon tube was charged with 5.7 mg (25 1018 
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µmol, 1 equiv.) resveratrol and 15.7 mg (25 µmol, 1 equiv.) UDP-glucose 1019 

disodium salt. 50 mL of cold buffer was added (to 500 µM final concentration), 1020 

followed by 500 µL of rapidly-thawed GST-UGT73C6 crude lysate, stored on ice. 1021 

Reactions were placed in a 37 °C shaking incubator at 200 rpm and followed by 1022 

t.l.c. (Note: an upright 50 mL Falcon tube is optimal. Too much 1023 

headspace/shaking precipitates the GT1 catalyst.) Reactions were worked up by 1024 

extracting 5 times with 10 mL EtOAc. The organic layer was washed with 50 mL 1025 

brine, dried over MgSO4, and purified by silica chromatography (2.5 g silica gel, 0% 1026 

MeOH/CH2Cl2 to 15% MeOH/CH2Cl2) to afford 3.0-3.8 mg product as a pale 1027 

beige solid (average 34% ± 4% yield over three attempts, n=3) of m.p. 215-1028 

223 °C (lit, 210-215 °C). T.L.C. Rf = 0.22 in 15% MeOH/CH2Cl2. 
1H NMR (d6-1029 

acetone, 400 MHz) δ = 8.27 (s, 1H, phenolic OH), 7.55 (d, J = 8.8 Hz, 2H, H2’, 1030 

H6’,), 7.10−7.02 (m, 3H, vinylic H, H3’, H5’), 6.98 (d, J = 16 Hz, 1 H, vinylic H), 1031 

6.59 (d, J = 2.0 Hz, 2H, H2, H6), 6.32 (s, 1H, H4), 5.01 (d, J = 7.2 Hz, 1H, H1’’), 1032 

4.64 (s, 1H, sugar OH), 4.38 (s, 1H, sugar OH), 4.32 (s, 1H, sugar OH), 3.93 (dd, 1033 

J = 2.8 and 14 Hz, 1H, H6’’A), 3.75 (dd, J = 2.4 and 13 Hz, 1H, H6’’B), 3.48 (m, 1034 

4H, H2’’, H3’’, H4’’, H5’’). Common solvent impurities at δ = 2.88 (H2O), 2.45 1035 

(ethyl methyl ketone), 2.09 (acetone), 1.97 (ethyl acetate), 1.32 and 0.914 1036 

(“grease”), and 0.17 (silicone grease) were found due to low sample 1037 

concentration following repeated attempts by HPLC to remove. 13C-NMR (d6-1038 

DMSO, 100 MHz) δ = 159.0 (C3, C5), 157.4 (C4’), 139.4 (C-1), 136.8 (C1’), 1039 

128.0 (vinylic C), 127.8 (C2’), 127.6 (vinylic C), 116.9 (C3’), 104.9 (C2), 102.5 1040 

(C4), 100.8 (C1’’), 77.5 (C2’’), 73.7 (C5’’), 70.2 (C4’’), 61.2 (C6’’). MS (ESI): m/z: 1041 

calc for C20H21O8 [M-H+]: 389.12419; found: 389.12442. IR (neat) ṽ = 3361, 2980, 1042 

2402, 1601 cm-1. The obtained spectroscopic data (Supplementary Figure 16) 1043 

were in accordance with those reported in the literature.64,33  1044 

 1045 

Statistical Analyses. 1046 

Validation of all the predictive models in the paper considered all elements of the 1047 

confusion matrix, namely the number of Positives and Negatives predicted that 1048 

matched correctly the true categories (True Positives – TP, and True Negatives – 1049 
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TN, respectively) as well as Positive and Negative predictions that are incorrect 1050 

(False Positives - FP and False Negatives – FN, respectively). The median % 1051 

accuracy (the accuracy associated with the 50th percentile of the accuracies over 1052 

all data) and the Matthews Correlation Coefficient (MCC, Equation 5) for each 1053 

acceptor are plotted in the box-and-whisker plots in Figure 5; all data reported in 1054 

Supplementary Table 3 (DT4 model) and in the GT-Predict package is available 1055 

online.  1056 

 1057 

Equation 5 1058 

MCC = (்௉	×	்ே)ି(ி௉	×	ிே)ඥ(்௉ାி௉)(்௉ାிே)(்ேାி௉)(்ேାிே)       1059 

Data and predictive analysis for new enzyme families for Avena strigosa and 1060 

Lycium barbarum GT1s is found in Supplementary Figures 13,14. All the GAR 1061 

high-throughput screening measurements were utilized as single data points. 1062 

 1063 

Data and Code Availability. 1064 

Custom code for GT-Predict was packaged into an executable file compatible 1065 

with Windows (XP, Windows 7, and Windows 10 tested), available as a 1066 

supplementary file through the Oxford University Research Archive 1067 

DOI: 10.5287/bodleian:zg5195kaE. Activity datasets, mass spectrograms, and 1068 

the protein FASTA sequences used here are also included in this package. 1069 

 1070 

  1071 
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