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Abstract 

Fourier transform infrared (FTIR) spectroscopy using attenuated total reflection (ATR) is commonly used 

for the examination of bone. During sample preparation bone is commonly ground, changing the particle 

size distribution. Although previous studies have examined changes in crystallinity caused by the 

intensity of grinding using FTIR, the effect of sample preparation (i.e. particle size and bone tissue type) 

on the FTIR data is still unknown.  

This study reports on the bone powder particle size effects on mid-IR spectra and within sample variation 

(i.e. periosteal, mesosteal, trabecular) using FTIR-ATR. Twenty-four archaeological human and faunal 

bone samples (5 heated and 19 unheated) of different chronological age (Neolithic to post-Medieval) and 

origin (Belgium, Britain, Denmark, Greece) were ground using either (1) a ball-mill grinder, or (2) an 

agate pestle and mortar, and split into grain fractions (>500 μm, 250-500 μm, 125-250 μm, 63-125 μm, 

and 20-63 μm). 

Bone powder particle size has a strong but predictable effect on the infrared splitting factor (IRSF), 

carbonate/phosphate (C/P) ratio, and amide/phosphate (Am/P) values. The absorbance and positions of 

the main peaks, the 2nd derivative components of the phosphate and carbonate bands, as well as the 

full width at half maximum (FWHM) of the 1010 cm-1 phosphate peak are particle size dependent. This is 

likely to be because of the impact of the particle size on the short- and long-range crystal order, as well 

as the contact between the sample and the prism, and hence the penetration depth of the IR light. 

Variations can be also observed between periosteal, cortical and trabecular areas of bone. We therefore 

propose a standard preparation method for bone powder for FTIR-ATR analysis that significantly 

improves accuracy, consistency, reliability, replicability and comparability of the data, enabling 

systematic evaluation of bone in archaeological, anthropological, paleontological, forensic and 

biomedical studies. 

Keywords: Bone; FTIR-ATR; sample preparation; particle size; bioapatite; crystal order/disorder  
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1. Introduction 

Bone is a complex inorganic/organic composite material with a hierarchical structural order that is 

reflected in its biomechanical properties [1–7]. Biological apatite (BAp) nanocrystals are carbonated 

calcium phosphate mineral compounds with species, age, or pathology related compositional/structural 

variation generally represented by the formula (Ca2⁺ , Na⁺ , Mg2⁺ , [])10 (PO4
3⎺ , HPO4

3⎺ , CO3
2⎺ )6 (OH⎺ , F⎺ , 

Cl⎺ , CO3
2⎺ , O, [])2 [4,8–14]. BAp dominates bone (i.e. 65-70 wt. %), with the organic content (primarily 

collagen type I) accounting for 20-25 wt. % and the remaining 5-10 wt. % being water [2].  

The information that can be preserved within skeletal tissues has shaped the way we interpret the past 

[15,16]. However, in archaeological and fossil bone, diagenesis leads to its partial or complete 

destruction, with accompanying loss of vital biochemical information [17–21]. Over the past decades, 

Fourier transform infrared (FTIR) spectroscopy has been increasingly used to better understand bone 

diagenesis, as well as for screening of archaeological and fossil bone [22–34]. The correspondence 

between measurements taken with transmission FTIR, ATR (attenuated total reflection) and DRIFT 

(diffuse reflectance infrared Fourier transform) can be problematic [34–36]. Nevertheless, because FTIR 

is so minimally invasive/destructive and provides information on both the inorganic and organic 

structures present, it has been commonly used to assess the postmortem changes in BAp crystals (e.g. 

crystallinity, carbonate to phosphate content, fluorine and calcite content), and the organic preservation 

in heated, unheated and pathological bones [25,31,35,37–44].  

The infrared splitting factor (IRSF, also termed crystallinity) is assumed to be related to the crystal order 

and size of bone mineral [2,25,45–47] which can change in vivo (ontogenetic bone growth/maturity) and 

post-mortem (diagenesis, heating) [e.g. 8,22,48,49]. Higher crystallinity is considered to be an indication 

of an increase in BAp crystals’ size and atomic order due to either: a) a growth of the larger crystals at 

the expense of the smaller ones (i.e. Ostwald ripening); b) a loss of the smaller crystals; or c) both. 

Lower IRSF values reflect the smaller size and higher atomic disorder of the BAp crystals 

[2,22,25,26,29,46,47,50]. 

These changes in bioapatite characteristics are caused by several ionic substitutions that take place 

both in the hydrated layer and the apatite core, and strongly affect its dissolution/recrystallization 

behaviour [4,51]. Carbonate (CO3
2-) content (c. 4-6 wt. %), which is considered to be related to 

crystallinity (and thus IRSF), is such an example of ionic substitution of carbonate for phosphate (type 

B), and vice versa, in the bioapatite structure [4,25,52–58]. Although type A substitution (CO3
2- for OH-) 

might be relatively limited in BAp, its role should not be neglected [4,25,31,56,57,59]. FTIR has also 

been used to assess organic preservation in archaeological and fossil bone using the Am/P (amide to 

phosphate) ratio [e.g. 29,60], while other minor ionic concentrations of elements (such as Mg, Na, Sr, K, 

Zn and F) also play a special role in its structure and function [4,11,53–55,61,62].  

https://paperpile.com/c/bZhAIZ/oNSE+BuUf+XJ71+Ry2E+qzpZ+ulUS+LVeg
https://paperpile.com/c/bZhAIZ/eMSP+Lo1P+Ry2E+QOmT+02T6+NBVC+WdUQ+nWjw
https://paperpile.com/c/bZhAIZ/BuUf
https://paperpile.com/c/bZhAIZ/Ll0M+a15R
https://paperpile.com/c/bZhAIZ/RspA+v0gP+fuJM+HysB+oEho
https://paperpile.com/c/bZhAIZ/hK8Q+ktJY+py6B+BiPN+7a1H+4pYY+iRY8+l8cT+51vU+CgtB+9Bja+Ytvd+rjTu
https://paperpile.com/c/bZhAIZ/1QDh+rjTu+vSUU
https://paperpile.com/c/bZhAIZ/Vxef+BiPN+uwiw+UqiP+CgtB+IhlJ+1QDh+sK4V+zEmW+wwaN+MNLU
https://paperpile.com/c/bZhAIZ/jMPH+BiPN+BuUf+bGxf+0UZw/?noauthor=0,0,0,0,1
https://paperpile.com/c/bZhAIZ/qn94+wQqO+eMSP+hK8Q/?prefix=,,e.g.,
https://paperpile.com/c/bZhAIZ/hK8Q+BiPN+BuUf+7a1H+l8cT+0UZw+bGxf+PSYz/?noauthor=0,0,0,0,0,0,1,0
https://paperpile.com/c/bZhAIZ/5opm+Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ+od1g+UceX+p4Ru+XaAv+qPbV+BiPN+KOo1+Ry2E
https://paperpile.com/c/bZhAIZ/XaAv+qPbV+BiPN+GXTi+Ry2E+CgtB
https://paperpile.com/c/bZhAIZ/l8cT+IqyY/?prefix=e.g.,
https://paperpile.com/c/bZhAIZ/od1g+UceX+p4Ru+Ry2E+rLej+02T6+Ciob
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Although the contribution of FTIR to the study of archaeological and fossil bone is indisputable, the 

usefulness of the indices (such as IRSF) as a measure of BAp preservation and change has been 

questioned [26,31,48,58,63,64]. The introduction of the relatively new FTIR-ATR technique offers rapid, 

cost efficient and minimally destructive analysis [30,34,49], but the issues of accuracy, precision, 

reproducibility and comparability of the data have not yet been resolved [36,48].  

Past studies have tried to tackle these issues by investigating the effect of sample preparation methods 

on bone IRSF values, with a decrease in IRSF reported with more intensive pulverization [26]. Surovell & 

Stiner [26] argue that grinding may actually introduce variations in crystallinity that may mask the original 

signal due to structural changes caused to the BAp crystals. They propose two possibilities that could 

explain the phenomenon: a) changes are primarily caused by the particle separation of bone mineral of 

differing crystallinity (i.e. separation hypothesis), or b) grinding affects the bioapatite crystal structure (i.e. 

destruction hypothesis), and subsequently, the mid-IR spectra. Overall, it has been argued that there 

seems to be a destruction of BAp crystals during grinding, although when there is no control, or grinding 

is excessive, it is difficult to differentiate between the actual bone crystallinity from that introduced during 

sample preparation [26]. Hollund et al. [34] also observed significant preparation-based differences (i.e. 

drilling and grinding with and without sieving) between IRSF, C/P and Am/P values. The grinding effect 

was more evident in samples of higher crystallinity, so Hollund et al. [34] proposed drilling bone without 

sieving as an alternative to the Surovell and Stiner [26] preparation method. 

Repeated grinding of calcite during preparation for FTIR measurements has been shown to affect the 

material’s atomic order as revealed by changes in the mid-IR spectrum [65,66]. Asscher et al. [46,47] 

tried to explore the effects of grinding on bone and tooth, and decouple it from the atomic disorder effect 

to better assess the preservation state of archaeological/fossil bone. They compared the IRSF values of 

samples repeatedly ground for variable amounts of time and plotted them against the full width at half 

maximum (FWHM) of the main v3 phosphate peak in mid-IR spectra (i.e. 1010 cm-1). From the 

relationship observed, it was shown that grinding (i.e. particle size) affects both the short (IRSF) and long 

(FWHM at 1010 cm-1) range order of bone. Thus, the use of the grinding curve approach can 

significantly increase the sensitivity of FTIR for monitoring diagenesis (slopes of the grinding curves 

increase with poorer preservation), as compared to the IRSF alone, and it can also allow the 

identification of differences in crystal size/atomic order of different animal species and hard tissues 

(bone, dentine and enamel mineral) [46].  

While this trendline method partly shows the importance of particle size (still uncontrolled) on the mid-IR 

spectrum, it requires regrinding and measuring the same sample repeatedly for several times. 

Furthermore, the powders were analysed in KBr pellets, requiring significant amounts of material mixed 

with KBr. Excessive grinding can also lead to a contamination of bone powder or even damage surviving 

biomolecules in samples that could be also used for DNA or protein analysis [e.g. 67,68], making FTIR 

https://paperpile.com/c/bZhAIZ/7a1H+KOo1+CgtB+pmHE+qn94+NxFo
https://paperpile.com/c/bZhAIZ/rjTu+wQqO+51vU
https://paperpile.com/c/bZhAIZ/vSUU+qn94
https://paperpile.com/c/bZhAIZ/7a1H
https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
https://paperpile.com/c/bZhAIZ/7a1H
https://paperpile.com/c/bZhAIZ/rjTu/?noauthor=1
https://paperpile.com/c/bZhAIZ/rjTu/?noauthor=1
https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
https://paperpile.com/c/bZhAIZ/FoYA+wrOW
https://paperpile.com/c/bZhAIZ/0UZw+bGxf/?noauthor=1,1
https://paperpile.com/c/bZhAIZ/bGxf
https://paperpile.com/c/bZhAIZ/PBor+AxJx/?prefix=e.g.,
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KBr and grinding curves a destructive method and wasting precious material, in lieu of additional 

information on crystalline order.  

Therefore, although previous studies have recommended optimal methods, the precise effects of particle 

size on FTIR data has never been thoroughly explored, and only in a limited number of studies particles 

have been homogeneous [25–27,36]. Excluding the variations due to sample preparation methods that 

are related with the atomic order/disorder, small but insignificant tissue specific variations have also 

been reported for both unheated [27] and heated bone [48].  

The increased adoption of FTIR-ATR further changes the equation. The method is being increasingly 

commonly used because it is a cost efficient, rapid and minimally destructive method, and has the 

potential to act as screening method to determine which bones show optimal preservation. The powder 

can be extracted for biomolecules after analysis with no loss of material. This study presents the effects 

of sample selection (i.e. periosteal, mesosteal, trabecular bone) as well as particle size on the mid-IR 

spectrum of bone measured by FTIR-ATR. We propose a standard preparation procedure for the 

analysis of bone powder using FTIR-ATR to improve data accuracy, precision, comparability and 

reproducibility. The process focuses on the particle size effect and requires bone powder of even sized 

particles. This approach improves the contact between the sample and the prism, allows a deeper 

penetration depth of the IR radiation into individual BAp crystals, and avoids damage in the short- and 

long-range order of bioapatite crystals by using optimal bone powder particle sizes. 

2. Materials and Methods 

Twenty-four archaeological human and animal bone samples (5 heated and 19 unheated) of different 

chronological age (Neolithic to post-Medieval) and origin (Belgium, Britain, Denmark, Greece) were used 

in this study (Table S1 - supplementary material). Prior to analysis, the trabecular, periosteal/sub-

periosteal and endosteal/sub-endosteal tissues were mechanically removed using a scalpel. For the 

examination of the particle size effect on mid-IR spectra, the mesosteal (mid-cortical) tissue of nineteen 

specimens was ground using either (1) a Retsch oscillating steel ball mill grinder at 20 Hz for 20-25 

seconds x 3-5 times, or (2) an agate pestle and mortar.  

Samples were sieved using Endecotts woven stainless steel mesh sieves with an aperture size of 500 

μm, 250 μm, 125 μm, 63 μm, and 20 μm to produce 5 particle size classes (i.e. > 500 μm, 250-500 μm, 

125-250 μm, 63-125 μm, 20-63 μm). Six of the archaeological samples (3 fauna, 2 heated and 1 

unheated human) were also ground down to c. 1 μm using a Retsch PM100 ball mill grinder. The 

container, lid and ball grinders were cooled using liquid nitrogen to reduce potential destruction of 

crystals due to heat produced during the grinding process. One subsample from each of the six samples 

was ground for 3 minutes at 400 rpm twice, the container being cooled in liquid nitrogen in between each 

https://paperpile.com/c/bZhAIZ/BiPN+4pYY+7a1H+vSUU
https://paperpile.com/c/bZhAIZ/4pYY
https://paperpile.com/c/bZhAIZ/qn94
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run, while a second subsample was ground at 600 rpm for 5 minutes. Particle size of the subsamples 

was compared to other previously measured microground samples under the microscope and were 

shown to be of similar size, i.e. c. 1 μm. Samples were split into three different groups (i.e. fauna, 

unheated human and heated human specimens) to allow the observation of any differences that might 

be related to the pre-burial histories of bones (e.g. cooking, boiling), preservation state and animal 

species related BAp crystal order/disorder.  

Bone powder of 20-63 μm particle size from the periosteal, mesosteal and trabecular tissues of 5 human 

samples was also analyzed by FTIR-ATR (Table S2 - supplementary material). Additionally, bone 

powder from two modern human mesosteal samples (particle size 20-63 μm), one modern bovine 

(particle size from >500 μm to 20-63 μm) and synthetic hydroxyapatite (HAp) (particle size from >500 μm 

to 20-63 μm) were used as references (see Table S3 - supplementary material). 

FTIR measurements were performed in triplicate for each sample on each different particle size powder 

fraction using an Alpha Platinum FTIR-ATR spectrometer (range: 4000-400 cm-1; no. of scans: 144; 

zero-filling factor: 4; resolution: 4 cm-1; mode: absorbance). About 2-3 mg of bone powder were put on 

the optic window with a diamond crystal. For good contact with uniform pressure between the crystal and 

the sample, the pressure of the applicator was controlled using the pressure control spot. After each 

measurement, the crystal plate and the anvil of the pressure applicator were thoroughly cleaned using 

isopropyl alcohol. Spectra were analysed using OPUS 7.5 software. 

Infrared splitting factor (IRSF) was assessed after Weiner and Bar-Yosef [22], carbonate-to-phosphate 

(C/P) ratio was calculated as in Wright and Schwarcz [25], type B carbonate substitutions relative to 

phosphate (BPI) was estimated as in Sponheimer and Lee-Thorp [38], and amide-to-phosphate (Am/P) 

was assessed according to Trueman et al. [29]. All indices were estimated after baseline correction 

(Figure 1; Box 1). 

The full width at half maximum (FWHM) of the c. 1010 cm-1 peak was measured after baseline 

subtraction to assess the atomic order/disorder of the samples [9,46,47]. The 2nd derivatives were 

produced to explore the overlapping bands at the v4, v3, v1 PO4
3- and v2 CO3

2- bands using the OriginPro 

2017 and the Savitzky-Golay filter with 9 smoothing points and a polynomial order of 4. Statistical 

analysis carried out using IBM SPSS v.24 and the significance level was set at 𝑝 =  0.05. 
Box 1. Indices - Baseline correction 

1. Infrared splitting factor (IRSF) was assessed using the equation introduced by Weiner and Bar-

Yosef [26] that measures the heights at c. 600 cm--1 + c. 560 cm-1, divided by the trough 

between them at c. 590 cm-1, using a baseline correction from the c. 400-420 cm-1 to the c. 

https://paperpile.com/c/bZhAIZ/hK8Q/?noauthor=1
https://paperpile.com/c/bZhAIZ/BiPN/?noauthor=1
https://paperpile.com/c/bZhAIZ/uwiw/?noauthor=1
https://paperpile.com/c/bZhAIZ/l8cT/?noauthor=1
https://paperpile.com/c/bZhAIZ/0UZw+bGxf+Lo1P/?noauthor=0,1,0
https://paperpile.com/c/bZhAIZ/hK8Q/?noauthor=1
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630-670 cm-1 troughs (Figure 1a). The two peaks are characteristic of the v4 antisymmetric 

bending mode of orthophosphate ion [49]. 

IRSF = 600 cm−1  +  560 cm−1590 cm−1  

2. Carbonate-to-phosphate (C/P) ratio was estimated as in Wright and Schwarcz [29] by dividing 

the main v3 carbonate peak height at c. 1410 cm-1 with the main v3 phosphate vibrational band 

at c. 1010 cm-1 [29]. The baseline correction was drawn from c. 1590 cm-1 to c. 1290 cm-1 and 

from c. 1150-1180 cm-1 to c. 880-900 cm-1, respectively (Figure 1b and Figure 1c).  

C/P = 1410 cm−1 1010 cm−1  

3. The type B carbonate substitutions relative to phosphate (BPI) were calculated from the ratio of 

the peak heights at c. 1410 cm−1 and c. 600 cm−1 as in Sponheimer and Lee-Thorp [42] using 

the same baselines for both peaks as above (Figure 1a and Figure 1c). 

BPI = 1410 cm−1 600 cm−1  

4. Amide-to-phosphate (Am/P) was assessed by the v1 amide at c. 1640 cm-1 divided by the main 

v3 phosphate peak at c. 1010 cm-1 [33]. Baseline correction was from c. 1720 cm-1 to c. 1590 

cm-1 and c. 1150 cm-1 to c. 890 cm-1, respectively (Figure 1b and Figure 1d). 

Am/P = 1640 cm−1 1010 cm−1  

 

https://paperpile.com/c/bZhAIZ/jMPH
https://paperpile.com/c/bZhAIZ/BiPN/?noauthor=1
https://paperpile.com/c/bZhAIZ/BiPN
https://paperpile.com/c/bZhAIZ/uwiw/?noauthor=1
https://paperpile.com/c/bZhAIZ/l8cT
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Figure 1. The mid-IR spectra of 20-63 μm particle size archaeological human mesosteal bone powder (MEC77). The spectral 
bands used for IRSF (a), C/P (b, c), and Am/P (b, d) are highlighted. Figures 1a-d display the peak positions (blue lines) for 
IRSF, C/P and Am/P indices as well as the baselines (red lines). 
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3. Results and Discussion 

3.1. Tissue-specific variations 

Within-sample variations can be observed in crystallinity, carbonate and organic content of the different 

bone tissue areas (Figure 2 and Table S4 - supplementary material), although there is no statistically 

significant difference between periosteal, mesosteal and trabecular bone tissue for either IRSF 

(x2=1.680, p= 0.432), C/P (x2=0.306, p= 0.858) or Am/P (x2=3.847, p= 0.146). IRSF values in the 

periosteal tissue appear lower compared to the mesosteal and trabecular tissues (Figure 2a), carbonate 

content displays no observable pattern (Figure 2b), whereas Am/P values appear higher in the periosteal 

tissue (Figure 2c). 

 

Figure 2. Box plots showing the IRSF (a), C/P (b) and Am/P (c) indices in the periosteal, mid cortical (mesosteal) and trabecular 
tissues. Notice the lower IRSF (a) and C/P (b) values in the periosteal tissue. 

The organization of bone and the conditions of the depositional micro-environment (e.g. local hydrology, 

pH, depth) may strongly affect BAp structural characteristics, composition and their 

dissolution/recrystallization rate [5,6,8,60,69–71]. In modern human bone, a gradient from the osteon 

outwards (tissue specific, age-related variations) has been previously observed by Paschalis et al. [8], 

with the areas farther from the haversian canal displaying increased crystallinity, higher type B carbonate 

and lower type A carbonate content. A small variation in carbonate content within trabecular bone tissue 

(i.e. center to edges gradient) has also been reported by Ou-Yang et al. [72].  

In archaeological and fossil bone, when an equilibrium between bone and its burial environment is 

reached and dissolution/recrystallization slows down, any change in the conditions would result in re-

equilibration between the bone chemistry and its surroundings [51,71]. With respect to that behaviour, 

Stiner et al. [23] have observed that the outer surfaces of modern bone which had been exposed for 2 

and 9 years post-mortem in Israel and New Mexico (USA), respectively, displayed higher crystallinity 

than the inner cortical areas. In a similar attempt to record mineralogical and compositional changes in 

bones of large mammals exposed on the ground surface in Amboseli National Park (Kenya) for up to 26 

years, Trueman et al. [29] also observed that the crystallinity in the periosteal surfaces was higher than 

https://paperpile.com/c/bZhAIZ/nF3M+eMSP+qWbl+qzpZ+MsGz+ulUS+IqyY
https://paperpile.com/c/bZhAIZ/eMSP/?noauthor=1
https://paperpile.com/c/bZhAIZ/ETt2/?noauthor=1
https://paperpile.com/c/bZhAIZ/5opm+MsGz
https://paperpile.com/c/bZhAIZ/ktJY/?noauthor=1
https://paperpile.com/c/bZhAIZ/l8cT/?noauthor=1
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in the other bone tissue areas (inner cortical) as early as 2 years post-mortem. The higher periosteal 

IRSF values were accompanied by higher concentrations of rare earth elements (e.g. Ba and La) which 

also showed a gradual decrease towards the inner cortex [29]. When the cortical bone was compared 

with trabecular bone in the Middle Palaeolithic Hayonim cave (Israel) the IRSF values for spongy tissues 

were found slightly higher [27].  

Therefore, the tissue-specific differences in crystallinity, carbonate and organic content can vary within 

and between sites [27,31,60], while other factors such as the post-mortem interval or the size of the 

bone itself can also affect its post-mortem behaviour and interaction with its depositional environment 

[26]. Consequently, although there is no universal pattern for tissue-specific variations found in 

archaeological and fossil bone, the necessity for homogenization of samples prior to analysis using 

FTIR-ATR through the mechanical removal of the periosteal, trabecular and endosteal bone tissues and 

use of the mesosteal (mid-cortical) tissue is indisputable for the improvement of accuracy, precision, 

reproducibility and comparability of data. 

3.2. Particle size effect 

3.2.1. Effects on IR indices 

Bone powder particle size predictably affects the IRSF, C/P and Am/P values in all samples (Tables S3 

and S5 - supplementary material). Very strong inverse relationships are observed when IRSF is plotted 

against C/P (Figure 3). Carbonate content strongly affects crystallinity changes as it is inversely related 

to crystal growth (i.e. it acts as an inhibitor) [4,11], and the very strong inverse relationship of C/P with 

IRSF seen in our data supports an interaction between carbonate and phosphate in BAp crystals (e.g. 

[25]). A very strong correlation is also observed between these two indices and the samples’ particle size 

(Figure 3). 

https://paperpile.com/c/bZhAIZ/l8cT
https://paperpile.com/c/bZhAIZ/4pYY
https://paperpile.com/c/bZhAIZ/4pYY+CgtB+IqyY
https://paperpile.com/c/bZhAIZ/7a1H
https://paperpile.com/c/bZhAIZ/Ry2E+02T6
https://paperpile.com/c/bZhAIZ/BiPN
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Figure 3. IRSF-C/P relationship with the samples’ particle size in modern and archaeological bone. Datapoint markers’ sizes 
gradually decrease with decreasing particle size (i.e. >500 μm: size 10, 100% transparent; 250-500 μm: size 8, 80% 
transparent; 125-250 μm: size 6, 60% transparent; 63-125 μm: size 4, 40% transparent; 20-63 μm: size 2, 20% transparent). 
Error bars represent estimated standard deviations. 

Faunal bones (n=9) display a very strong relationship between particle size and mid-IR indices that 

reflect crystal composition (Figure 3; Fig.S1 - supplementary material). IRSF, C/P and Am/P 

demonstrate statistically significant differences for particle sizes ranging from >500 μm to 20-63 μm 

(IRSF: x2= 20.809, p= 0.000; C/P: x2= 13.910, p= 0.008; Am/P: x2= 10.783, p= 0.029). IRSF gradually 

increases with decreasing particle size and drops at the 1 μm powder (Figure 3; Fig.S1a - 

supplementary material). On the contrary, C/P gradually decreases with decreasing particle size, except 

for the 1 μm at 600 rpm that increases to the 20-63 μm levels (Figure 3; Fig.S1b - supplementary 

material). Am/P gradually decreases with decreasing particle size and stabilises at the 1 μm particle size 

(Fig.S1c - supplementary material). Additionally, at the 1 μm size the samples’ powder colour becomes 

dark grey/blackish. 

The unheated human samples’ (n=5) IRSF and C/P values also display statistically significant 

differences between the different particle sizes (x2= 16.903, p= 0.002) and (x2= 17.853, p= 0.001), 

respectively. Specifically, there is a gradual increase in IRSF and a gradual decrease in C/P with 

decreasing particle size (Figure 3; Fig.S2a and S2b - supplementary material). On the other hand, while 

Am/P shows almost no statistically significant differences (x2= 9.343, p= 0.053), a similar general pattern 

can be observed, with a gradual decrease in Am/P values with decreasing particle size; the exception is 
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the 250-500 μm that displays an increase in both C/P and Am/P (Fig.S2b and S2c - supplementary 

material). In particle sizes of c. 1 μm, IRSF significantly drops for both the 400 rpm and 600 rpm 

preparation methods (Fig.S2a - supplementary material). However, C/P and Am/P are increased at 400 

rpm (similar values to the >500 μm powder) but decreased when prepared at 600 rpm (similar values to 

the 125-250 μm powder) (Fig.S2b and S2c - supplementary material). A similar discoloration (dark 

grey/blackish) of the samples’ powder is also observed at the 1 μm level.  

In contrast, in the heated human samples, there is no statistically significant difference between different 

particle sizes (>500 μm to 20-63 μm) and any of the indices [IRSF: (x2=2.267, p=0.687); C/P: (x2=3.244, 

p=0.518)]; Am/P: (x2=2.722, p=0.605)]. Not surprisingly, however, a pattern can be observed for 

crystallinity, with an overall increase in IRSF that is accompanied by a decrease in C/P with decreasing 

particle size (Fig.S3a and S3b - supplementary material). For particle sizes of about 1 μm, there seems 

to be a rapid decrease in IRSF and a more gentle drop in C/P values (Fig.S3a and S3b - supplementary 

material). With regard to the reference samples, modern bovine bone shows similar relationships to the 

archaeological fauna and human unheated specimens, while synthetic HAp displays a decrease in IRSF 

values with decreasing particle size (Figure 3; Fig.S4 and Table S5 - supplementary material). 

The effect of particle size distribution and shape on IR spectra has been previously reported by Kristova 

et al. [73], and it is assumed to be primarily because of the better packing and higher surface area of the 

samples consisting of smaller particles [74]. In our samples, the smaller the particle size, the higher the 

crystallinity and the lower the carbonate content; this could be simply assumed to be because of the 

better contact between the sample and the prism, and the deeper penetration depth of the IR radiation 

into individual BAp crystals [74]. The exposure of a larger amount of BAp crystals to the IR radiation in 

samples consisting of smaller particle size powders also results in more accurate, precise and 

reproducible data. On the other hand, the coarser the sample, the poorer the contact between the 

sample and the prism due to increased void spaces (i.e. porosity) in the sample [74]. 

Breaking the crystal-crystal interaction (i.e. crystal fusion) may also contribute to the phenomenon 

observed in our data [11]. While it is still poorly understood as a process, the interaction between the 

crystals’ hydrated layers (i.e. amorphous hydrophilic surface layers) in bone has been proposed as a 

possible explanation for the binding between the BAp crystals, pulled together by van der Waals forces 

[75,76]. As BAp crystals are often seen as aggregate clusters in transmission electron microscopy (TEM) 

(e.g. [29]), this supports a “separation hypothesis” up to the 20-63 μm level, as grinding could simply 

divide and expose some of the merged BAp crystals which have amalgamated to form larger crystals 

(i.e. Ostwald ripening).  

It is, therefore, likely that the initial small size of the BAp crystals (i.e. about 30 nm long x 20 nm wide x 

2-4 nm thick) [1,2] makes their destruction difficult during grinding when bone powder particle size 

https://paperpile.com/c/bZhAIZ/SvCa/?noauthor=1
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/02T6
https://paperpile.com/c/bZhAIZ/pOpu+iAbU
https://paperpile.com/c/bZhAIZ/l8cT
https://paperpile.com/c/bZhAIZ/oNSE+BuUf
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remains over 20 μm [11], even when the BAp crystals further increase in size due to diagenesis (e.g. 

[31] estimated that for IRSF between 3.0-3.9, the average maximum BAp crystal length would be about 

65 nm). Hence the Surovell and Stiner [26] “destruction hypothesis” (i.e. grinding damages the BAp 

crystal structure) seems rather unlikely for unheated modern and archaeological bone with over 20 μm 

bone powder particle size. However, the large drop in IRSF values observed at the 1 μm level is 

probably an indication that the BAp crystals are distorted by some breaking during grinding at a critical 

point between 1 μm and 20 μm, leading again to a more disordered (short-range) crystal state and a 

more variable particle size distribution that affects the penetration depth and accuracy of data [77].  

3.2.2. Effects on IR absorbance 

A very strong relationship between IR absorbance at 560 cm-1, 600 cm-1, 1010 cm-1 and 1410 cm-1 and 

particle size can be observed from the peak heights after baseline correction in all samples (Figure 4 and 

Figure 5). Absorbance is higher when the particle size decreases, except for C/P in heated samples (due 

to the loss of carbonate content during heating; Figure 5). Samples also display a small average shift 

towards higher wavenumbers with decreasing particle size (Table S6 - supplementary material).

 

Figure 4. The particle size effect on the absorbance of IR of the main v4 phosphate peaks at 560 cm-1 and 600 cm-1. Markers 
and error bars as in Figure 3. 

The absorbance of the IR radiation in our samples exhibited a very strong linear relationship with particle 

size, with the smaller the particle size, the higher the absorbance. This further supports the effectiveness 

of the 20-63 μm particle size powders compared to coarser samples. The only exception was the 

https://paperpile.com/c/bZhAIZ/02T6
https://paperpile.com/c/bZhAIZ/CgtB
https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
https://paperpile.com/c/bZhAIZ/uzEc
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absorbance at the c. 1410 cm-1 peak for the heated human samples, due to the prior loss of most of their 

carbonate content during heating. Such an effect of particle size on the intensity and region of IR bands 

of minerals has been reported in past studies [e.g. 65,66,74], with the smaller the particle size, the 

higher the absorbance of IR and the narrower the bandwidth. Although the penetration depth of the IR 

light for diamond ATR crystals has been found to correlate with grinding [78], the IR penetration depths 

(i.e. full effective path length) and absorbance may sometimes vary due to scattering, interference and 

refractive index of the crystal (i.e. diamond vs Ge) [74].  

 

Figure 5. The particle size effect on the absorbance of IR of the main v3 phosphate peak at 1010 cm-1 and the main v3 
carbonate peak at 1410 cm-1. Markers and error bars as in Figure 3. 

3.2.3. Effects on BAp order/disorder 

The FWHM at 1010 cm-1 is considered to reflect the long-range order of a crystal (higher FWHM values 

indicate higher long-range disorder), hence the homogeneity between the different clusters of atoms 

arranged in a predictable pattern [4,50]. IRSF reflects the short-range order (higher IRSF values indicate 

higher short-range order) which is affected by the ionic substitutions in neighbouring atoms [38]. In this 

study, the FWHM of the 1010 cm-1 main phosphate peak is strongly related with crystallinity and particle 

size (>500 to 20-63 μm) with three main patterns being identified (Figure 6). The first is observed in 

modern bovine bone, exhibiting a rapid decrease in FWHM with decreasing particle size but a small 

increase in IRSF values, similar to the pattern seen in the well-preserved archaeological bovine 

specimen SAR38. The second pattern is that observed in the poorly preserved PRO8 (archaeological 

https://paperpile.com/c/bZhAIZ/FoYA+wrOW+AOt2/?prefix=e.g.,,
https://paperpile.com/c/bZhAIZ/rHm5
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/PSYz+Ry2E
https://paperpile.com/c/bZhAIZ/uwiw
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bovine) and MEC77 (archaeological human) samples, which demonstrate slightly different trendlines 

with the increase in crystallinity accompanying the decrease in FWHM being higher. Finally, the third 

pattern (i.e. heated archaeological human bone and synthetic HAp) is characterised by a much flatter 

trendline, resulting from a smaller decrease in FWHM and a stronger IRSF increase. When the particle 

size drops to c. 1 μm, IRSF and FWHM show no clear relationships (Figure 6).  

 

Figure 6. Graph displaying the particle size effect on the IRSF and the FWHM at 1010 cm-1. Markers and error bars as in 
Figure 3. 

Grinding and particle size can thus affect both IRSF and FWHM, with the different gradients of the 

curves reflecting the differences in BAp crystal size, and short- and long-range order of the samples 

associated with the particle size effect. On a similar note, synthetic HAp displays a decrease in IRSF 

with decreasing particle size and an almost unaltered FWHM, indicative of a fairly constant long-range 

order and a damage to the crystals’ size and short-range order (Figure 6). Therefore, crystal distortion 

depends on the powder particle size and the size of the BAp crystals related to the preservation state or 

characteristics of each species.  
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Figure 7. Graph displaying the particle size effect on the C/P and the FWHM at 1010 cm-1. Markers and error bars as in Figure 
3. 

The effect of particle size on the C/P to FWHM relationship is also marked in all samples for particle 

sizes varying from >500 μm to 20 μm (Figure 7). As with IRSF, the same three groups can be 

recognised: a) the modern bovine and SAR38 having similar trend lines characterized by a decrease in 

carbonate content as well as in FWHM with decreasing particle size; b) PRO8 and MEC77 showing a 

slightly smaller drop in C/P and FWHM values; and c) the HOL15937 heated archaeological human 

sample that displays a lesser degree of carbonate and FWHM change due to the loss of most carbonate 

during heating. In samples of c. 1 μm particle size, C/P also displays no specific patterns (Figure 7).  

The atomic order/disorder, the morphology and the size of the BAp crystals are highly interrelated and 

dependent on carbonate concentrations [4]. The very strong linear relationship of CO3
2- with FWHM 

(Figure 7) confirms the assumptions made by other researchers (e.g. [4,11,52,53]) that, except for the 

effects on the crystal dimensions, the higher the carbonate content in the crystal lattice the more 

disordered the crystal will be. An exchange of carbonate for phosphate has been found to correlate with 

a change in the α- and c-axis crystal dimensions that results in more disordered crystals [52,53]. This 

assumption is supported by the differences in the O-O distances in PO4
3- and CO3

2-; thus a substitution 

of the smaller CO3
2- by the larger PO4

3- or a replacement of the larger CO3
2- for the smaller OH- would 

increase the unit cell dimensions [54]. 

https://paperpile.com/c/bZhAIZ/Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ+od1g+02T6+Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ+od1g
https://paperpile.com/c/bZhAIZ/UceX
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The peak height at c. 1410 cm-1 displays a very strong linear relationship (R2=0.96) with this at c. 872 

cm-1. As both peaks reflect the type B carbonate environment in bioapatite crystals [57] it corroborates 

LeGeros [52] account of the bone carbonate exchange that primarily occurs at the phosphate sites of the 

crystal lattice (i.e. type B) [4]. Type A carbonate substitutions are considered to occur at high 

temperatures (e.g. 900-1000o C) with the exclusion of water, while type B CO3
2- substitutions can take 

place at much lower temperatures (e.g. 25-100o C) [52]. Thus, as precipitation of carbonate for 

phosphate (and vice versa in archaeological and fossil bone) in bone occurs at the lower temperature 

range, type B CO3
2-, which seems to be the predominant form of carbonate in skeletal tissues, is 

possibly adsorbed on the surfaces of the BAp crystals (i.e. the sloping faces of the substituted 

phosphate ions) and not incorporated into the crystal structure [52,53,59,79,80].  

The characteristic v2 carbonate vibrations that appear at c. 871 cm-1 for type B, c. 878 cm-1 for type A1  

(“stuffed”) and c. 866 cm-1 for type A2 (“labile”-surface) CO3
2- [8,56,59,80] are also observed in the 2nd 

derivative components of our modern bovine data from >500 μm to 63-125 μm (Figure 8). Among these 

components, the c. 871 cm-1 type B carbonate appears to be more prominent than the other two (Figure 

8). The most important observation, however, is the disappearance of the c. 866 cm-1 peak in the 2nd 

derivative spectra of the modern bovine bone at the 20-63 μm particle size and its absence from all the 

2nd derivative spectra of all the archaeological specimens in all particle sizes (Fig. S5-S8 - 

supplementary material). This observation justifies its characterization as “labile”-surface carbonate 

[8,56,80] and shows that a possible removal of ions (e.g. carbonate) from the crystal surface during 

grinding of modern bone cannot be overlooked [11]. The very strong correlation between C/P and type B 

CO3
2- for the more degraded samples in this experiment could also be an indication of such a loss of the 

“labile” type A carbonate from the BAp crystal. 

https://paperpile.com/c/bZhAIZ/qPbV
https://paperpile.com/c/bZhAIZ/hFyQ
https://paperpile.com/c/bZhAIZ/Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ
https://paperpile.com/c/bZhAIZ/hFyQ+od1g+GXTi+hlE4+3ioV
https://paperpile.com/c/bZhAIZ/XaAv+eMSP+GXTi+3ioV
https://paperpile.com/c/bZhAIZ/XaAv+3ioV+eMSP
https://paperpile.com/c/bZhAIZ/02T6
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Figure 8. Example of 2nd derivative spectra of the v4 PO4
3ˉ asymmetric bending vibrations in the region of 400-700 cm-1 (right 

column) and v3 PO4
3ˉ asymmetric stretching modes at around 1010 cm-1 (left column) at different particle sizes for modern 

bovine mesosteal bone. 

Regarding the number of the 2nd derivative components of the phosphate bands, they display a very 

small decrease with decreasing particle size, except at c. 1 μm particle size where a small increase is 

observed (Figure 8). Although the peak positions of the overlapping bands shift towards higher 

wavenumbers with decreasing particle size, this does not happen in a progressive manner or with a 

characteristic pattern. Additionally, the c. 630 cm-1 component, which is considered the vibration mode of 

OH, is observed in modern bone but shifts towards higher wavenumbers when crystallinity increases, 

due to diagenesis. 

4. Conclusion 

To summarize, we have shown in this study that particle size distribution leads to systematic changes in 

FTIR-ATR data as expressed by IRSF, C/P and Am/P indices. Specifically: 



 

18 

1. Removing the periosteal, endosteal and trabecular tissues prior to pulverization of mesosteal 

(mid-cortical) bone is necessary and eliminates uncertainties when using these semi-quantitative 

mid-IR indices for bone. 

2. IRSF increases with decreasing particle sizes from >500 μm to 20-63 μm both in unheated and 

heated archaeological and modern bone samples. This is possibly an example of the Surovell 

and Stiner [26] “separation hypothesis” down to the 20-63 μm particle size, giving way to the 

“destruction hypothesis” when bone powder is consisted of particles of c. 1 μm, as there is a 

large decrease in IRSF values at this point. 

3. The FWHM at c. 1010 cm-1 demonstrates a very strong inverse relationship with IRSF and a very 

strong linear relationship with particle size, decreasing with decreasing particle size from >500 

μm to 20-63 μm. When bone powder consists of particles of c. 1 μm, the FWHM at c. 1010 cm-1 

does not show any characteristic pattern and relationship with crystallinity, confirming that the 

boundaries between order and disorder in BAp crystals are still unclear. Overall, these patterns 

are strongly related to the changes that occur at the short- and long-range order of the BAp 

crystals during grinding. 

4. C/P and Am/P follow an opposite relationship to IRSF, both decreasing from >500 μm to 20-63 

μm particle size. When bone powder consists of particles of c. 1 μm, C/P and Am/P values vary 

with no characteristic patterns observed. The inverse relationship between IRSF and C/P also 

supports the effect of carbonate in the atomic order/disorder of BAp crystals. 

5. The wavenumber of the main peaks and the 2nd derivative components of the bands in bone alter 

with decreasing particle size. The absence of the “labile” A1 carbonate at 866 cm-1 in 

archaeological bone and its loss at lower particle sizes during grinding in modern bovine is 

noteworthy.  

6. Absorbance of the IR radiation is strongly affected by the particle size, with higher absorbances 

for smaller bone powder particles. This observation indicates that for smaller particle sizes, there 

is a better contact between the sample and the prism, as well as a higher exposure of the bone 

powder’s components to the IR light. 

Therefore, we propose a standard preparation procedure for bone powder analysed using FTIR-ATR 

(Figure 9). This standard process should be followed to improve accuracy, consistency, reliability, 

reproducibility and comparability of the data for the systematic evaluation of bone in archaeological, 

anthropological, paleontological, forensic and biomedical studies: 

https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
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Figure 9. Sample preparation and analysis strategy for bone powder analysed using FTIR-ATR. 
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