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Abstract

Given the growing availability of large datasets and following recent research trends
on multi-dimensional modelling, we develop three dimensional (3D) panel data mod-
els with hierarchical error components that allow for strong cross-sectional dependence
through unobserved heterogeneous global and local factors. We propose consistent es-
timation procedures by extending the common correlated effects (CCE) estimation ap-
proach proposed by Pesaran (2006). The standard CCE approach needs to be modified
in order to account for the hierarchical factor structure in 3D panels. Further, we pro-
vide the associated asymptotic theory, including new nonparametric variance estimators.
The validity of the proposed approach is confirmed by Monte Carlo simulation studies.
We also demonstrate the empirical usefulness of the proposed approach through an ap-
plication to a 3D panel gravity model of bilateral export flows.
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1 Introduction

In recent years there has been a rapid emergence of big datasets, that has fueled a burgeoning

literature on multi-dimensional panel data econometric analysis. These arise in a variety of

ways. For example, they can arise by refining individual unit information (e.g., sectors within

countries), by considering origin-destination flow data (e.g., trade and migration flows), by

matching and combining different cross-sectional datasets (e.g., employer-employee databases)

and by multi-dimensional interactive data (e.g., social networking information). Such a multi-

dimensional dataset allows and, possibly, requires a rich treatment of error components, which

can accommodate heterogeneous fixed effects, spatial or cross-sectional interdependence, en-

dogeneity (or reverse causality) and other related features. All these issues eventually call for

new econometric methods, though the proper formulation of multi-dimensional models is a

non-trivial and challenging issue.1

A few studies have attempted to extend the two-way error components specification to

the multi-dimensional setting. Baltagi, Egger, and Pfaffermayr (2003) propose such a spec-

ification with fixed exporter-time, importer-time, and country-pair effects, referred to as the

country-time fixed effects (CTFE) specification. This approach has been applied to a num-

ber of bilateral flows, such as trade, foreign direct investment, or migration flows, between

countries or regions (see, e.g., Feenstra (2004) and Baltagi, Egger, and Pfaffermayr (2015)).

Balazsi, Matyas, and Wansbeek (2018) generalise the three-dimensional (3D) within estimator

for the 3D panel data models with CTFEs while Balazsi, Baltagi, Matyas, and Pus (2016)

propose a sequence of GLS estimators for 3D models under the assumption that the unob-

served effects are random and mutually uncorrelated. They discuss several extensions to deal

with dynamic and unbalanced panels, which are often characterised with a high percentage of

zero observations and which have different numbers of observations across different dimensions

such as limited observations in one dimension (e.g., regions/sectors or time periods) and very

large numbers of observations in other dimensions (e.g., individuals).

However, most existing studies have so far neglected an important issue of controlling

cross-sectional error dependence in 3D models, despite pervasive evidence of the presence of

strong cross-sectional dependence (CSD) in 2D panels (e.g., Pesaran (2015)). In this regard,

Kapetanios, Mastromarco, Serlenga, and Shin (2017) (KMSS) propose to combine unobserved

heterogeneous global factors with the CTFE specification and show that standard estimator

are biased in the presence of nonzero correlation between factors and regressors. KMSS

propose consistent estimation procedures by extending the common correlated effects (CCE)

estimation in 2D panels advanced by Pesaran (2006). Though KMSS is the first paper to

1Recently, Matyas (2017) collects and presents a number of the econometric foundations and applications
of multi-dimensional panels, that aim to fill the gap in the literature.
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accommodate strong CSD within multi-dimensional panels, they do not consider hierarchical

factor structures that are, as we explore, of relevance for multi-dimensional panel datasets.

The above discussion suggests that it is important to develop more realistic specifica-

tions for accommodating CSD within multi-dimensional datasets and that such specifications

should involve several layers of components to account for effects along different dimensions.

Similar issues have been examined extensively in the international business cycle literature,

especially in relation to the separate identification of regional and global factors. Kose, Otrok,

and Whiteman (2003) propose a Bayesian method based on state space representations. Al-

ternatively, Breitung and Eickmeier (2016) suggest a two-step approach based on canonical

correlations for multi-level factor models, which are subject to blocks of zero restrictions on

the factor loadings matrix.

Following this research trend, we propose a 3D error components specification with hier-

archical multi-factor structures, which permits us to accommodate a more flexible degree of

CSD along different panel dimensions. Specifically, our approach can be regarded as a gener-

alisation of the CTFE model, which has been applied to the structural gravity trade models.

Our approach also shares similar motivations with the spatial econometric methodologies that

explicitly introduce spatial structures for origin and destination effects, e.g., LeSage and Llano

(2016). We also allow all factor hierarchies to be correlated with the regressors in order to

deal with potentially important endogeneity issues.

After providing this hierarchical error component structure, we develop consistent esti-

mation procedures by extending the CCE approach of Pesaran (2006). In order to account

for the hierarchical factor structure of the 3D model, we need to modify the CCE approach

by augmenting the model with cross-section averages of dependent variable and regressors,

respectively, over single and double dimensions of cross-section units. These local and global

averages are shown to provide valid proxies for unobserved factor hierarchies. We have also

provided the associated asymptotic theory. We conduct Monte Carlo experiments and find

evidence that the small sample properties of the 3D-CCE estimators are in line with theo-

retical predictions. On the contrary, the conventional CCE estimator tends to display severe

biases and unreliable inference.

We apply the 3DCCE estimation techniques to a trade dataset over the period 1970-2013

(44 years), with two alternative control groups: the 210 country-pairs among 15 EU countries

consisting of 11 Euro plus 4 control non-Euro countries, and the 342 country-pairs among

19 countries including 4 additional non-EU countries. Focussing on the impacts of CEE and

EMU dummies (equal to one when both countries belong to the European Community or

when both adopt the same currency), we find in the case with 15 EU countries that both

impacts on export flows are rather modest at 5 and 3%, which are well below those reported

(7 to 10%) in the 2D panels by recent studies, e.g., Mastromarco, Serlenga, and Shin (2016),
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and Gunnella, Mastromarco, Serlenga, and Shin (2015). Next, for the enlarged dataset with

the larger control group of 8 countries, we observe that the impacts of EMU and CEE on

exports are reduced from 3% to 1.5% and from 5% to 3%, respectively. These smaller effects

might indicate a trade diversion effect between the Euro and non-Euro area. Overall, we may

conclude that the trade increase within the Euro area may partly reflect a continuation of a

long-run historical trend rather than specific EU economic integration policies.

The paper proceeds in 6 Sections. Section 2 introduces the 3D panel data models with

three-way error components, that follow a hierarchical multi-factor structure. Section 3 de-

velops consistent estimation procedures, referred to as the 3DCCE estimator. We derive the

asymptotic distributions of both mean group and pooled 3DCCE estimators. Section 4 pro-

vides Monte Carlo simulation results. We present the empirical results for the gravity model

of EU export flows in Section 5. Section 6 concludes. Mathematical proofs are relegated

to an Appendix while the construction of the dataset is summarised in the Data Appendix.

Additional Monte Carlo simulation results are provided in the Supplement.

2 The Model

We consider the three-dimensional (3D) heterogeneous panel data model given by

yijt = β
′
ijxijt + δ

′
ijdt + eijt, i = 1, ..., N, j = 1, ..., N, t = 1, ..., T, (1)

where yijt is the dependent variable observed across three indices, i being the origin cross-

section unit, j the destination unit at period t (say, the export from country i to country j at

time t), xijt is themx×1 vector of covariates observed across three indices and dt is themd×1
vector of observed common effects including deterministic components such as constant and

trend. βij and δij are the mx × 1 and md × 1 vectors of parameters.
We extend the multi-factor structure analysed by Pesaran (2006) into 3D panels. In

particular, we allow eijt to follow the hierarchical multi-factor structure:

eijt = γ
′
ijf t + γ

′
◦jf i◦t + γ

′
i◦f ◦jt + εijt, (2)

where f t, f i◦t and f ◦jt are respectively mf × 1, m•◦ × 1 and m◦• × 1 vectors of unobserved
common effects, γij, γ◦j and γi◦ are mf × 1, m•◦ × 1 and m◦• × 1 vectors of heterogeneous
loadings, and εijt are idiosyncratic errors.

Unobserved factors, f t, f ◦jt and f i◦t, are likely to be correlated with xijt. Thus, we

consider the following data generating process for xijt:

xijt = Dijdt + Γijf t + Γ◦jf i◦t + Γi◦f ◦jt + vijt, (3)
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where Dij is the (mx ×md) parameter matrix on observed common effects, Γij, Γ◦j and Γi◦

are (mx ×mf ), (mx ×m•◦), (mx ×m◦•) factor loading matrices, and vijt are the idiosyncratic

errors.

Combining (1)-(3), we have:

zijt =

(
yijt
xijt

)
= Ξijdt +Φijf t +Φi,◦jf i◦t +Φi◦,jf ◦jt + uijt (4)

where

Ξij =

(
δ′ij + β

′
ijDij

Dij

)
,Φij =

(
γ ′ij + β

′
ijΓij

Γij

)
,Φi,◦j =

(
γ ′◦j + β

′
ijΓ◦j

Γ◦j

)
,Φi◦,j =

(
γ ′i◦ + β

′
ijΓi◦

Γi◦

)

(5)

uijt =

(
εijt + β

′
ijvijt

vijt

)
.

Notice that the ranks of Φij, Φi,◦j and Φi◦,j are determined by the ranks of the following

matrices:

Γ̃ij
(mx+1)×mf

=

(
γ ′ij
Γij

)
, Γ̃i◦
(mx+1)×m◦•

=

(
γ ′i◦
Γi◦

)
, Γ̃◦j
(mx+1)×m•◦

=

(
γ ′◦j
Γ◦j

)
.

Throughout we assume that ‖Ξij‖, ‖Φij‖, ‖Φi,◦j‖ and ‖Φi◦,j‖ or their expectations are
bounded (see Assumption 3 below).

For each (i, j), we rewrite (1) and (4) in matrix notation:

yij =X ijβij +Dδij + Fγij + F i◦γ◦j + F ◦jγi◦ + εij, (6)

zij =DΞij + FΦij + F i◦Φi,◦j + F ◦jΦi◦,j + uij, (7)

where

yij
T×1

=





yij1
...
yijT




 , X ij

T×mx

=





x′ij1
...

x′ijT




 , D

T×md

=





d′1
...
d′T




 , zij

T×(mx+1)

=





z′ij1
...
z′ijT




 , (8)

F
T×mf

=





f ′1
...
f ′T




 , F i◦

T×m•◦

=





f ′i◦1
...

f ′i◦T




 , F ◦j

T×m◦•

=





f ′◦j1
...

f ′◦jT




 , εij

T×1
=





εij1
...
εijT




 , uij

T×(mx+1)

=





u′ij1
...

u′ijT






We develop the estimation and inference theory for E
(
βij
)
= β, but we also discuss the

circumstance under which the individual coefficients, βij can be consistently estimated. We

make the following assumptions:

Assumption 1. Common Effects: The (md +mf +Nm•◦ +Nm◦•) × 1 vector of com-
mon factors gt = (d′t,f

′
t,f

′
1◦t, ...,f

′
N◦t,f

′
◦1t, ...,f

′
◦Nt)

′
, is covariance stationary with absolute
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summable autocovariances, distributed independently of εijt′ and vijt′ for all N, i, j, t and t
′.

f t, f 1◦t, ..., fN◦t, f ◦1t, ..., f ◦Nt are zero mean process and are mutually uncorrelated.

Assumption 2. Individual-specific Errors: εijt and vijt′ are distributed independently for

all i, j, t and t′, and they are distributed independently of xijt and dt.

Assumption 3. Factor Loadings: The factor loadings are independently and identically

distributed across (i, j), and of the individual- specific errors εijt and vijt, the common factors

gt for all i, j and t, with finite means and finite variances. In particular, we have:

γij = γ◦◦ + ηij, γi◦ = γ•◦ + ηi◦, γ◦j = γ◦• + η◦j, (9)

Γij = Γ◦◦ + ξij, Γi◦ = Γ•◦ + ξi◦, Γ◦j = Γ◦• + ξ◦j, (10)

where ηij ∼ iid
(
0,Ωη

◦◦

)
, ξij ∼ iid

(
0,Ωξ

◦◦

)
, ηi◦ ∼ iid

(
0,Ωη

•◦

)
, ξi◦ ∼ iid

(
0,Ωξ

•◦

)
, η◦j ∼

iid
(
0,Ωη

◦•

)
and ξ◦j ∼ iid

(
0,Ωξ

◦•

)
. Further, ‖γ◦◦‖ < K, ‖γ•◦‖ < K, ‖γ◦•‖ < K, ‖Γ◦◦‖ < K,

‖Γ•◦‖ < K, and ‖Γ◦•‖ < K for some positive constant K <∞.
Assumption 4. Random Slope Coefficients: βij follow the random coefficient specifica-

tion:

βij = β+νi◦+ν◦j+νij with νi◦ ∼ iid (0,Ων•◦) , ν◦j ∼ iid (0,Ων◦•) , νij ∼ iid (0,Ων◦◦) (11)

where ‖β‖ < K and νij, νi◦, ν◦j are distributed independently of one another, and of γij,

Γij, εijt, vijt and gt for all i, j and t.

Assumption 5. Identification of βij and β: Let

z̄t =
1

N2

N∑

i=1

N∑

j=1

zijt, z̄i◦t =
1

N

N∑

j=1

zijt, z̄◦jt =
1

N

N∑

i=1

zijt, (12)

and Z̄ij =
(
Z̄, Z̄i◦, Z̄◦j

)
and H̄ ij =

(
D, Z̄ij

)
, where

Z̄
T×(mx+1)

=





z̄′1
...
z̄′T




 , Z̄i◦

T×(mx+1)
=





z̄′i◦1
...
z̄′i◦T




 , Z̄◦j

T×(mx+1)

=





z̄′◦j1
...

z̄′◦jT




 ,

Further,2

M̄ ij = IT − H̄ ij

(
H̄

′
ijH̄ ij

)−1
H̄

′
ij. (13)

(i) Identification of βij: The mx ×mx matrices, Ψ̄ij,T = T
−1
(
X ′

ijM̄ ijX ij

)
are nonsingular,

and Ψ̄
−1
ij,T have finite second-order moments for all (i, j).

(ii) Identification of β: The mx ×mx matrix, N
−2∑N

i=1

∑N
j=1 Ψ̄ij,T is nonsingular.

2In the case where
(
H̄

′

ijH̄ij

)
does not have full rank, the following analysis can still be carried out using

a generalize inverse as in Pesaran (2006).
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Remark 1 The factors are assumed to have zero mean for simplicity. Any means can be sub-

sumed in δij. Further, they are assumed mutually uncorrelated to ensure that cross-sectional

averages of local factors converge to zero. This is another simplifying assumption, since some

weak cross-sectional dependence across local factors could be allowed, in exact analogy to weak

cross sectional dependence across idiosyncratic shocks.

Remark 2 The weights are not necessarily unique, but they do not affect the asymptotic

results advanced in this paper (see also Pesaran (2006)). We focus, for simplicity, on equal

weights, 1/N . Alternatively, economic distance-based or time-varying measures such as trade

weights or input-output shares could be considered (e.g. Pesaran, Schuermann, and Weiner

(2004); Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)). The number of observed

factors, md and the number of individual-specific regressors,mx are assumed fixed. The number

of unobserved factors, m = mf +m•◦ +m◦•, is assumed fixed, but need not to be known.

Using (4), we represent the hierarchical cross-section averages in (12) as follows:

z̄t = Ξ̄◦◦dt + Φ̄◦◦f t + Φ̄◦•f •◦t + Φ̄•◦f ◦•t + ūt, (14)

z̄i◦t = Ξ̄i◦dt + Φ̄i◦f t + Φ̄◦•f i◦t +Φi◦f ◦•t + ūi◦t, (15)

z̄◦jt = Ξ̄◦jdt + Φ̄◦jf t +Φ◦jf •◦t + Φ̄•◦f ◦jt + ū◦jt, (16)

where

Ξ̄◦◦ =
1

N2

N∑

i=1

N∑

j=1

Ξij, Ξ̄i◦ =
1

N

N∑

j=1

Ξij, Ξ̄◦j =
1

N

N∑

i=1

Ξij,

Φ̄◦◦ =
1

N2

N∑

i=1

N∑

j=1

Φij, Φ̄i◦ =
1

N

N∑

j=1

Φij, Φ̄◦j =
1

N

N∑

i=1

Φij, (17)

Φ̄◦• =
1

N2

N∑

i=1

N∑

j=1

Φi,◦j, Φ̄•◦ =
1

N2

N∑

i=1

N∑

j=1

Φi◦,j, (18)

ūt =
1

N2

N∑

i=1

N∑

j=1

uijt, ūi◦t =
1

N

N∑

j=1

uijt, ū◦jt =
1

N

N∑

i=1

uijt

f ◦•t =
1

N

N∑

j=1

f ◦jt, f •◦t =
1

N

N∑

i=1

f i◦t

Combining (14)-(16), we have:

z̄ijt = Ξ̄ijdt + Φ̄ijf ijt + ūijt, (19)
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where

z̄ijt
3(mx+1)×1

=




z̄t
z̄i◦t
z̄◦jt



 , f ijt
m×1

=




f t
f i◦t
f ◦jt



 , ūijt
3(mx+1)×1

=




ūt + Φ̄◦•f •◦t + Φ̄•◦f ◦•t

ūi◦t +Φi◦f ◦•t
ū◦jt +Φ◦jf •◦t





Ξ̄ij
3(mx+1)×md

=




Ξ̄◦◦
Ξ̄i◦
Ξ̄◦j



 , Φ̄ij
3(mx+1)×m

=




Φ̄◦◦ 0 0
Φ̄i◦ Φ̄◦• 0
Φ̄◦j 0 Φ̄•◦



 . (20)

Using (5) and (11), the elements of Φ̄ij can be represented as follows:

Φ̄◦◦
(k+1)×mf

= B̃Γ̃◦◦ +

(
1
N2

∑N
i=1

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γij
0

)
(21)

Φ̄◦•
(k+1)×m◦•

= B̃Γ̃◦• +

(
1
N2

∑N
i=1

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γ◦j
0

)
(22)

Φ̄•◦
(k+1)×m•◦

= B̃Γ̃•◦ +

(
1
N2

∑N
i=1

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γi◦
0

)
(23)

Φ̄i◦
(k+1)×mf

= B̃Γ̃i◦ +

(
1
N

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γij
0

)
(24)

Φ̄◦j
(k+1)×mf

= B̃Γ̃◦j +

(
1
N

∑N
i=1 (νi◦ + ν◦j + νij)

′ Γij
0

)
(25)

where

B̃ =

(
1 β′

0 Ik

)
, Γ̃◦◦ =

(
γ̄ ′◦◦
Γ̄◦◦

)
, Γ̃◦• =

(
γ̄ ′◦•
Γ̄◦•

)
, Γ̃•◦ =

(
γ̄ ′•◦
Γ̄•◦

)
, Γ̃i◦ =

(
γ̄ ′i◦
Γ̄i◦

)
, Γ̃◦j =

(
γ̄ ′◦j
Γ̄◦j

)

and Γ̄◦◦, γ̄◦◦, Γ̄◦•, γ̄◦•, Γ̄•◦, γ̄•◦, Γ̄i◦, γ̄i◦, Γ̄◦j and γ̄◦j are defined similarly to Φ̄◦◦, Φ̄i◦, Φ̄◦j,

Φ̄◦• and Φ̄•◦ in (17) and (18).

Suppose that the rank condition holds:

Rank
(
Φ̄ij

)
= m for all (ij) . (26)

Then, we obtain from (19):

f ijt =
(
Φ̄
′
ijΦ̄ij

)−1
Φ̄
′
ij

(
z̄ijt − Ξ̄ijdt − ūijt

)
(27)

It is easily seen, by applying Lemma 1 of Pesaran (2006), to ūt, ūi◦t, ū◦jt, f •◦t and f ◦•t, that

for each t, as N →∞,
ūijt = Op

(
1√
N

)
.

Therefore, we establish that

f ijt −
(
Φ̄
′
ijΦ̄ij

)−1
Φ̄
′
ij

(
z̄ijt − Ξ̄ijdt

)
= Op

(
1√
N

)
.
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This suggests that we can use h̄ijt =
(
d′t, z̄

′
ijt

)′
as observable proxies for f ijt. Then, we can

consistently estimate the individual slope coefficients, βij and their means β by augmenting

the regression, (1) with dt and the cross-section averages z̄ijt. This estimator is referred to as

the 3 dimensional common correlated effect (3DCCE) estimator.

If the rank condition (26) does not hold, we need to show that 1
T
X ′

ijM̄ ij

(
Fγij + F i◦γ◦j + F ◦jγi◦

)

converge to zero. In particular, we need to show that

p lim
N,T→∞

1

T
X ′

ijM̄ ijF Φ̄
′
◦◦ = 0, p lim

N,T→∞

1

T
X ′

ijM̄ ijF i◦Φ̄
′
◦• = 0, and p lim

N,T→∞

1

T
X ′

ijM̄ ijF ◦jΦ̄
′
•◦ = 0.

(28)

Define Z̄
(1)
ij =

(
D,F Φ̄

′
◦◦, Z̄i◦, Z̄◦j

)
and M̄

(1)
ij = IT − Z̄

(1)
ij

(
Z̄
(1)′
ij Z̄

(1)
ij

)−1
Z̄
(1)′
ij . The first term

in (28) can be expressed as (see Lemmas 1-3 in Pesaran (2006)):

1

T
X ′

ijM̄ ijF Φ̄
′
◦◦ =

1

T
X ′

ijM̄
(1)
ij F Φ̄

′
◦◦+Op

(
1

N2

)
+Op

(
1

N
√
T

)
= Op

(
1

N2

)
+Op

(
1

N
√
T

)
,

since 1
T
X ′

ijM̄
(1)
ij F Φ̄

′
◦◦ = 0. Using (21), it is straightforward to establish that

1

T
X ′

ijM̄ ijF

(

Γ̄
′
◦◦β + γ̄◦◦ +

1

N2

N∑

i=1

N∑

j=1

Γ′ij (νi◦ + ν◦j + νij)

)

= Op

(
1

N2

)
+Op

(
1

N
√
T

)
,

1

T
X ′

ijM̄ ijF Γ̄
′
◦◦ = Op

(
1

N2

)
+Op

(
1

N
√
T

)
.

This implies that

1

T
X ′

ijM̄ ijF γ̄◦◦ = Op

(
1

N2

)
+Op

(
1

N
√
T

)
−
(
1

T
X ′

ijM̄ ijF

)(
1

N2

N∑

i=1

N∑

j=1

Γ′ij (νi◦ + ν◦j + νij)

)

.

(29)

Notice that 1
T
X ′

ijM̄ ijF = Op (1) and

1

N2

N∑

i=1

N∑

j=1

Γ′ij (νi◦ + ν◦j + νij) =
1

N

N∑

i=1

(
1

N

N∑

j=1

Γ′ij

)

νi◦ +
1

N

N∑

j=1

(
1

N

N∑

i=1

Γ′ij

)

ν◦j (30)

+
1

N2

N∑

i=1

N∑

j=1

Γ′ijνij = Op

(
1√
N

)
+Op

(
1

N

)

Therefore, we have:

1

T
X ′

ijM̄ ijF γ̄◦◦ = Op

(
1

N2

)
+Op

(
1

N
√
T

)
+Op

(
1√
N

)
+Op

(
1

N

)
= Op

(
1√
N

)
+op

(
1√
N

)
.

Similarly, we can show that the second and third terms in (28) can be expressed as

1

T
X ′

ijM̄ ijF i◦γ̄◦• = Op

(
1√
N

)
+ op

(
1√
N

)

9



1

T
X ′

ijM̄ ijF ◦jγ̄•◦ = Op

(
1√
N

)
+ op

(
1√
N

)
.

Letting Qij =
(
D,F Φ̄

′
◦◦,F i◦Φ̄

′
◦•,F ◦jΦ̄

′
•◦

)
andMQ,ij = IT −Qij

(
Q′
ijQij

)−1
Q′
ij, we have:

1

T
X ′

ijM̄ ijF ij =
1

T
X ′

ijMQ,ijF ij +Op

(
1

N

)
+Op

(
1√
NT

)
, ∀i, j (31)

1

T
X ′

ijM̄ ijεij =
1

T
X ′

ijMQ,ijεij +Op

(
1

N

)
+Op

(
1√
NT

)
, ∀i, j (32)

and
1

T
X ′

ijM̄ ijX ij =
1

T
X ′

ijMQ,ijX ij +Op

(
1

N

)
+Op

(
1√
NT

)
, ∀i, j. (33)

If the rank condition holds, then the above results hold by replacing Qij andMQ,ij with F ij

andMF,ij whereMF,ij = IT − F ij

(
F ′
ijF ij

)−1
F ′
ij.

Remark 3 It is non-trivial to develop an appropriate error components specification for ac-

commodating strong CSD within the multi-dimensional dataset since such setup would involve

several layers of specification. Similar issues have been examined intensively in the interna-

tional business cycle literature, especially in terms of the separate identification of regional

and global factors. Kose, Otrok, and Whiteman (2003) propose the Bayesian method based

on the state space representation, and Moench, Ng, and Potter (2013) extend this approach.

Beck, Hubrich, and Marcellino (2016) propose a sequential principal component method to ex-

tract factors from overlapping data blocks to identify aggregate, sectoral, country-specific and

regional components of price changes in the euro area. Breitung and Eickmeier (2016) suggest

a sequential least squares algorithm and a two-step approach based on canonical correlations

for multi-level factor models, which are subject to blocks of zero restrictions on the factor

loadings matrix. Choi, Kim, Kim, and Kwark (2016) propose a sequential principal compo-

nent estimation procedure to identify global and country factors. Notice, however, that the

main difference between these approaches and ours lies in that we develop the appropriate 3D

panel data regression between dependent variable and regressors with hierarchical cross section

dependence rather than extracting global and regional factors.

Remark 4 The 3D error components model, (2) with the hierarchical multi-factor structure

can be viewed as the generalisation of the CTFE specification in (68) of Section 5. Given that

most existing studies have neglected the presence of cross-sectional error dependence in the 3D

models, KMSS have proposed the error components specification in (69), that combines unob-

served global factors with CTFEs. However, the current paper is substantially different from

the KMSS approach. KMSS introduce global factors only, and combine the Pesaran (2006)

PCCE estimator with the 3D within estimation proposed by Balazsi, Matyas, and Wansbeek

10



(2018). Through the hierarchical factor structure, we now provide a more parsimonious and

structural specification, and develop a novel 3D CCE estimator. Furthermore, our approach

can share similar motivations with the spatial econometric methodology that explicitly intro-

duces spatially-structured origin and destination effects, in such a way that regions treated as

origins (destinations) exhibit similar effects to neighbors of origins (destinations), e.g. LeSage

and Llano (2016). We allow both factors to be correlated with the regressors in order to deal

with endogeneity issues related to the (omitted) time-varying determinants such as globalisa-

tion or business cycle factors, which are difficult to measure in practice.3

Remark 5 An extension to the general case

yijt = β
′
ijxijt + β

′
jxit + β

′
ixjt + δ

′
ijdt + uijt

would be straightforward, though we stick to the simpler setting for tractability. See Section

5.2 on the empirical specification, (70).

3 3D Common Correlated Effects Estimator

In this Section we present the main asymptotic results.

3.1 Individual Specific Coefficients

The 3DCCE estimator of the individual slope coefficients, βij is given by

b̂ij =
(
X ′

ijM̄ ijX ij

)−1
X ′

ijM̄ ijyij (34)

where M̄ ij is defined in (13). Using (6) in (34), we show the dependence of b̂ij on the

unobserved factors as follows:

b̂ij − βij =
(
X ′

ijM̄ ijX ij

)−1
X ′

ijM̄ ij

(
Fγij + F i◦γ◦j + F ◦jγi◦

)
+
(
X ′

ijM̄ ijX ij

)−1
X ′

ijM̄ ijεij

(35)

=

(
X ′

ijM̄ ijX ij

T

)−1
X ′

ijM̄ ijF ij

T
γ∗ij +

(
X ′

ijM̄ ijX ij

T

)−1
X ′

ijM̄ ijεij

T

=

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF ij

T
γ∗ij +

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijεij

T

+Op

(
1

N

)
+Op

(
1√
NT

)

3Suppose that yijt is the export flow from country i to country j at time t (see the application in Section 5).
In this case the global factors f t may proxy the globalisation trends or worldwide multilateral resistance, and
thus affect all of the bilateral pairs (i, j). On the other hand f

◦jt and f i◦t represent local factors associated
with the flows of the i-th (exporter) or j-th (importer) unit.
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where MQ,ij = IT − Qij

(
Q′
ijQij

)−1
Q′
ij with Qij =

(
D,F Φ̄

′
◦◦,F i◦Φ̄

′
◦•,F ◦jΦ̄

′
•◦

)
, F ij =

(F ,F i◦,F ◦j) and γ
∗
ij =

(
γ ′ij,γ

′
i◦,γ

′
◦j

)′
.

We analyse the individual components of
(
X′

ijMQ,ijXij

T

)−1 X′

ijMQ,ijF ij

T
γ∗ij. Using (30), we

first show:

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijFγij

T
= (36)

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF
(
γ̄◦◦ +

(
ηij − η̄◦◦

))

T
= χij,◦◦ + χij

where we use γij = γ̄◦◦ +
(
ηij − η̄◦◦

)
from (9). Using (29), we have:

χij,◦◦ =

[(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF

T

](
−Γ̄′ν,◦◦ − η̄◦◦

)
,

χij =

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijFηij

T

where

Γ̄ν,◦◦ =
1

N2

N∑

i=1

N∑

j=1

(νi◦ + ν◦j + νij)
′ Γij

=
1

N

N∑

i=1

ν ′i◦

(
1

N

N∑

j=1

Γij

)

+
1

N

N∑

j=1

ν ′◦j

(
1

N

N∑

i=1

Γij

)

+
1

N2

N∑

i=1

N∑

j=1

ν ′ijΓij

=
1

N

N∑

i=1

ν ′i◦Γ̄i◦ +
1

N

N∑

j=1

ν ′◦jΓ̄◦j +
1

N2

N∑

i=1

N∑

j=1

ν ′ijΓij.

Similarly, we show that

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF i◦γ◦j

T
= (37)

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF i◦
(
γ̄◦• +

(
η◦j − η̄◦•

))

T
= χij,◦• + χij,◦j

where

χij,◦• =

[(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF i◦

T

](
−Γ̄′i,ν,◦• − η̄◦•

)
,

χij,◦j =

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF i◦η◦j

T

Γ̄i,ν,◦• =
1

N

N∑

j=1

(νi◦ + ν◦j + νij)
′ Γ◦j = ν

′
i◦Γ̄◦• +

1

N

N∑

j=1

ν ′◦jΓ◦j +
1

N

N∑

j=1

ν ′ijΓ◦j,

12



Finally,

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF ◦jγi◦

T
= (38)

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF ◦j (γ̄•◦ + (ηi◦ − η̄•◦))
T

= χij,•◦ + χij,i◦

where

χij,•◦ =

[(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF ◦j

T

](
−Γ̄′j,ν,•◦ − η̄•◦

)
,

χij,i◦ =

(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijF ◦jηi◦

T

Γ̄j,ν,•◦ =
1

N

N∑

i=1

(νi◦ + ν◦j + νij)
′ Γi◦ =

1

N

N∑

i=1

ν ′i◦Γi◦ + ν
′
◦jΓ̄•◦ +

1

N

N∑

i=1

ν ′ijΓi◦.

Using the above results in (35), we establish that

b̂ij − βij =
(
X ′

ijMQ,ijX ij

T

)−1
X ′

ijMQ,ijεij

T
+ op (1) .

For N and T sufficiently large, the distribution of
√
T
(
b̂ij − βij

)
will be asymptotically

normal if
√
T/N → 0 as N, T →∞.

In the case where the rank condition (26) is satisfied, we summarise the above analyses

and provide the asymptotic distribution in Theorem 1.

Theorem 1 Consider the 3D heterogeneous panel data model, (1)-(3). Suppose that Assump-

tions 1-4 and 5(a) hold. Then, the 3DCCE estimator of the individual slope coefficients given

by (34) is consistent. Further, as N, T →∞ and
√
T/N → 0,

√
T
(
b̂ij − βij

)
→d N(0,V ij), (39)

where V ij = Σ−1v,ijΣijεΣ
−1
v,ij, Σv,ij = V ar(vijt), Σijε = p limT→∞

[
X′

ijMF,ijΩijεMF,ijXij

T

]
with

MF,ij = IT − F ij

(
F ′
ijF ij

)−1
F ′
ij, and Ωijε = E

(
ε′ijεij

)
.

3.2 3D Common Correlated Effects Mean Group Estimator

In this section we assume that the parameters of interest are the cross-sectional means of βij

defined by (11), and consider the mean group (MG) estimator proposed by Pesaran and Smith

(1995). We call it the 3D-CCEMG estimator, which is given by an average of the individual

3DCCE estimators b̂ij in (34):

b̂MG =
1

N2

N∑

i=1

N∑

j=1

b̂ij. (40)
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Under Assumption 4 and using (35), we have:

√
N
(
b̂MG − β

)
=

1

N3/2

N∑

i=1

N∑

j=1

νij +
1√
N

N∑

i=1

νi◦ +
1√
N

N∑

j=1

ν◦j (41)

+
1

N2

N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

(√
NX ′

ijMQ,ijF ij

T

)

γ∗ij +
1

N2

N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

(√
NX ′

ijMQ,ijεij

T

)

(42)

=
1

N3/2

N∑

i=1

N∑

j=1

νij +
1√
N

N∑

i=1

νi◦ +
1√
N

N∑

j=1

ν◦j +
1

N2

N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

(√
NX ′

ijMQ,ijεij

T

)

(43)

+
1

N3/2

N∑

i=1

N∑

j=1

χij +
1

N3/2

N∑

i=1

N∑

j=1

χij,◦◦ (44)

+
1

N3/2

N∑

i=1

N∑

j=1

χij,i◦ +
1

N3/2

N∑

i=1

N∑

j=1

χij,•◦ (45)

+
1

N3/2

N∑

i=1

N∑

j=1

χij,◦j +
1

N3/2

N∑

i=1

N∑

j=1

χij,◦• (46)

+Op

(
1√
N

)
+Op

(
1√
T

)
,

whereΨQ,ijT =
(
T−1X ′

ijMQ,ijX ij

)
satisfies Assumption 5(a). By analysing each term above,

we obtain the following Theorem:

Theorem 2 Consider the 3D heterogeneous panel data model, (1)-(3). Suppose that Assump-

tions 1-4 and 5(a) hold. Then, the 3D-CCEMG estimator, b̂MG defined by (40), is consistent.

Further, as N, T →∞,
√
N
(
b̄MG − β

)
→d N(0,V MG) with V MG = Ων,•◦ +Ωη,•◦ +Ων,◦• +Ωη,◦• (47)

where

Ων,•◦ = lim
N,T→∞

1

N

N∑

i=1

E
(
A1,i,NTΩν•◦A

′
1,i,NT

)
, Ωη,•◦ = lim

N,T→∞

1

N

N∑

i=1

E
(
A2,i,NTΩη

•◦
A′
2,i,NT

)

Ων,◦• = lim
N,T→∞

1

N

N∑

j=1

E
(
A1,j,NTΩν◦•A

′
1,j,NT

)
, Ωη,◦• = lim

N,T→∞

1

N

N∑

j=1

E
(
A2,j,NTΩη

◦•
A′
2,j,NT

)

with A1,i,NT , A2,i,NT , A1,j,NT , A2,j,NT defined in (87)-(90) in the Appendix. Finally, V MG

can be consistently estimated by

V̂ MG =
1

N − 1

N∑

i=1

(
b̂i − b̂MG

)(
b̂i − b̂MG

)′
+

1

N − 1

N∑

j=1

(
b̂j − b̂MG

)(
b̂j − b̂MG

)′
, (48)
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where b̂i =
1
N

∑N
j=1 b̂ij and b̂j =

1
N

∑N
i=1 b̂ij.

Theorem 2 establishes an existence of a normal limit. Another important finding is that

the dominant terms of
√
N
(
b̄MG − β

)
are those that involve νi◦, νi◦, ηi◦ and η◦j only, because

the terms associated with νij and ηij are asymptotically negligible. This explains
√
N rate

of convergence. We also establish a novel result that the nonparametric variance estimator,
1
N2

∑N
i=1

∑N
j=1

(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
, proposed by Pesaran (2006), does not provide a

consistent estimator of V MG, because it gives an equal weight to the terms containing νi◦,

νi◦, ηi◦ and η◦j, and those containing νij and ηij. As is clear from the proof in the Appendix,

the terms associated with νi◦, ν◦j, ηi◦ and η◦j dominate, providing the sole constituents of

the variance estimator. Hence, the consistent nonparametric estimator, V̂ MG in (48) ensures

that νij and ηij are averaged out by the use of b̂i and b̂j.

Remark 6 Theorem 2 does not require the rank condition to hold as long as the number of

unobserved factors m is fixed. Further, we do not require any restriction on the relative rates

of N and T . When the rank condition (26) is satisfied, Assumption 3 can be relaxed such that

it would be sufficient that the factor loadings are bounded.

3.3 3D Common Correlated Effects Pooled Estimator

Consider the special case where the individual coefficients βij are assumed (possibly incor-

rectly) homogeneous. In this case efficiency gain from pooling can be achieved. We still allow

coefficients on observed and unobserved common effects to differ across (ij). We derive the

pooled estimator of β, referred to as the 3D-CCEP estimator by

b̂P =

(
N∑

i=1

N∑

j=1

X ′
ijM̄ ijX ij

)−1 N∑

i=1

N∑

j=1

X ′
ijM̄ ijyij, (49)

Along similar lines of the analysis of the MG estimator, we obtain the following result:

Theorem 3 Consider the 3D heterogeneous panel data model, (1)-(3). Suppose that Assump-

tions 1-4 and 5(b) hold. Then, the 3D-CCEP estimator, b̂P in (49), is consistent. Further,

√
N
(
b̂P − β

)
→d N(0,Ψ−1RΨ−1) (50)

where

Ψ = lim
N→∞

1

N2

N∑

i=1

N∑

j=1

Ψij with Ψij = E

[(
X ijM̄ ijX ij

T

)−1]

(51)

R = Ω̃ν,•◦ + Ω̃η,•◦ + Ω̃ν,◦• + Ω̃η,◦•. (52)
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Ω̃ν,•◦ = lim
N,T→∞

1

N

N∑

i=1

E
(
Ã1,i,NTΩ

′
ν•◦
Ã
′
1,i,NT

)
, Ω̃η,•◦ = lim

N,T→∞

1

N

N∑

i=1

E
(
Ã2,i,NTΩ

′
η
•◦

Ã
′
2,i,NT

)

Ω̃ν,◦• = lim
N,T→∞

1

N

N∑

j=1

E
(
Ã1,j,NTΩν◦•Ã

′
1,j,NT

)
, Ω̃η,◦• = lim

N,T→∞

1

N

N∑

j=1

E
(
Ã2,j,NTΩη

◦•
Ã
′
2,j,NT

)

where Ã1,i,NT , Ã2,i,NT , Ã1,j,NT and Ã2,j,NT are defined in (91)-(92) in the Appendix. The

variance Ψ−1RΨ−1 can be consistently estimated by Ψ̂
−1
R̂Ψ̂

−1
where

Ψ̂ =
1

N2

N∑

i=1

N∑

j=1

X ′
ijM̄ ijX ij

T
, (53)

R̂ =
1

N

N∑

i=1

[
1

N

N∑

j=1

(
X ′

ijM̄ ijX ij

T

)(
b̂ij − b̂MG

)][ 1
N

N∑

j=1

(
b̂ij − b̂MG

)′
(
X ′

ijM̄ ijX ij

T

)]

(54)

+
1

N

N∑

j=1

[
1

N

N∑

i=1

(
X ′

ijM̄ ijX ij

T

)(
b̂ij − b̂MG

)][ 1
N

N∑

i=1

(
b̂ij − b̂MG

)′
(
X ′

ijM̄ ijX ij

T

)]

Remark 7 The asymptotic variance matrix of b̂P depends on unobserved factors and loadings.

It is nevertheless possible to estimate it consistently along lines similar to the case of 3D-

CCEMG.

3.4 Special Cases

It is important to investigate whether better convergence rates can be achieved if the hierar-

chical structure is simplified. We focus on two special cases. The first case sets

Condition S1 : ηi◦ = η◦j = νi◦ = ν◦j = 0

while the second sets

Condition S2 : F i◦ = F ◦j = 0.

There may be other permutations but their effects follow easily once we consider S1 and S2.

The setup under the more restrictive Condition S2 is similar to that of Pesaran (2006) because

there is no hierarchical factor structure. Here, we can treat the dataset as a T ×N2 panel by

amalgamating the two cross-section dimensions into one and applying the 2DCCE estimation

procedure. Then, it is clear that
√
N rate will be replaced by N , and all the results of Pesaran

(2006) and other papers analysing the CCE estimator hold.
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Next, we consider the case where S1 holds but not S2. Then, it is instructive to revisit the

decomposition in (41)-(46), which becomes:

√
N
(
b̂MG − β

)
=

1

N3/2

N∑

i=1

N∑

j=1

νij +
1

N2

N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

(√
NX ′

ijMQ,ijεij

T

)

+ (55)

1

N3/2

N∑

i=1

N∑

j=1

χij +
1

N3/2

N∑

i=1

N∑

j=1

χij,◦◦ +
1

N3/2

N∑

i=1

N∑

j=1

χij,•◦+

1

N3/2

N∑

i=1

N∑

j=1

χij,◦• +Op

(
1√
N

)
+Op

(
1√
T

)
,

From the proof of Theorem 2, we find that the magnitude of all terms on the RHS of (55) is,

at most, 1√
N
, as long as N/T → 0, since 1√

T
= o

(
1√
N

)
, giving a faster rate of convergence.

But, normality does not always follow since the Op

(
1√
N

)
term in RHS of (55) is nonnegligible.

Notice that the asymptotic variance estimators proposed in Pesaran (2006) become relevant

only if normality holds; in particular,

V̂ MG =
1

N2

N∑

i=1

N∑

j=1

(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
, (56)

for the mean group estimator, and

R̂ =
1

N2

N∑

i=1

N∑

j=1

(
X ′

ijM̄ ijX ij

T

)(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
(
X ′

ijM̄ ijX ij

T

)

, (57)

for the pooled estimator.

If Condition S1 is considered too restrictive, as it implies homogeneity for the coefficients

of the local factors in eijt, we may entertain the more general heterogeneous setup given by

γi◦ = γij◦ = γ•◦ + ηij◦, γ◦j = γ◦ij = γ◦• + η◦ij.

Because of the double cross-sectional averaging, the errors ηij◦ and η◦ij are negligible since

the terms associated with χij,•◦ and χij,◦•, in (41)-(46), decay sufficiently fast (as fast as the

term associated with χij,◦◦) to give the same fast convergence rate as under S1.

4 Monte Carlo Study

In this section we examine the small sample properties of the 3D-CCEMG and 3D-CCEP

estimators derived by (40) and (49). Following the hierarchical multifactor structure, (1)-(3),

we generate yijt and xijt as follows:

yijt = βijxijt + γ1,ijf1,t + γ2,ijf2,t + γ1,◦jf1,i◦t + γ2,◦jf2,i◦t + γ1,i◦f1,◦jt + γ2,i◦f2,◦jt + εijt, (58)
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xijt = Γ1,ijf1,t + Γ2,ijf2,t + Γ1,◦jf1,i◦t + Γ2,◦jf2,i◦t + Γ1,i◦f1,◦jt + Γ2,i◦f2,◦jt + vijt, (59)

for i = 1, ..., N , i, j = 1, ..., N and t = 1, ..., T . Without loss of generality we set md = 0,

mx = 1, and mf = m◦• = m•◦ = 2.

The hierarchical unobserved factors, f t, f ◦jt, f i◦t are generated independently as station-

ary autoregressive processes with zero mean and unit variance:

fh,t = ρfhfh,t−1 + υfht with υfht ∼ iidN
(
0, 1− ρ2fh

)
for h = 1, 2

fh,i◦t = ρfh,i◦fh,i◦,t−1 + υfh,i◦t with υfh,i◦t ∼ iidN
(
0, 1− ρ2fh,i◦

)
for h = 1, 2 and i = 1, .., N

fh,◦jt = ρfh,◦jfh,◦j,t−1 + υfh,◦jt with υfh,◦jt ∼ iidN
(
0, 1− ρ2fh,◦j

)
for h = 1, 2 and j = 1, .., N

The idiosyncratic errors, εijt and vijt, are generated independently as stationary autoregressive

processes with zero mean and unit variance:

εijt = ρεεij,t−1 + eε,ijt with eε,ijt ∼ iidN
(
0, 1− ρ2ε

)

vijt = ρvvij,t−1 + ev,ijt with ev,ijt ∼ iidN
(
0, 1− ρ2v

)

We set ρfh = ρfh,i◦ = ρfh,◦j = ρε = ρv = 0 and 0.5.
4

Next, we consider two experiments: Experiment A with the rank condition (26) being

satisfied and Experiment B with the rank condition violated. For xijt in (59), we draw the

factor loadings randomly and independently by

Γ1,ij ∼ iidN (0.5, 0.5) and Γ2,ij ∼ iidN (0, 0.5) for i, j = 1, ..., N

Γ1,◦j ∼ iidN (0.5, 0.5) and Γ2,◦j ∼ iidN (0, 0.5) for j = 1, ..., N

Γ1,i◦ ∼ iidN (0.5, 0.5) and Γ2,i◦ ∼ iidN (0, 0.5) for i = 1, ..., N

For yijt in (58), we consider the two experiments. For experiment A, we generate:

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (1, 0.2) for i, j = 1, ..., N (60)

γ1,◦j ∼ iidN (1, 0.2) and γ2,◦j ∼ iidN (1, 0.2) for j = 1, ..., N
γ1,i◦ ∼ iidN (1, 0.2) and γ2,i◦ ∼ iidN (1, 0.2) for i = 1, ..., N.

In this case the rank condition (26) is satisfied as follows:

E
(
Γ̃
A

ij

)
= E

(
γA′ij
Γij

)
=

(
1 1
0.5 0

)
, E
(
Γ̃
A

◦j

)
=

(
1 1
0.5 0

)
, E
(
Γ̃
A

i◦

)
=

(
1 1
0.5 0

)

4We have also considered the different values of the autoregressive parameters,
(
ρfh , ρfh,i◦ , ρfh,◦j , ρε, ρv

)
,

and found that all those simulation results are qualitatively similar. Additional simulation results will be
available upon request.
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For experiment B, we generate:

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (0, 1) for i, j = 1, ..., N (61)

γ1,◦j ∼ iidN (1, 0.2) and γ2,◦j ∼ iidN (0, 1) for j = 1, ..., N
γ1,i◦ ∼ iidN (1, 0.2) and γ2,i◦ ∼ iidN (0, 1) for i = 1, ..., N

Then, the rank condition (26) is violated:

E
(
Γ̃
B

ij

)
= E

(
γB′ij
Γij

)
=

(
1 0
0.5 0

)
, E
(
Γ̃
B

◦j

)
=

(
1 0
0.5 0

)
, E
(
Γ̃
B

i◦

)
=

(
1 0
0.5 0

)

For each experiment, we consider two cases: Case 1 with the heterogeneous slopes:

βij = β + νi◦ + ν◦j + νij, νi◦ ∼ iidN (0, 1) , ν◦j ∼ iidN (0, 1) , νij ∼ iidN (0, 1) (62)

where νi◦, ν◦j and νij are generated independently of one another, and Case 2 with the

homogeneous slopes:

βij = β = 1. (63)

To investigate the small sample properties of the alternative estimators, we consider the

three versions of 3D estimators: the 3DCCEG with uijt = αij + γ
′
ijf t + εijt where we ap-

proximate heterogeneous global factors only by z̄t = (ȳt, x̄t)
′; the 3DCCEL estimator with

uijt = αij + γ
′
◦jf i◦t + γ

′
i◦f ◦jt + εijt where we approximate heterogeneous local factors only by

z̄i◦t and z̄◦jt; and the 3DCCEGL estimator with uijt = αij + γ
′
◦jf i◦t + γ

′
i◦f ◦jt + γ

′
ijf t + εijt

where we approximate heterogeneous global and local factors by z̄t, z̄i◦t and z̄◦jt. In each

case we consider both mean group and pooled estimators.

For each of these estimators we report the bias, the root mean squared error (RMSE)

and the coverage rate at the 95% confidence with 1,000 replications for the (N, T ) pairs with

N = {10, 25, 50, 100} and T = {50, 100}.
Table 1 shows simulation results for Experiment A (the full rank) with heterogeneous

coefficients (Case 1). We find that the biases of our proposed 3DCCEGL estimator are mostly

negligible even for the relatively small sample sizes. Further, the performance of both pooled

and mean group estimators is shown to be almost identical. On the contrary, the 3DCCEG

estimator suffers from severe biases. Finally, the biases of the 3DCCEL estimator are still non-

negligible even for large N and T , but much smaller than those of 3DCCEG, indicating that

the local factors approximations seem to be more effective than the global counterpart. This

indicates that the CCE estimator advanced by Pesaran (2006) is not effective in removing

correlations between local factors and regressors within 3D panels.5 These results provide

support for theoretical predictions that the joint approximations of heterogeneous global and

5The 3DCCEG estimator is identical to the 2DCCE estimator only if F i◦ = F ◦j = 0 (Condition S2).
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local factors can only provide consistent estimation of E (βij) in the presence of the hierarchical

multifactors.

We also find that the results for RMSE display similar patterns. RMSEs of 3DCCEL

and 3DCCEGL estimators are significantly lower than those of 3DCCEG estimator. The

difference between 3DCCEL and 3DCCEGL is mostly negligible, but RMSEs of 3DCCEGL

tend to decline with the sample size. Turning to the coverage rates, we find that 3DCCEL

and the 3DCCEGL estimators perform better than 3DCCEG estimator, whose coverage rate

tends to under-estimate as N rises. Only coverage rates of 3DCCEGL estimator tend to the

nominal 95% as N or T rises.

Table 2 presents simulation results for Experiment A (the full rank) with homogeneous

coefficients (Case 2). We observe qualitatively similar results for biases of the three estimators

in Table 1, confirming that the 3DCCEGL estimator is most reliable. RMSEs of 3DCCEG

estimator are significantly higher than those of 3DCCEL and 3DCCEGL estimators. RMSEs

of 3DCCEGL are now significantly lower than those of 3DCCEL, and fall sharply with the

sample size. We do not compute coverage rates for the homogeneous coefficient case because

our theory only covers the asymptotic distribution of heterogeneous coefficients similarly to

Pesaran (2006) with the only exception of the special case in his Theorem 4. We leave this to

future research.

Table 3 presents simulation results for Experiment B (the rank deficiency) with heteroge-

neous coefficients (Case 1). We obtain qualitatively similar results to Table 1, suggesting that

the performance of the estimators is not significantly affected by the rank deficiency while

confirming that the 3DCCEGL estimator is most reliable. This finding provides a support for

the validity of our proposed estimator.

Table 4 presents simulation results for Experiment B (the rank deficiency) with homoge-

neous coefficients (Case 2). We find qualitatively similar results to Table 2. The 3DCCEGL

estimator is still most reliable.

We have also conducted the additional simulations by constructing the data under Condi-

tions S1 and S2 described in Section 3.4. These simulation results, available in the Supplement,

confirm our predictions that the faster convergence rate can be achieved. Under S1 the bias

and RMSE of 3DCCEG are substantially higher whilst they decline significantly for 3DCCEL.

Importantly, they become almost negligible for 3DCCEGL, and their coverage rate tends to

the nominal 95% as N or T rises. Under both S1 and S2, there is no longer the hierarchical

factor structure. The bias and RMSE of 3DCCEG are reduced substantially, confirming that

both 3DCCEG and 3DCCEGL are most reliable estimators. Further, their coverage rates

reach the nominal 95% as N or T rises. We also find that the relative performance of the

estimators are not affected significantly by the rank deficiency in both experiments.

We note in passing that the 2DCCE estimator fails to properly deal with the hierarchical
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cross section dependence structure with heterogenous global and local factors. The biases

of the 3DCCEG estimator become negligible when the DGP include global factors only, not

the local factors, which is confirmed by the additional simulation results for Cases 5s to 8s

reported in Supplement, Section 9. The 3DCCEL shows relatively better results, highlighting

a potentially more important role played by the local factors in capturing the cross section

dependence within a hierarchical structure. In order to achieve the most reliable and consistent

estimation results, however, we should apply the global and local approximations jointly.
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Table 1: Simulation results for Case 1 - Full Rank (Experiment A)
3DCCEG 3DCCEL 3DCCEGL

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.232 0.251 0.064 0.079 -0.006 0.008

0 25 0.263 0.272 0.062 0.070 -0.004 0.004
50 0.285 0.279 0.077 0.072 0.008 0.002
100 0.282 0.285 0.074 0.076 0.002 0.003
10 0.302 0.253 0.115 0.067 0.040 -0.008

0.5 25 0.265 0.289 0.049 0.074 -0.022 0.004
50 0.301 0.290 0.079 0.068 0.005 -0.006
100 0.300 0.300 0.077 0.078 -0.002 -0.001

Mean Group Estimator
10 0.219 0.239 0.046 0.063 0.001 0.017

0 25 0.249 0.258 0.053 0.061 0.003 0.012
50 0.268 0.264 0.067 0.062 0.011 0.007
100 0.265 0.268 0.062 0.065 0.002 0.005
10 0.292 0.247 0.103 0.056 0.053 0.006

0.5 25 0.254 0.276 0.041 0.063 -0.012 0.010
50 0.287 0.276 0.068 0.056 0.009 -0.003
100 0.286 0.287 0.064 0.065 -0.001 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.544 0.530 0.488 0.474 0.483 0.468

0 25 0.389 0.396 0.293 0.296 0.286 0.287
50 0.348 0.345 0.213 0.216 0.198 0.203
100 0.316 0.316 0.160 0.156 0.141 0.137
10 0.557 0.536 0.479 0.475 0.466 0.469

0.5 25 0.390 0.412 0.290 0.300 0.288 0.291
50 0.369 0.353 0.225 0.211 0.211 0.200
100 0.332 0.332 0.162 0.163 0.142 0.143

Mean Group Estimator
10 0.528 0.523 0.480 0.469 0.478 0.464

0 25 0.379 0.385 0.289 0.292 0.284 0.286
50 0.333 0.332 0.208 0.212 0.197 0.203
100 0.301 0.301 0.154 0.151 0.141 0.137
10 0.544 0.525 0.466 0.463 0.458 0.460

0.5 25 0.382 0.400 0.287 0.297 0.285 0.290
50 0.356 0.340 0.220 0.207 0.209 0.199
100 0.319 0.320 0.155 0.157 0.141 0.143

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.965 0.953 0.903 0.903 0.895 0.886

0 25 0.951 0.947 0.924 0.919 0.924 0.929
50 0.911 0.898 0.922 0.919 0.940 0.932
100 0.792 0.775 0.917 0.924 0.947 0.959
10 0.965 0.973 0.898 0.912 0.892 0.890

0.5 25 0.960 0.952 0.925 0.931 0.935 0.927
50 0.899 0.907 0.914 0.927 0.935 0.945
100 0.790 0.745 0.915 0.912 0.952 0.947

Mean Group Estimator
10 0.951 0.939 0.891 0.900 0.888 0.891

0 25 0.931 0.928 0.923 0.914 0.925 0.931
50 0.876 0.863 0.933 0.925 0.946 0.931
100 0.724 0.713 0.929 0.929 0.947 0.961
10 0.954 0.954 0.904 0.908 0.903 0.901

0.5 25 0.936 0.926 0.932 0.934 0.935 0.936
50 0.849 0.850 0.917 0.937 0.933 0.949
100 0.691 0.677 0.926 0.920 0.949 0.946

Notes: 3DCCEG is the estimator with the global factors approximation only, 3DCCEL is the estimator with the local factors

approximation only, and 3DCCEGL is the estimator with both global and local factors approximation. We consider both mean

group and pooled estimators defined in (40) and (49). The variance of 3DCCEG is estimated by (56) for the mean group and

(57) for the pooled estimator. The variances of 3DCCEL and 3DCCEGL are given by (48) for the mean group and (53)-(54) for

the pooled estimator. 22



Table 2: Simulation Results for Case 2 - Full Rank (Experiment A)
3DCCEG 3DCCEL 3DCCEGL

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.240 0.246 0.067 0.073 -0.001 0.006

0 25 0.269 0.270 0.068 0.068 0.001 0.002
50 0.278 0.278 0.071 0.070 0.001 0.001
100 0.281 0.282 0.074 0.074 0.000 0.000
10 0.267 0.261 0.076 0.072 0.002 -0.003

0.5 25 0.292 0.292 0.075 0.075 0.003 0.004
50 0.300 0.299 0.077 0.076 0.002 0.002
100 0.304 0.303 0.081 0.080 0.001 0.000

Mean Group Estimator
10 0.230 0.235 0.057 0.062 0.005 0.011

0 25 0.255 0.256 0.059 0.060 0.006 0.006
50 0.262 0.262 0.060 0.060 0.002 0.003
100 0.265 0.265 0.061 0.062 0.000 0.001
10 0.256 0.252 0.067 0.064 0.010 0.006

0.5 25 0.279 0.278 0.066 0.065 0.008 0.008
50 0.286 0.286 0.066 0.066 0.004 0.004
100 0.289 0.289 0.068 0.067 0.002 0.001

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.268 0.273 0.129 0.136 0.110 0.112

0 25 0.274 0.274 0.083 0.082 0.045 0.044
50 0.279 0.279 0.074 0.074 0.022 0.021
100 0.282 0.282 0.075 0.075 0.010 0.010
10 0.293 0.289 0.136 0.137 0.113 0.114

0.5 25 0.296 0.296 0.090 0.088 0.046 0.045
50 0.301 0.300 0.081 0.080 0.022 0.022
100 0.304 0.303 0.082 0.081 0.011 0.010

Mean Group Estimator
10 0.255 0.259 0.118 0.121 0.103 0.104

0 25 0.259 0.260 0.073 0.073 0.042 0.042
50 0.263 0.263 0.063 0.064 0.020 0.021
100 0.265 0.265 0.062 0.063 0.010 0.010
10 0.279 0.276 0.123 0.122 0.103 0.103

0.5 25 0.283 0.282 0.078 0.077 0.042 0.041
50 0.286 0.287 0.070 0.069 0.021 0.021
100 0.289 0.289 0.069 0.068 0.011 0.010

Notes: See notes to Table 1.
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Table 3: Simulation results for Case 1 - Rank Deficiency- (Experiment B)
3DCCEG 3DCCEL 3DCCEGL

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.220 0.242 0.077 0.099 -0.005 0.018

0 25 0.223 0.239 0.050 0.066 -0.017 -0.001
50 0.248 0.246 0.061 0.061 0.002 0.001
100 0.260 0.249 0.067 0.057 0.012 0.001
10 0.242 0.249 0.076 0.084 -0.004 0.003

0.5 25 0.273 0.274 0.076 0.079 0.009 0.012
50 0.258 0.266 0.049 0.058 -0.012 -0.003
100 0.272 0.271 0.056 0.055 0.000 -0.002

Mean Group Estimator
10 0.211 0.234 0.040 0.062 0.008 0.030

0 25 0.214 0.228 0.028 0.043 -0.006 0.009
50 0.237 0.235 0.047 0.046 0.009 0.008
100 0.248 0.238 0.057 0.046 0.010 0.005
10 0.230 0.241 0.041 0.054 0.006 0.019

0.5 25 0.263 0.263 0.059 0.060 0.023 0.024
50 0.247 0.254 0.038 0.045 -0.003 0.005
100 0.260 0.259 0.047 0.046 0.003 0.002

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.509 0.520 0.467 0.469 0.461 0.460

0 25 0.364 0.362 0.294 0.279 0.290 0.271
50 0.313 0.322 0.202 0.216 0.192 0.208
100 0.297 0.286 0.158 0.152 0.144 0.141
10 0.517 0.520 0.461 0.463 0.454 0.457

0.5 25 0.397 0.396 0.298 0.297 0.289 0.285
50 0.326 0.335 0.205 0.212 0.199 0.205
100 0.306 0.306 0.151 0.152 0.140 0.143

Mean Group Estimator
10 0.503 0.510 0.459 0.457 0.457 0.454

0 25 0.358 0.354 0.288 0.274 0.286 0.270
50 0.304 0.313 0.197 0.211 0.191 0.207
100 0.287 0.276 0.154 0.148 0.144 0.141
10 0.501 0.509 0.447 0.452 0.444 0.450

0.5 25 0.388 0.388 0.291 0.291 0.286 0.285
50 0.317 0.326 0.202 0.208 0.198 0.203
100 0.295 0.295 0.146 0.149 0.139 0.142

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.967 0.957 0.896 0.893 0.891 0.894

0 25 0.967 0.971 0.927 0.944 0.925 0.951
50 0.936 0.909 0.938 0.920 0.949 0.927
100 0.801 0.833 0.922 0.930 0.941 0.952
10 0.967 0.971 0.901 0.912 0.897 0.902

0.5 25 0.954 0.955 0.912 0.931 0.926 0.938
50 0.943 0.912 0.937 0.926 0.942 0.934
100 0.815 0.795 0.932 0.935 0.958 0.942

Mean Group Estimator
10 0.956 0.949 0.905 0.907 0.898 0.909

0 25 0.948 0.949 0.934 0.951 0.935 0.953
50 0.904 0.879 0.946 0.928 0.953 0.932
100 0.742 0.768 0.932 0.933 0.949 0.952
10 0.962 0.965 0.922 0.923 0.919 0.922

0.5 25 0.926 0.928 0.931 0.941 0.931 0.944
50 0.898 0.869 0.940 0.937 0.940 0.935
100 0.727 0.724 0.937 0.936 0.957 0.943

Notes: See notes to Table 1.

24



Table 4: Simulation results for Case 2 - Rank Deficiency (Experiment B)
3DCCEG 3DCCEL 3DCCEGL

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.231 0.223 0.076 0.072 0.003 -0.001

0 25 0.243 0.243 0.063 0.063 0.002 0.002
50 0.247 0.248 0.056 0.058 0.000 0.001
100 0.250 0.251 0.054 0.054 0.000 0.001
10 0.250 0.250 0.078 0.078 0.004 0.004

0.5 25 0.270 0.266 0.067 0.064 0.004 0.001
50 0.272 0.271 0.059 0.059 0.001 0.001
100 0.276 0.275 0.056 0.056 0.001 0.000

Mean Group Estimator
10 0.222 0.215 0.053 0.047 0.012 0.006

0 25 0.232 0.234 0.048 0.049 0.008 0.009
50 0.236 0.237 0.046 0.047 0.005 0.005
100 0.238 0.239 0.045 0.046 0.002 0.003
10 0.242 0.246 0.057 0.060 0.013 0.016

0.5 25 0.258 0.256 0.054 0.052 0.011 0.010
50 0.261 0.260 0.051 0.050 0.007 0.006
100 0.264 0.264 0.049 0.049 0.004 0.004

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.258 0.251 0.136 0.132 0.111 0.110

0 25 0.248 0.247 0.078 0.077 0.045 0.044
50 0.249 0.249 0.061 0.062 0.023 0.023
100 0.250 0.251 0.055 0.056 0.012 0.011
10 0.278 0.276 0.138 0.137 0.115 0.112

0.5 25 0.275 0.271 0.082 0.079 0.047 0.046
50 0.273 0.273 0.064 0.064 0.024 0.024
100 0.276 0.276 0.058 0.057 0.012 0.012

Mean Group Estimator
10 0.245 0.239 0.116 0.112 0.103 0.101

0 25 0.236 0.238 0.063 0.064 0.042 0.042
50 0.237 0.238 0.051 0.051 0.021 0.021
100 0.238 0.239 0.047 0.047 0.011 0.010
10 0.264 0.266 0.118 0.118 0.105 0.103

0.5 25 0.261 0.259 0.068 0.066 0.042 0.042
50 0.262 0.261 0.055 0.054 0.022 0.021
100 0.264 0.264 0.050 0.050 0.011 0.011

Notes: See notes to Table 1.
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5 The Gravity Model of Bilateral Export Flows

Anderson and van Wincoop (2003) show that the gravity equation tells that bilateral trade,

after controlling for size, depends on the bilateral trade barriers as well as the multilateral

resistance (MTR) indices measuring bilateral barrier relative to average trade barriers that

both regions face with all their trading partners. The system of the structural gravity equations

is derived as follows:

Xij =
YiYj
Y

(
tij
ΠiPj

)1−σ
(64)

Π1−σi =
∑

j

(
tij
Pj

)1−σ
Yj
Y
and P 1−σj =

∑

i

(
tij
Πi

)1−σ
Yi
Y

(65)

whereXij are exports from i to j, Yi, Yj and Y are GDPmeasures for i (exporter), j (importer)

and the world, tij (> 1) is one plus the tariff equivalent of overall trade costs of imports of

j from i, σ (> 1) is the elasticity of substitution with CES preference, Πi is ease of access of

exporter i, and Pj is the ease of access of importer j. Pj and Πi are called inward and outward

multilateral resistance.

Omitting MTR induces potentially severe bias (e.g. Baldwin and Taglioni (2006)). We

consider the log-linearised specification of (64):6

lnXij = β0 + β1 lnYi + β2 lnYj + β3 ln tij + β4 lnPi + β5 lnPj + εij (66)

where Pi and Pj are unobservable CES price indices, and tij contain both barriers and in-

centives to trade between i and j. Subsequent research has focused on estimating (66) with

directional country-specific fixed effects to control for unobservable MTRs, which are therefore

replaced by a vector of N country-specific dummies, µi and µj.

When we extend the model (66) into the 3D panels:

lnXijt = β0 + β1 lnYit + β2 lnYjt + β3 ln tijt + β4 lnPit + β5 lnPjt + εijt, (67)

we should allow MTRs to vary over time. Baltagi, Egger, and Pfaffermayr (2003) propose the

following 3D error components:

uijt = αij + θit + θ
∗
jt + εijt, (68)

which contains bilateral pair-fixed effects αij as well as origin (exporter) and destination

(importer) country-time fixed effects (CTFE) θit and θ
∗
jt, respectively. This approach has

been popularly applied to measure the impacts of MTRs of the exporters and the importers

in the structural gravity studies, e.g. Baltagi, Egger, and Pfaffermayr (2015).

6Under the assumption of bilateral trade cost symmetry (tij = tji) and balanced trade, Anderson and van
Wincoop (2003) impose the normalisation, Πi = Pi.
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However, the main drawback of the CTFE approach lies in the underlying assumption

that bilateral trade flows are independent of what happens to the rest of the trading world.7

Thus, KMSS propose the more general error components specification:8

uijt = αij + θit + θ
∗
jt + πijθt + εijt, (69)

that attempts to model residual CSD via unobserved heterogeneous global factor θt in addition

to CTFEs. KMSS develop the two-step consistent estimation procedure, called the 3D-PCCE

estimator, by approximating global factors with the double cross-section averages of dependent

variable and regressors and then applying the 3D-within transformation.

Following this research trend, in this paper, we have developed the hierarchical multi-

factor error components specification, (2), which is more structural and parsimonious than

(69). Suppose that yijt in (1) is the trade (export) volumes from source (export) country i to

destination (import) country j at time t. In the hierarchical error components specification

(2), f t are the global factors such as world-wide technology advancement in transportation

that affects every trade volume between source country i and destination country j. For

example, if there is technology advancement that substantially reduces transportation cost,

then it is likely to increase all trade volumes between any pair of countries. The local factors

f i◦t and f ◦jt represent source and destination country factors, respectively. f i◦t are the factors

of the ith exporting country (say, Germany) that affect the trade volumes from Germany to all

destination countries while f ◦jt are the factor of the jth importing country (say, Greece) that

affect all trade volumes to Greece from all other countries. If German’s export price increases,

its export volume to all other countries may decrease whereas if the Greece economy depresses,

it may decrease its imports from all other countries. In this regard, local factors can be thought

of as capturing unobservable multilateral resistance, an index of inward and outward bilateral

trade costs. We then apply the 3DCCE estimators to the gravity model of bilateral exports.

5.1 The Data

We collect the dataset over the period 1970-2013 (44 years), and consider two control groups:

(i) the 210 country-pairs of the EU15 member countries with 11 Euro countries (Austria,

Belgium-Luxemburg, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Por-

tugal, Spain) and 4 control non-Euro countries (Denmark, Norway, Sweden, the UK), and (ii)

7To control for such multilateral cross-sectional correlations across trade flows, Behrens, Ertur, and Kock
(2012) develop the cross-section spatial econometric specification. A number of studies have also established
an importance of taking into account multilateral resistance, trade costs and bilateral heterogeneity in 2D
panels, e.g. Serlenga and Shin (2007), Mastromarco, Serlenga, and Shin (2016) and Gunnella, Mastromarco,
Serlenga, and Shin (2015).

8KMSS also propose the simpler error components specification, uijt = αij + πijθt + εijt in which case the
standard CCE estimator in 2D panels can be applied, as discussed in Section 3.4.
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the 342 country-pairs among 19 countries with the EU15 countries and 4 additional control

non-EU OECD countries (Australia, Canada, Japan and the US). We collect the bilateral

export flows from IMF. The data starts from 1970 as information on Germany are unavailable

in the 60s. See the Data Appendix for details about the variables.9

Our sample period consists of several important economic integrations, such as the Euro-

pean Monetary System in 1979 and the Single Market in 1993, all of which can be regarded

as promoting intra-EU trades.

5.2 Empirical Specifications

We consider the following 3D panel gravity specification:

EXPijt = β0 + β1CEEijt + β2EMUijt + β3SIMijt + β4RLFijt + β5RERijt (70)

+ β6GDPit + β7GDPjt + γ1DISij + γ2BORij + γ3LANij + uijt

where the dependent variable, EXPijt is the log of export flow from country i to country

j at time t, CEE and EMU are dummies for European community membership and for

European monetary union, SIM is the logarithm of an index that captures the relative size

of two countries and bounded between zero (absolute divergence) and 0.5 (equal size), RLF

is the logarithm of the absolute value of the difference between per capita GDPs of trading

countries, RER represents the logarithm of real exchange rates, GDPit and GDPjt are logged

GDPs of exporter and importer, and finally the logarithm of geographical distance (DIS)

and the dummies for common language (LAN) and for common border (BOR) represent

time-invariant bilateral barriers.

We apply four estimators to (70); namely the two-way within estimator with uijt = αij+θt+

εijt and the three versions of 3D-CCEP estimators
10 respectively with uijt = αij+γ

′
ijf t+ εijt,

uijt = αij + γ
′
◦jf i◦t+ γ

′
i◦f ◦jt+ εijt and uijt = αij + γ

′
◦jf i◦t+ γ

′
i◦f ◦jt+ γ

′
ijf t+ εijt. We report

the CD test results applied to the residuals and estimates of the CSD exponent (denoted α)

respectively for the four estimation methods.11

9There are no missing data so we consider the balanced panel. In previous studies, Serlenga and Shin (2007)
collect the trade flows data from OECD and estimate a panel gravity model for 182 country-pairs among 14 EU
countries (excluding Norway) over the period 1960-2001 (42 years) while Gunnella, Mastromarco, Serlenga,
and Shin (2015) and KMSS cover the longer period 1960-2008 (49 years). The IMF data provide more complete
information with less missing values than OECD trade data.
10Here we do not report the results for the 3D-CCEMG estimator, as they are mostly unreliable. This is

mainly due to the fact that the substantial number of individual estimation results tend to become unreliable,
say 90 cases out of 210 for the EU15 sample and 130 times of 342 for the EU19 sample.
11We evaluate the CD test statistic and estimate the CSD exponent sequentially. For each specification, we

estimate residuals by eij = M̄ijyij − M̄ijxij β̂, where M̄ij is defined in (13). Following KMSS, we compute a
modified counterpart of a CD test by Pesaran (2015), and apply the 3D extension of the estimation technique
by Bailey, Kapetanios, and Pesaran (2016) . We also evaluate the confidence band for α̂ by applying the test
statistic in (B47) in Bailey, Kapetanios, and Pesaran (2016)’s Supplementary Appendix VI.
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We focus on the impacts of the two dummy variables, CEE and EMU (equal to one when

both countries belong to the European Community or when both adopt the same currency).

Both are expected to exert a positive impact on bilateral export flows. The empirical evidence

on the common currency effects is rather mixed (e.g. Rose (2001), de Nardis and Vicarelli

(2003) and Frankel (2008)), though recent studies by Mastromarco, Serlenga, and Shin (2016),

and Gunnella, Mastromarco, Serlenga, and Shin (2015) that control for strong CSD via un-

observed heterogeneous factors in 2D panels, find modest but significant effects (7 to 10%) of

the euro on intra-EU trade flows.

5.3 Estimation Results for the 15 EU Countries

Table 5 reports the panel gravity estimation results for the 210 country-pairs among the 15

EU countries, with 11 Euro and 4 non-Euro countries, over the period 1970-2013 (44 years).12

The FE estimator suffers from strong CSD while the 3D-CCEP estimators display much lower

CSD. The CD diagnostic test fails to reject the null of weak CSD for both 3DCCEPL and

3DCCEPGL. This is also supported by the smaller CSD exponent estimates, α̂ for 3DCCEPL

(0.624) and 3DCCEPGL (0.609), which are close to a moderate range of weak CSD.
13

On the basis of these results we focus on the results for 3DCCEPGL with the lowest CSD.

All the coefficients are significant and their signs are consistent with a priori expectations.

The effect of the foreign GDP on the export is substantially higher than that of the home GDP.

The effects of SIM and RER are positive while a depreciation of the home currency (increase in

RER) leads to a significant increase in exports. In particular, the real export boosting effect of

similarity in size suggests that the intra-industry trade is the main part of the trade in the EU

countries, in line with studies on the developed countries, e.g. Markusen and Maskus (2001),

and OECD (2002, 2010). More importantly, we find that the impacts of EMU and CEE are

significant, but substantially smaller than FE estimates. Both Euro and CEE impacts drop

sharply from 0.099 and 0.074 to 0.03 and 0.05, respectively. This evidence is in line with

the thesis that the potential trade-creating effects of the Euro should be viewed in the long-

12Theoretically, we should employ the entire set of cross-section averages to approximate heterogeneous
global and local factors. In practice, however, this might raise an issue of multicollinearity. In order to avoid
the curse of dimensionality and obtain the economically sensible estimation results, we conduct the search for
an optimal subset of cross sectional averages. Furthermore, in the aftermath of the global financial crisis, the
export flows display a negative average growth from 2009 to 2012, as shown below:

70/80 80/90 90/00 00/10 10/13
Average Growth Export (EU15 + 4 OECD countries) 7.06 6.25 4.35 2.16 -0.34
Average Growth Export (EU15) 8.86 7.37 3.92 2.82 -2.05

Such a decline is more evident for the EU15 countries. Hence, we add t2 as an observed factor, which helps
to capture the confounding effect of the crisis.
13Bailey, Kapetanios, and Pesaran (2016) show that α ∈ [1/2, 3/4) represent a moderate degree of CSD.
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run historical and multilateral perspectives rather than simply focusing on the formation of

a monetary union as an isolated event, see also Gunnella, Mastromarco, Serlenga, and Shin

(2015). On the contrary other estimation results tend to be rather unreliable.14

Table 5: Estimation Results for 15 EU Countries
FE 3DCCEPG 3DCCEPL 3DCCEPGL

GDP i 1.517 0.230 0.023 0.342
( 0.044 ) ( 0.036 ) ( 0.037 ) ( 0.124 )

GDP j 0.953 1.478 0.779 1.498
( 0.044 ) ( 0.037 ) ( 0.057 ) ( 0.031 )

SIM -0.045 0.639 -0.012 0.197
( 0.060 ) ( 0.069 ) ( 0.056 ) ( 0.075 )

RLF 0.030 -0.002 0.002 0.006
( 0.006 ) ( 0.005 ) ( 0.002 ) ( 0.004 )

RER 0.012 -0.046 0.016 0.103
( 0.008 ) ( 0.007 ) ( 0.004 ) ( 0.010 )

EMU 0.099 0.030 0.012 0.030
( 0.016 ) ( 0.003 ) ( 0.003 ) ( 0.003 )

CEE 0.074 0.066 0.007 0.050
( 0.014 ) ( 0.007 ) ( 0.007 ) ( 0.013 )

CD stat 206.6 4.67 2.33 2.72
α 0.91 (0.90-0.93) 0.78 (0.72-0.84) 0.62 (0.59-0.66) 0.61 (0.57-0.65)

Notes: The dependent variable is log of export. FE is the two-way fixed effect estima-

tor. 3DCCEPG is the CCEP estimator with only the global factors approximated by ft =
{
EXP..t, GDP ..t, SIM ..t, RLF ..t, CEE..t, t, t

2
}
. 3DCCEPL is the CCEP estimator with only the local factors

approximated by fiot =
{
EXP i.t, GDP i.t

}
and fojt =

{
SIM .jt, RLF .jt

}
. 3DCCEPGL is the CCEP esti-

mator with both global and local factors approximated by ft =
{
EXP ..t, GDP ..t, SIM ..t, RLF ..t, cee..t, t, t

2
}

and fiot =
{
SIM i.t, RLF i.t, RERi.t

}
. Standard errors inside parenthesis. CD test refers to testing the null

hypothesis of residual cross-section independence or weak dependence. α is the estimate of CSD exponent

with 90% confidence bands inside parenthesis.

The 3DCCEP estimator wipes out the time invariant regressors. Following the 2-step

approach in Serlenga and Shin (2007), we now estimate γ’s by the between estimator:

dijt = αij + γ1DISij + γ2BORij + γ3LANij + uijt (71)

where dijt = yijt − β̂′xijt with β̂ being the 3DCCEPGL estimator. We then propose to test
the validity of the following hypothesis: if the Euro had a positive effect on the EU trade

by reducing bilateral trade barriers and eliminating exchange-related transactions costs, this

might have caused a decrease in trade impacts of bilateral barriers (e.g. Cafiso (2011)).

Consequently, we examine whether the trend line of their coefficients is more downward-

sloping after 1999. A declining trend will support the hypothesis that the Euro helps to

14For the FE, the impacts of home GDP on exports is surprisingly larger than the foreign impact while
Euro and CEE impacts seem to be rather high. The RER coefficient is significantly negative for 3DCCEPG.
Finally, the CEE impact is insignificant while the Euro impact is almost negligible for 3DCCEPL.
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promote more EU integration. To this end we estimate (71) by the cross-section regression at

each time period and produce the time-varying coefficients of γ in Figure 1.15

The border effect has been declining until the mid 1980s, and then becomes stable except

the slight dip during the global financial crisis in 2007, albeit statistically insignificant over the

whole period. The language effect has been decreasing steadily until the end of 1980’s. This

downward trend may reflect the progressive lessening of restrictions on labor mobility within

the EU, that encouraged migration and reduced the relative importance of cultural difference.

In the 90s and especially after the introduction of the Euro in 1999, both language and border

effects became flat, suggesting that the EU integration may reach near-completion stage. This

is in line with the currency union formation hypothesis by Frankel (2005) that countries, which

decide to join a currency union, are self-selected on the basis of distinctive features shared by

members (e.g. enhancing standards of harmonisation and reducing regulatory barriers). On

the other hand, the distance effect started to rise slightly after 1999.

Figure 1: Time-varying Effects of Bilateral Trade Barriers for 15 EU countries

Notes: The time-varying effects of bilateral trade barriers (DIS, BOR and LAN ) are estimated in two

steps: we estimate the panel gravity model (70) by the 3DCCEPGL estimator, and then estimate (71) by

the between estimator at each time period. We also provide 90% confidence intervals.

15In the presence of endogenous bilateral barriers such as language dummies, the between estimator would
be biased. It would be worthwhile to develop an extended Hausman and Taylor (1981) IV estimation, which
has been developed in the 2D panels with cross-sectionally correlated errors by Serlenga and Shin (2007). But,
it is beyond scope of the current paper, because such extension would involve the complex layers of correlations
between regressors and hierarchical unobserved effects (e.g. Balazsi, Bun, Chan, and Harris (2017)).
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5.4 Estimation Results for the 15 EU plus 4 OECD Countries

Table 6 reports the panel gravity estimation results for an enlarged sample of the 342 country-

pairs among the 15 EU countries plus four more large non-EU countries (Australia, Canada,

Japan and the US) over the period 1970-2013.

We focus on the estimation results for the 3DCCEPGL with the lowest CSD. The esti-

mation results are qualitatively similar to those reported in Table 5. All the coefficients are

significant, and display expected signs. The effect of the foreign GDP is substantially higher

than the home GDP effect, but slightly smaller. The effects of SIM is slightly higher (from

0.2 to 0.22) while RLF becomes negative but negligible (reflecting that the impact of RLF

on total flows, the sum of inter- and intra-industry flows, might not be always unambiguous).

The impact of RER shows a stronger terms of trade effect (from 0.10 to 0.18). When adding

more heterogeneous control countries, we observe that (i) the impacts of GDPs become slightly

smaller; (ii) the impact of similarity increases whereas RLF becomes insignificant, suggesting

that the additional four non-EU countries tend to display a higher propensity to intra-industry

trade (e.g. de Boyrie and Kreinin (2012)); (iii) the impact of the real exchange rate is higher,

possibly reflecting the higher volatility in the enlarged sample.

The impacts of EMU and CEE on bilateral export flows are still significant, though their

magnitudes become smaller than those with the 15 EU countries, namely from 3% to 1.5% and

from 5% to 3%, respectively. These smaller effects for the enlarged sample with 4 additional

non-EU control countries might reflect the trade diversion between the Euro and non-Euro

area. The effects of the EMU will differ with respect to the selected control group and depend

on the composition of treatment and control groups (e.g. Baier and Bergstrand (2009)).16 On

the contrary, other estimators still provide rather misleading results. In particular, the FE

estimation provides an opposite result that both impacts increase rather substantially, i.e.

from 0.099 and 0.074 to 0.258 and 0.161. This finding suggests that the declining effect of the

euro is further exacerbated due to the trade diversion effect in the enlarged OECD sample.

Figure 2 displays the time varying estimates of γ in (71), using the 3DCCEP estimator

with both local and global factors approximation. Border and language effects display similar

patterns to the case with the 15 EU countries. Here, we do not observe any evidence in

favour of the Euro effect on trade integration, once again consistent with the currency union

formation hypothesis by Frankel (2005). On the contrary, the effect of distance has been

rather increasing over the whole period. This is broadly consistent with the meta-study by

16Santos Silva and Tenreyro (2010) find a (insignificant) positive effect of the EMU for the 12 EU countries,
but a (significant) negative effect when including more (heterogeneous) countries. This indicates that sharing
a common currency may have a small and potentially negative effect on bilateral trade when the control group
is larger.
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Table 6: Estimation Results for 15 EU plus 4 OECD countries
FE 3DCCEPG 3DCCEPL 3DCCEPGL

GDP i 1.066 0.531 0.069 0.169
( 0.019 ) ( 0.016 ) ( 0.010 ) ( 0.055 )

GDP j 0.904 1.419 1.262 1.417
( 0.020 ) ( 0.02 ) ( 0.015 ) ( 0.017 )

SIM 0.332 0.109 0.100 0.220
( 0.029 ) ( 0.021 ) ( 0.013 ) ( 0.023 )

RLF 0.027 -0.008 0.010 -0.004
( 0.004 ) ( 0.002 ) ( 0.001 ) ( 0.002 )

RER 0.058 0.086 0.074 0.179
( 0.008 ) ( 0.004 ) ( 0.002 ) ( 0.005 )

EMU 0.258 0.012 0.012 0.014
( 0.009 ) ( 0.003 ) ( 0.001 ) ( 0.002 )

CEE 0.161 0.021 0.007 0.030
( 0.028 ) ( 0.017 ) ( 0.001 ) ( 0.012 )

CD stat 243.33 3.272 2.331 3.201
α 0.90 (0.88-0.92) 0.74 (0.69-0.76) 0.65 (0.61-0.69) 0.62 (0.57-0.66)

Notes: The dependent variable is the log of export. 3DCCEPG is the CCEP estimator with only

the global factors approximated by ft =
{
EXP..t, GDP ..t, SIM ..t, RLF ..t, CEE..t, t

}
. 3DCCEPL is the

CCEP estimator with only the local factors approximated by ft = fiot =
{
EXP i.t, GDP i.t

}
and fojt ={

SIM .jt, RLF .jt
}
. 3DCCEPGL is the CCEP estimator with both global and local factors approximated

by ft =
{
EXP ..t, GDP ..t, SIM ..t, RLF ..t, CEE..t, t

}
and fiot =

{
SIM i.t, RLF i.t, RERi.t

}
. Standard errors

inside parenthesis. CD test refers to testing the null hypothesis of residual cross-section independence or weak

dependence. α is the estimate of CSD exponent with 90% confidence bands inside parenthesis.

Disdier and Head (2008), who document that the trade elasticity with respect to distance has

not steadily declined over time, but rather increased recently.
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Figure 2: Time-varying effects of Bilateral Trade Barriers for 15 EU plus 4 OECD countries

Notes: see the notes to Figure 1.

6 Conclusions

Given the growing availability of large panel datasets which contain information along multiple

dimensions, the recent literature on panel data has focused mainly on extending two-way error

component models to a multi-dimensional setting. We extend this literature, develop novel

error components specifications, and propose estimation techniques to accommodate cross-

sectional error dependence within 3D panel data models.

We develop a consistent estimation procedure, called the 3DCCE estimator, extending

the work of Pesaran (2006) and derive its asymptotic properties. We establish that the

standard CCE estimator fails to provide consistent estimation for the 3D panel data models

with hierarchical multi-factor error structure. The empirical usefulness and superiority of the

3DCCE estimator are demonstrated via Monte Carlo studies and an empirical application to

the 3D panel gravity model of EU export flows.

At this stage, it seems appropriate to mention a number of potential extensions and gen-

eralisations. First, it is of interest to analyse 4D or higher dimensional models. However,

the proper development of hierarchical structure of such an extension and its accompanying

estimators would be more challenging. Second, our proposed approach can be easily extended

to dynamic panels. Finally and more importantly, following the recent studies by Bai and Li
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(2015) and Shi and Lee (2017), it is of interest to develop more challenging and realistic models

by combining both spatial-based and factor-based elements within 3D or higher dimensional

models.

7 Appendix

Here we provide a complete proof for Theorems 2 and 3.

7.1 Proof of Theorem 2

We analyse each of the terms in (41)-(46). By independence of εij across (i, j), we note that
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We now examine χij, χij,i◦ and χij,◦j defined in (36)-(38). By independence of ηij across

(i, j), we have:
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Next,
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and further,
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A◦j,NTη◦j →d N(0,Ωη,◦•) (77)

where

A◦j,NT =
1

N

N∑

i=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T
(78)

Ωη,◦• = lim
N→∞

1

N

N∑

j=1

E
(
A◦j,NTΩη◦•A

′
◦j,NT

)
.

We next examine χij,◦◦, χij,◦• and χij,•◦, defined in (36)-(38). For χij,◦◦, we notice that

1

N2

N∑

i=1

N∑

j=1

[
Ψ−1
Q,ijT

X ′
ijMQ,ijF

T

]
→p lim

N→∞

1

N2

N∑

i=1

N∑

j=1

E

[
Ψ−1
Q,ijT

X ′
ijMQ,ijF

T

]

and

√
N
(
Γ̄
′
ν,◦◦ + η̄◦◦

)
=

1√
N

N∑

i=1

Γ̄
′
iνi◦ +

1√
N

N∑

j=1

Γ̄
′
jν◦j +

1

N3/2

N∑

i=1

N∑

j=1

Γ′ijνij +
1

N3/2

N∑

i=1

N∑

j=1

ηij.

But,

1

N3/2

N∑

i=1

N∑

j=1

Γ′ijνij = Op

(
1

N1/2

)
,

1

N3/2

N∑

i=1

N∑

j=1

ηij = Op

(
1

N1/2

)
(79)

and
1√
N

N∑

i=1

Γ̄
′
iνi◦ →d N(0,ΩΓν,•◦),

1√
N

N∑

j=1

Γ̄
′
jν◦j →d N(0,ΩΓν,◦•) (80)

where

ΩΓν,•◦ = lim
N→∞

1

N

N∑

i=1

E
(
Γ̄
′
iΩν•◦Γ̄i

)
, ΩΓν,◦• = lim

N→∞

1

N

N∑

j=1

E
(
Γ̄
′
jΩν◦•Γ̄j

)
.

Hence, we have:

1

N3/2

N∑

i=1

N∑

j=1

χij,◦◦ →d N [0,AF1 (ΩΓν,•◦ +ΩΓν,◦•)A
′
F1] , (81)

where

AF1 = lim
N→∞

1

N2

N∑

i=1

N∑

j=1

E

[
Ψ−1
Q,ijT

X ′
ijMQ,ijF

T

]
.

Next, noting that

(
Γ̄
′
i,ν,◦• + η̄◦•

)
= Γ̄

′
◦•νi◦ +

1

N

N∑

j=1

Γ′◦jν◦j +
1

N

N∑

j=1

Γ′◦jνij +
1

N

N∑

j=1

η◦j,
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we have for χij,◦•:

1

N3/2

N∑

i=1

N∑

j=1

χij,◦• =
1

N3/2

N∑

i=1

N∑

j=1

[
Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

](
Γ̄
′
i,ν,◦• − η̄◦•

)

=
1√
N

N∑

i=1

[
1

N

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

]

Γ̄
′
◦•νi◦

+
1

N3/2

(
N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

)(
1

N

N∑

j=1

Γ′◦jνij

)

+

{
1

N2

N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

}

×
[
1√
N

N∑

j=1

Γ′◦jν◦j −
1√
N

N∑

j=1

η◦j

]

But,

1

N2

N∑

i=1

N∑

j=1

[
Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

]
→p AF2, (82)

where

AF2 = lim
N→∞

1

N2

N∑

i=1

N∑

j=1

E

[
Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

]

Further,

1√
N

N∑

i=1

[
1

N

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

]

Γ̄
′
◦•νi◦ →d N(0,ΣΓ,◦•), (83)

where

ΣΓ,◦• = lim
N→∞

1

N

N∑

i=1

E

{[
1

N

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

]

Γ̄
′
◦•Ων•◦Γ̄◦•

[
1

N

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

]′}

,

1

N1/2

N∑

j=1

Γ′◦jν◦j →d N (0,Γ′◦•Ων◦•Γ◦•) , (84)

1

N3/2

(
N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF i◦

T

)(
1

N

N∑

j=1

Γ′◦jνij

)

= Op

(
1

N1/2

)
, (85)

1√
N

N∑

j=1

η◦j →d N(0,Ωη◦•). (86)

Hence,

1

N3/2

N∑

i=1

N∑

j=1

χij,◦• →d N [0,AF2 (Γ
′
◦•Ων◦•Γ◦• +Ωη◦•)A

′
F2 +ΣΓ,◦•] ,
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Similarly, for χij,•◦, we derive the result as follows:

1

N3/2

N∑

i=1

N∑

j=1

χij,•◦ →d N [0,AF3 (Γ
′
•◦Ων•◦Γ•◦ +Ωη•◦)A

′
F3 +ΣΓ,•◦] ,

where

AF3 = lim
N→∞
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E
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[
1
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T

]′}

,

Keeping the asymptotically dominant terms only, we obtain the main result as follows

√
N
(
b̂MG − β

)
=

1√
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N∑
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[A1,i,NTνi◦ +A2,i,NTηi◦]+
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where
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+
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A2,j,NT = A◦j,NT +
1

N2

N∑

i=1

N∑

j=1

Ψ−1
Q,ijT

X ′
ijMQ,ijF ◦j

T
. (90)

7.2 Proof of Theorem 3

To develop the asymptotic properties of b̂P , we proceed from (49) as follows:

√
N
(
b̂P − β

)
=
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1
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T
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Similarly to the analysis for b̂MG, we have:
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]

+ op (1) .

Then, using the analysis of the terms in (41)-(46) we get the asymptotic normality result.

Finally, defining
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T
, (92)

we can derive the asymptotic variance estimator following the proof of and the discussions

surrounding Theorem 2.
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8 Data Appendix

We describe how the variables are constructed. All variables are converted in constant dollar

prices with 2000 as the base year. Bilateral exports are defined as logarithms of real export,

XR
hft =

(
XN
hft/XPIUS

)
×100, where XN

hft are bilateral exports measured in millions of current

US dollars; XPIUS are the US export price indices.

The explanatory variables can be divided in two categories: time-varying and time-invariant

variables. First, we consider the following time-varying variables:

The (log of) home and foreign GDPs are defined as ln(GDPRht) and ln(GDP
R
ft), respec-

tively, where GDPRht and GDP
R
ft are gross domestic products at constant dollar of home and

foreign countries. GDP’s are originally expressed in million Euro for the twelve countries

that joined the European Monetary Union (Austria, Belgium-Luxemburg, Finland, France,

Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain) and in millions of current

national currency for Australia, Canada, Denmark, Japan, Norway, Sweden, the UK and the

US (GDPN). For the former twelve countries the European GDP deflator has been used

whilst for the latter eight countries the original nominal values of GDP have been deflated by

the GDP deflator (GDPD, 2000 = 100) of the respective countries. We also convert GDPs in

US dollar at the exchange rate of 2000 (mean over period) in order to exclude the effect of a

dollar depreciation or appreciation as GDPRhft =
(
GPDN

hft/GDPDht

)
×(US$/NCh)2000×100,

where NCh stands for national currency of the home country.

SIM : a measure of countries’ similarity in size constructed as

SIMhft = ln



1−
(

GDPRht
GDPRht +GDP

R
ft

)2
−
(

GDPRft
GDPRft +GDP

R
ht

)2

 ;

RLF : a measure of countries’ difference in relative factor endowment calculated as

RLFhft = ln
∣∣PGDPRft − PGDPRht

∣∣ ,

where PGDP is per capita GDP.

RER: the real exchange rate. Real exchange rates in constant dollars at 2000 are defined

as RERhft = NERhft×XPIUS, where NERhft is nominal exchange rate between currencies
h and f in year t in terms of the U.S. dollars.

CEE: a dummy for European Community which is equal to one when both countries

belong to the European Community.

EMU : a dummy for the European Monetary Union which is equal to one when both

trading partners adopt the same currency.

Next, the time-invariant variables are:
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LAN : a dummy for common language which is equal to one when both countries speak

the same official language.

BOR: a dummy for common border which is equal to one when the trading partners share

a border.

DIS: the (log of) distance, where the distance (DIShf) between countries is measured as

the (log) of great circle distance between the most populated cities in kilometers.

The data sources are as follows: we collect bilateral nominal export data (XN) from

the IMF-Direction of Trade Statistics (DOTS); export indices and NER from the IMF-IFS

database; GDP deflators, GDP, per capita GDP (already converted in constant dollars) from

the World Bank-World Development Indicators; and finally, the time-invariant variables from

CEPII.
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9 Supplement

We present further Monte Carlo studies to discuss the special cases presented in Section 3.4.

In particular, we are interested in understanding if a better convergence rates can be achieved

in case the hierarchical structure of our model is modified or simplified. We mainly discuss of

the performance of the proposed estimators under the validity of two conditions: Condition

S1 (ηi◦ = η◦j = νi◦ = ν◦j = 0) and Condition S2 (F i◦ = F ◦j = 0). Hence, we focus on the

following eight cases of interest:

Case 1s Condition S1 - ηi◦ = η◦j = νi◦ = ν◦j = 0 - and full rank. In this case (62)

becomes

βij = β + νij, νij ∼ iidN (0, 1)

and (60) is replaced by

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (1, 0.2) for i, j = 1, ..., N
γ1,◦j = 1; and γ2,◦j = 1 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 1 for i = 1, ..., N

Case 2s Condition S1 (ηi◦ = η◦j = νi◦ = ν◦j = 0) and rank deficiency. Here, (62) becomes

βij = β + νij, νij ∼ iidN (0, 1)

and (61) is replaced by

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (0, 0.2) for i, j = 1, ..., N
γ1,◦j = 1 and γ2,◦j = 0 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 0 for i = 1, ..., N

Case 3s Full homogeneity, where ηij = ηi◦ = η◦j = νij = νi◦ = ν◦j = 0 and full rank. In

this case (62) becomes

βij = 1

and (60) is replaced by

γ1,ij = 1 and γ2,ij = 1 for i, j = 1, ..., N

γ1,◦j = 1and γ2,◦j = 1 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 1 for i = 1, ..., N

Case 4s Full homogeneity, where ηij = ηi◦ = η◦j = νij = νi◦ = ν◦j = 0 and rank deficiency.

In this case (62) becomes

βij = 1
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and (61) is replaced by

γ1,ij = 1 and γ2,ij = 0 for i, j = 1, ..., N

γ1,◦j = 1 and γ2,◦j = 0 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 0 for i = 1, ..., N

Case 5s Condition S1, where ηi◦ = η◦j = νi◦ = ν◦j = 0, Condition S2, where F i◦ = F ◦j = 0,

and full rank. Here, the DGP (58)-(59) is replaced by

yijt = βijxijt + γ1,ijf1,t + γ2,ijf2,t + εijt,

xijt = Γ1,ijf1,t + Γ2,ijf2,t + vijt;

(62) becomes

βij = β + νij, νij ∼ iidN (0, 1)

and condition (60) is replaced by

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (1, 0.2) for i, j = 1, ..., N
γ1,◦j = 1 and γ2,◦j = 1 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 1 for i = 1, ..., N

Case 6s Condition S1, where ηi◦ = η◦j = νi◦ = ν◦j = 0, and Condition S2, where F i◦ =

F ◦j = 0, and rank deficiency. Here, the DGP (58)-(59) becomes

yijt = βijxijt + γ1,ijf1,t + γ2,ijf2,t + εijt,

xijt = Γ1,ijf1,t + Γ2,ijf2,t + vijt,

(62) becomes

βij = β + νij, νij ∼ iidN (0, 1)

and (61) is replaced by

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (0, 0.2) for i, j = 1, ..., N
γ1,◦j = 1 and γ2,◦j = 0 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 0 for i = 1, ..., N

Case 7s Full homogeneity, where ηij = ηi◦ = η◦j = νij = νi◦ = ν◦j = 0, Condition S2,

where F i◦ = F ◦j = 0, and full rank. Here, the DGP (58)-(59) becomes

yijt = βijxijt + γ1,ijf1,t + γ2,ijf2,t + εijt,
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xijt = Γ1,ijf1,t + Γ2,ijf2,t + vijt,

with

βij = 1

and (60) is replaced by

γ1,ij = 1 and γ2,ij = 1 for i, j = 1, ..., N

γ1,◦j = 1 and γ2,◦j = 1 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 1 for i = 1, ..., N

Case 8s Full homogeneity, where ηij = ηi◦ = η◦j = νij = νi◦ = ν◦j = 0, Condition S2,

where F i◦ = F ◦j = 0, and rank deficiency. Here, (58)-(59) become

yijt = βijxijt + γ1,ijf1,t + γ2,ijf2,t + εijt,

xijt = Γ1,ijf1,t + Γ2,ijf2,t + vijt,

with

βij = 1

and (61) is replaced by

γ1,ij = 1 and γ2,ij = 0 for i, j = 1, ..., N

γ1,◦j = 1 and γ2,◦j = 0 for j = 1, ..., N

γ1,i◦ = 1 and γ2,i◦ = 0 for i = 1, ..., N

9.1 Simulation Results

Table 7 reports results for Case 1s. The bias turns out to be similar for the 3DCCEG,

reduced for 3DCCEL and rather negligible for 3DCCEGL. In all cases, both bias and the

RMSE decline with the N dimension and are rather stable over T . The coverage rates are

mostly above the nominal level and, in the case of 3DCCEGL, approach the 95% as N grows.

Similar patterns are shown in Table 8 when Condition S1 holds and the rank condition is not

satisfied, Case 2s.

Table 9 and Table 10 report results assuming ηij = ηi◦ = η◦j = νij = νi◦ = ν◦j = 0 (full

homogeneity) with full rank and rank deficiency, Cases 3s and 4s, respectively. The patterns

of bias and RMSE are similar to those shown in Table 7 and 8.

Tables 11 and 12 report results imposing ηi◦ = η◦j = νi◦ = ν◦j = 0 (Condition S1) and

F i◦ = F ◦j = 0 (Condition S2) with full rank and rank deficiency, Cases 5s and 6s, respectively.

As discussed, if S2 holds, the setup reverts to that of Pesaran (2006) and no hierarchical
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structure exists. Indeed, in those cases the patterns of bias and RMSE improve significantly

for 3DCCEG. The coverage rates of 3DCCEG, 3DCCEL and 3DCCEGL approach the 95%

as N grows.

Tables 13 and 14 report results setting ηij = ηi◦ = η◦j = νij = νi◦ = ν◦j = 0 (full

homogeneity) and F i◦ = F ◦j = 0 (Condition S2) with full rank and rank deficiency, Cases 7s

and 8s, respectively. Under those assumptions also the performances of the 3DCCEL improve

significantly, especially when the rank condition is not satisfied.
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Table 7: Simulation results for Case 1s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.246 0.250 0.071 0.075 0.001 0.006
0 25 0.269 0.268 0.067 0.067 0.001 -0.001

50 0.277 0.278 0.070 0.070 -0.001 0.000
100 0.282 0.282 0.074 0.075 0.000 0.001
10 0.270 0.272 0.080 0.082 0.004 0.008

0.5 25 0.292 0.290 0.074 0.073 0.001 0.001
50 0.297 0.299 0.075 0.077 0.000 0.001
100 0.303 0.303 0.080 0.081 0.001 0.001

Mean Group Estimator
10 0.235 0.239 0.060 0.064 0.007 0.012

0 25 0.253 0.253 0.058 0.058 0.005 0.004
50 0.261 0.262 0.059 0.060 0.001 0.002
100 0.265 0.266 0.062 0.063 0.001 0.001
10 0.263 0.263 0.072 0.073 0.014 0.015

0.5 25 0.279 0.278 0.065 0.065 0.006 0.006
50 0.284 0.285 0.065 0.066 0.002 0.003
100 0.289 0.289 0.067 0.067 0.001 0.001

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.275 0.275 0.137 0.131 0.115 0.107

0 25 0.273 0.272 0.081 0.080 0.045 0.043
50 0.278 0.279 0.074 0.074 0.021 0.021
100 0.282 0.283 0.075 0.076 0.010 0.011
10 0.297 0.297 0.140 0.139 0.114 0.111

0.5 25 0.296 0.294 0.087 0.087 0.044 0.045
50 0.298 0.300 0.079 0.080 0.021 0.021
100 0.304 0.304 0.082 0.082 0.011 0.010

Mean Group Estimator
10 0.261 0.261 0.125 0.118 0.108 0.099

0 25 0.257 0.257 0.072 0.071 0.042 0.040
50 0.262 0.263 0.063 0.063 0.020 0.020
100 0.265 0.266 0.063 0.063 0.010 0.010
10 0.285 0.285 0.127 0.126 0.105 0.103

0.5 25 0.282 0.282 0.076 0.078 0.040 0.042
50 0.285 0.286 0.068 0.069 0.020 0.020
100 0.289 0.289 0.068 0.068 0.010 0.010

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.451 0.425 0.848 0.848 0.859 0.891

0 25 0.000 0.000 0.661 0.657 0.917 0.927
50 0.000 0.000 0.142 0.118 0.931 0.933
100 0.000 0.000 0.000 0.000 0.948 0.937
10 0.423 0.380 0.836 0.810 0.879 0.880

0.5 25 0.000 0.000 0.604 0.603 0.941 0.925
50 0.000 0.000 0.110 0.090 0.946 0.943
100 0.000 0.000 0.000 0.000 0.943 0.955

Mean Group Estimator
10 0.405 0.390 0.875 0.870 0.896 0.898

0 25 0.000 0.000 0.668 0.659 0.930 0.927
50 0.000 0.000 0.141 0.163 0.946 0.936
100 0.000 0.000 0.000 0.000 0.943 0.943
10 0.346 0.343 0.855 0.838 0.886 0.885

0.5 25 0.000 0.000 0.616 0.630 0.926 0.924
50 0.000 0.000 0.131 0.118 0.929 0.944
100 0.000 0.000 0.000 0.000 0.943 0.950

Notes: See notes to Table 1.
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Table 8: Simulation results for Case 2s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.230 0.228 0.077 0.074 0.004 0.001
0 25 0.242 0.243 0.062 0.063 0.000 0.001

50 0.247 0.247 0.057 0.056 0.000 -0.001
100 0.252 0.251 0.054 0.054 0.000 0.000
10 0.250 0.256 0.075 0.082 -0.001 0.009

0.5 25 0.269 0.267 0.067 0.064 0.004 0.001
50 0.272 0.272 0.060 0.059 0.001 0.001
100 0.276 0.276 0.057 0.056 0.001 0.000

Mean Group Estimator
10 0.223 0.218 0.054 0.049 0.013 0.008

0 25 0.232 0.232 0.047 0.047 0.007 0.007
50 0.236 0.236 0.046 0.046 0.004 0.004
100 0.239 0.239 0.046 0.045 0.002 0.002
10 0.243 0.249 0.056 0.063 0.011 0.018

0.5 25 0.259 0.257 0.055 0.052 0.012 0.009
50 0.261 0.261 0.050 0.051 0.006 0.006
100 0.264 0.264 0.050 0.049 0.004 0.003

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.258 0.254 0.137 0.131 0.111 0.107

0 25 0.246 0.247 0.077 0.077 0.045 0.044
50 0.249 0.248 0.062 0.061 0.024 0.022
100 0.252 0.251 0.055 0.055 0.011 0.011
10 0.277 0.281 0.135 0.140 0.111 0.113

0.5 25 0.274 0.271 0.081 0.078 0.045 0.045
50 0.274 0.273 0.064 0.064 0.022 0.023
100 0.277 0.276 0.058 0.058 0.012 0.012

Mean Group Estimator
10 0.261 0.261 0.125 0.118 0.108 0.099

0 25 0.257 0.257 0.072 0.071 0.042 0.040
50 0.262 0.263 0.063 0.063 0.020 0.020
100 0.239 0.239 0.047 0.047 0.010 0.010
10 0.285 0.285 0.127 0.126 0.105 0.103

0.5 25 0.282 0.282 0.076 0.078 0.040 0.042
50 0.285 0.286 0.068 0.069 0.020 0.020
100 0.265 0.264 0.051 0.050 0.011 0.010

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.479 0.500 0.817 0.838 0.882 0.899

0 25 0.001 0.000 0.678 0.669 0.929 0.928
50 0.000 0.000 0.273 0.281 0.934 0.939
100 0.000 0.000 0.002 0.003 0.943 0.945
10 0.420 0.390 0.826 0.802 0.883 0.878

0.5 25 0.001 0.001 0.627 0.677 0.945 0.928
50 0.000 0.000 0.249 0.247 0.947 0.950
100 0.000 0.000 0.005 0.002 0.937 0.947

Mean Group Estimator
10 0.439 0.468 0.890 0.887 0.916 0.906

0 25 0.000 0.001 0.755 0.762 0.936 0.915
50 0.000 0.000 0.370 0.346 0.934 0.931
100 0.000 0.000 0.003 0.007 0.940 0.942
10 0.341 0.332 0.855 0.869 0.885 0.901

0.5 25 0.000 0.000 0.726 0.708 0.928 0.934
50 0.000 0.000 0.273 0.293 0.941 0.939
100 0.000 0.000 0.002 0.002 0.936 0.929

Notes: See notes to Table 1.
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Table 9: Simulation results for Case 3s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.246 0.246 0.067 0.068 0.000 0.000
0 25 0.270 0.269 0.068 0.068 0.000 0.000

50 0.277 0.278 0.071 0.071 0.000 0.000
100 0.282 0.282 0.075 0.075 0.000 0.000
10 0.267 0.266 0.074 0.074 0.000 0.000

0.5 25 0.289 0.290 0.074 0.074 0.000 0.000
50 0.299 0.299 0.077 0.078 0.000 0.000
100 0.303 0.303 0.081 0.081 0.000 0.000

Mean Group Estimator
10 0.235 0.236 0.063 0.064 0.000 0.000

0 25 0.255 0.256 0.060 0.060 0.000 0.000
50 0.262 0.262 0.061 0.061 0.000 0.000
100 0.266 0.265 0.063 0.063 0.000 0.000
10 0.257 0.256 0.070 0.069 0.000 0.000

0.5 25 0.277 0.277 0.066 0.065 0.000 0.000
50 0.286 0.285 0.066 0.067 0.000 0.000
100 0.289 0.289 0.068 0.068 0.000 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.249 0.249 0.069 0.069 0.011 0.008

0 25 0.271 0.270 0.069 0.068 0.005 0.003
50 0.277 0.278 0.071 0.072 0.003 0.002
100 0.282 0.282 0.075 0.075 0.002 0.001
10 0.270 0.269 0.076 0.076 0.013 0.009

0.5 25 0.290 0.290 0.075 0.074 0.006 0.004
50 0.300 0.299 0.078 0.078 0.003 0.002
100 0.303 0.303 0.082 0.082 0.002 0.001

Mean Group Estimator
10 0.239 0.239 0.065 0.065 0.012 0.008

0 25 0.256 0.256 0.061 0.061 0.005 0.004
50 0.262 0.262 0.061 0.061 0.003 0.002
100 0.266 0.265 0.063 0.063 0.002 0.001
10 0.261 0.260 0.073 0.071 0.014 0.010

0.5 25 0.278 0.278 0.067 0.066 0.006 0.004
50 0.286 0.286 0.067 0.067 0.003 0.002
100 0.289 0.289 0.068 0.068 0.002 0.001

Notes: See notes to Table 1.
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Table 10: Simulation results for Case 4s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.228 0.228 0.062 0.062 0.000 0.000
0 25 0.243 0.242 0.055 0.055 0.000 0.000

50 0.248 0.248 0.053 0.053 0.000 0.000
100 0.251 0.251 0.052 0.052 0.000 0.000
10 0.249 0.250 0.066 0.066 0.000 0.000

0.5 25 0.267 0.267 0.059 0.059 0.000 0.000
50 0.272 0.273 0.056 0.056 0.000 0.000
100 0.276 0.276 0.055 0.055 0.000 0.000

Mean Group Estimator
10 0.220 0.220 0.059 0.059 0.001 0.000

0 25 0.232 0.232 0.051 0.051 0.000 0.000
50 0.236 0.236 0.048 0.048 0.000 0.000
100 0.239 0.239 0.047 0.047 0.000 0.000
10 0.242 0.243 0.064 0.064 0.000 0.000

0.5 25 0.256 0.257 0.055 0.055 0.000 0.000
50 0.261 0.261 0.052 0.052 0.000 0.000
100 0.264 0.264 0.050 0.050 0.000 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.229 0.229 0.063 0.063 0.011 0.007

0 25 0.243 0.243 0.056 0.056 0.004 0.003
50 0.248 0.248 0.053 0.053 0.002 0.001
100 0.251 0.251 0.052 0.052 0.001 0.001
10 0.251 0.252 0.068 0.067 0.012 0.009

0.5 25 0.267 0.267 0.059 0.059 0.005 0.003
50 0.272 0.273 0.056 0.056 0.002 0.002
100 0.276 0.276 0.055 0.055 0.001 0.001

Mean Group Estimator
10 0.221 0.221 0.060 0.060 0.011 0.007

0 25 0.233 0.233 0.051 0.052 0.005 0.003
50 0.237 0.237 0.048 0.048 0.002 0.002
100 0.239 0.239 0.047 0.047 0.001 0.001
10 0.244 0.245 0.066 0.065 0.013 0.009

0.5 25 0.257 0.257 0.055 0.055 0.005 0.004
50 0.261 0.261 0.052 0.052 0.003 0.002
100 0.264 0.264 0.050 0.050 0.001 0.001

Notes: See notes to Table 1.
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Table 11: Simulation results for Case 5s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 -0.002 -0.004 0.013 0.008 0.000 -0.004
0 25 -0.001 -0.001 0.002 0.002 -0.001 0.000

50 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
100 0.000 0.000 0.000 0.000 0.000 0.000
10 -0.007 0.002 0.008 0.016 -0.007 0.002

0.5 25 0.000 -0.002 0.003 0.001 0.001 -0.002
50 -0.001 0.001 0.000 0.002 -0.001 0.001
100 0.000 0.000 0.000 0.000 0.000 0.000

Mean Group Estimator
10 -0.002 -0.004 -0.001 -0.004 -0.001 -0.004

0 25 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
50 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
100 0.000 0.000 0.000 0.000 0.000 0.000
10 -0.006 0.002 -0.005 0.003 -0.006 0.002

0.5 25 0.000 -0.001 0.001 -0.001 0.000 -0.002
50 -0.001 0.001 -0.001 0.001 -0.001 0.001
100 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.103 0.102 0.108 0.106 0.105 0.103

0 25 0.041 0.042 0.041 0.042 0.041 0.042
50 0.020 0.021 0.020 0.021 0.020 0.021
100 0.010 0.010 0.011 0.010 0.010 0.010
10 0.105 0.104 0.107 0.109 0.106 0.105

0.5 25 0.042 0.041 0.043 0.042 0.043 0.041
50 0.021 0.021 0.021 0.021 0.021 0.021
100 0.011 0.010 0.011 0.010 0.011 0.010

Mean Group Estimator
10 0.101 0.101 0.102 0.102 0.102 0.101

0 25 0.040 0.041 0.040 0.042 0.040 0.041
50 0.019 0.021 0.019 0.021 0.019 0.021
100 0.010 0.010 0.010 0.010 0.010 0.010
10 0.102 0.102 0.102 0.103 0.102 0.103

0.5 25 0.041 0.040 0.041 0.040 0.041 0.041
50 0.020 0.020 0.020 0.020 0.020 0.020
100 0.010 0.010 0.010 0.010 0.010 0.010

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.948 0.944 0.918 0.924 0.869 0.886

0 25 0.944 0.943 0.942 0.936 0.926 0.911
50 0.963 0.941 0.960 0.939 0.953 0.929
100 0.943 0.951 0.941 0.946 0.933 0.946
10 0.943 0.951 0.918 0.903 0.873 0.865

0.5 25 0.948 0.952 0.948 0.941 0.919 0.921
50 0.960 0.945 0.961 0.937 0.947 0.930
100 0.944 0.949 0.941 0.947 0.935 0.946

Mean Group Estimator
10 0.951 0.951 0.921 0.918 0.913 0.914

0 25 0.943 0.950 0.938 0.939 0.940 0.937
50 0.960 0.939 0.962 0.931 0.960 0.931
100 0.946 0.954 0.944 0.953 0.948 0.950
10 0.951 0.951 0.924 0.918 0.910 0.915

0.5 25 0.950 0.950 0.944 0.942 0.945 0.940
50 0.963 0.955 0.957 0.947 0.956 0.948
100 0.949 0.956 0.946 0.954 0.946 0.952

Notes: See notes to Table 1.
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Table 12: Simulation results for Case 6s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.002 -0.004 0.044 0.038 0.002 -0.004
0 25 -0.001 -0.001 0.021 0.022 -0.001 0.000

50 0.001 0.001 0.013 0.013 0.001 0.001
100 0.000 0.000 0.006 0.006 0.000 0.000
10 0.004 0.003 0.044 0.046 0.003 0.003

0.5 25 0.001 0.001 0.023 0.023 0.001 0.000
50 0.000 0.000 0.012 0.013 0.000 0.001
100 0.000 0.000 0.007 0.007 0.000 0.001

Mean Group Estimator
10 0.002 -0.004 0.002 -0.004 0.001 -0.004

0 25 0.000 0.000 -0.001 0.000 0.000 0.000
50 0.001 0.001 0.001 0.001 0.001 0.001
100 0.000 0.000 0.000 0.000 0.000 0.000
10 0.004 0.000 0.005 0.002 0.005 0.001

0.5 25 0.001 0.001 0.001 0.001 0.001 0.001
50 0.000 0.001 0.000 0.000 0.000 0.001
100 0.000 0.000 0.000 0.000 0.000 0.001

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.111 0.110 0.115 0.114 0.106 0.105

0 25 0.045 0.046 0.048 0.050 0.042 0.044
50 0.023 0.022 0.025 0.025 0.021 0.021
100 0.011 0.011 0.012 0.013 0.011 0.011
10 0.113 0.111 0.119 0.117 0.109 0.107

0.5 25 0.045 0.045 0.050 0.049 0.043 0.042
50 0.023 0.022 0.026 0.025 0.022 0.021
100 0.011 0.011 0.013 0.013 0.011 0.010

Mean Group Estimator
10 0.099 0.102 0.099 0.101 0.099 0.101

0 25 0.040 0.042 0.040 0.042 0.040 0.042
50 0.021 0.020 0.021 0.020 0.021 0.020
100 0.010 0.011 0.010 0.010 0.010 0.010
10 0.103 0.101 0.104 0.101 0.104 0.101

0.5 25 0.041 0.041 0.040 0.041 0.040 0.041
50 0.021 0.021 0.021 0.021 0.021 0.021
100 0.010 0.010 0.010 0.010 0.010 0.010

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.944 0.950 0.889 0.882 0.884 0.879

0 25 0.949 0.930 0.914 0.888 0.915 0.903
50 0.955 0.947 0.897 0.888 0.951 0.937
100 0.957 0.953 0.904 0.913 0.951 0.945
10 0.947 0.943 0.886 0.892 0.876 0.862

0.5 25 0.956 0.955 0.904 0.899 0.936 0.930
50 0.952 0.950 0.906 0.906 0.928 0.921
100 0.950 0.949 0.903 0.901 0.936 0.942

Mean Group Estimator
10 0.951 0.944 0.929 0.922 0.927 0.918

0 25 0.950 0.940 0.946 0.932 0.946 0.932
50 0.953 0.958 0.947 0.953 0.949 0.952
100 0.953 0.946 0.954 0.945 0.952 0.946
10 0.950 0.949 0.924 0.917 0.921 0.914

0.5 25 0.960 0.961 0.949 0.947 0.951 0.948
50 0.945 0.946 0.943 0.937 0.946 0.938
100 0.946 0.958 0.945 0.952 0.943 0.950

Notes: See notes to Table 1.

51



Table 13: Simulation results for Case 7s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.001 -0.001 0.005 0.003 0.001 -0.001
0 25 0.000 0.000 0.001 0.001 0.000 0.000

50 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.004 0.004 0.000 0.000

0.5 25 0.001 0.000 0.001 0.001 0.001 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000

Mean Group Estimator
10 0.001 -0.001 0.006 0.004 0.001 -0.001

0 25 0.000 0.000 0.001 0.001 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.005 0.005 -0.001 0.000

0.5 25 0.001 0.000 0.002 0.001 0.001 0.000
50 0.000 0.000 0.000 0.001 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.014 0.010 0.015 0.011 0.016 0.011

0 25 0.006 0.004 0.006 0.004 0.007 0.004
50 0.003 0.002 0.003 0.002 0.003 0.002
100 0.002 0.001 0.002 0.001 0.002 0.001
10 0.018 0.013 0.019 0.013 0.021 0.014

0.5 25 0.008 0.005 0.008 0.005 0.008 0.005
50 0.004 0.003 0.004 0.003 0.004 0.003
100 0.002 0.001 0.002 0.001 0.002 0.001

Mean Group Estimator
10 0.014 0.010 0.016 0.011 0.017 0.011

0 25 0.006 0.004 0.006 0.004 0.007 0.004
50 0.003 0.002 0.003 0.002 0.003 0.002
100 0.002 0.001 0.002 0.001 0.002 0.001
10 0.018 0.013 0.020 0.014 0.021 0.014

0.5 25 0.008 0.005 0.008 0.005 0.008 0.005
50 0.004 0.003 0.004 0.003 0.004 0.003
100 0.002 0.001 0.002 0.001 0.002 0.001

Notes: See notes to Table 1.
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Table 14: Simulation results for Case 8s

3DCCEG 3DCCEL 3DCCEGL
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100

10 0.000 0.000 0.013 0.013 0.000 0.000
0 25 0.000 0.000 0.006 0.006 0.000 0.000

50 0.000 0.000 0.003 0.003 0.000 0.000
100 0.000 0.000 0.002 0.002 0.000 0.000
10 0.000 0.000 0.014 0.013 0.001 0.000

0.5 25 -0.001 0.000 0.005 0.006 -0.001 0.000
50 0.000 0.000 0.003 0.003 0.000 0.000
100 0.000 0.000 0.002 0.002 0.000 0.000

Mean Group Estimator
10 0.000 0.000 0.014 0.014 0.000 0.000

0 25 0.000 0.000 0.007 0.006 0.000 0.000
50 0.000 0.000 0.003 0.003 0.000 0.000
100 0.000 0.000 0.002 0.002 0.000 0.000
10 0.001 0.000 0.014 0.014 0.001 0.000

0.5 25 -0.001 0.000 0.005 0.006 -0.001 0.000
50 0.000 0.000 0.004 0.003 0.000 0.000
100 0.000 0.000 0.002 0.002 0.000 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100
10 0.013 0.009 0.020 0.016 0.016 0.010

0 25 0.005 0.004 0.008 0.007 0.006 0.004
50 0.003 0.002 0.004 0.004 0.003 0.002
100 0.001 0.001 0.002 0.002 0.001 0.001
10 0.016 0.011 0.023 0.018 0.019 0.013

0.5 25 0.007 0.005 0.009 0.008 0.007 0.005
50 0.003 0.002 0.005 0.004 0.004 0.003
100 0.002 0.001 0.002 0.002 0.002 0.001

Mean Group Estimator
10 0.014 0.009 0.021 0.017 0.016 0.011

0 25 0.005 0.004 0.009 0.007 0.006 0.004
50 0.003 0.002 0.004 0.004 0.003 0.002
100 0.001 0.001 0.002 0.002 0.002 0.001
10 0.016 0.012 0.023 0.019 0.019 0.014

0.5 25 0.007 0.005 0.009 0.008 0.008 0.005
50 0.003 0.002 0.005 0.004 0.004 0.003
100 0.002 0.001 0.003 0.002 0.002 0.001

Notes: See notes to Table 1.
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