
This is a repository copy of Quantum-based subgraph convolutional neural networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/139142/

Version: Accepted Version

Article:

Zhang, Zhihong, Chen, Dongdong, Wang, Jianjia et al. (2 more authors) (2018) Quantum-
based subgraph convolutional neural networks. Pattern recognition. 38 - 49. ISSN 0031-
3203

https://doi.org/10.1016/j.patcog.2018.11.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Quantum-based Subgraph Convolutional Neural

Networks

Zhihong Zhanga, Dongdong Chena, Jianjia Wangc, Lu Baib,∗,
Edwin R. Hancockc

aXiamen University, Xiamen, China
bCentral University of Finance and Economics, Beijing, China

cUniversity of York, York, UK

Abstract

This paper proposes a new graph convolutional neural network architecture

based on a depth-based representation of graph structure deriving from quan-

tum walks, which we refer to as the quantum-based subgraph convolutional neural

network (QS-CNNs). This new architecture captures both the global topologi-

cal structure and the local connectivity structure within a graph. Specifically,

we commence by establishing a family of K-layer expansion subgraphs for each

vertex of a graph by quantum walks, which captures the global topological ar-

rangement information for substructures contained within a graph. We then

design a set of fixed-size convolution filters over the subgraphs, which helps to

characterise multi-scale patterns residing in the data. The idea is to apply convo-

lution filters sliding over the entire set of subgraphs rooted at a vertex to extract

the local features analogous to the standard convolution operation on grid data.

Experiments on eight graph-structured datasets demonstrate that QS-CNNs ar-

chitecture is capable of outperforming fourteen state-of-the-art methods for the

tasks of node classification and graph classification.

Keywords: Graph convolutional neural networks, spatial construction,

quantum walks, subgraph.

∗Corresponding author: Lu Bai
Email address: bailucs@cufe.edu.cn. (Lu Bai)

Preprint submitted to Journal of LATEX Templates August 5, 2018

*Manuscript
Click here to view linked References

1. Introduction

Numerous problems (social networks, transport networks, protein-interaction

networks, knowledge graphs, . . .) involve data lying on irregular or non-Euclidean

space that can be efficiently described with graph data structures, which are uni-

versal representations of heterogeneous pairwise relationships [1]. Graphs can5

encode complex geometric structures and can be studied using efficient machine

learning techniques. Recently, numerous results have proven that deep learn-

ing methods provide an effective architecture for analyzing the large-scale and

high-dimensional regular or Euclidean data. In particular, Convolutional Neu-

ral Networks (CNNs) [2] allow us to extract meaningful statistical patterns from10

large sets of data and this property allows them to gain significant improvement

in image, sound and video recognition tasks [3], where the underlying data repre-

sentation has a regular grid structure. When confronted by graph data-streams,

on the other hand, one is confronted with irregular structures. Because such

data is ubiquitous, there has been significant interest in the generalization of15

CNNs to graph data [1]. Unfortunately, this is not a straightforward problem

since the basic operations of convolution, pooling and weight-sharing are only

designed for regular grids. These three points make the application of CNNs to

graph data streams both theoretically and implementally challenging.

There are two main strategies adopted in extending CNNs to non-lattice20

graphical structures, namely a) spectral and b) spatial methods. Spectral ap-

proaches draw on the properties of convolution operators in the graph Fourier

domain and are related to the Laplacian matrix of the graph [4, 5, 6]. By trans-

forming graphs into the spectral domain using the eigenvectors derived from

the eigendecomposition of the graph Laplacian, graphs can be multiplied by an25

array of filter coefficients to perform a filtering operation. However, spectral

approaches require each of the graphs samples in a particular problem to have

the same number of nodes. Thus they are not directly transferable to different

graphs of different size and having a different Fourier basis.

Spatial approaches, on the other hand, generalize the convolution using the30

2

spatial structure of a graph by sliding a filter over the spatially neighboring ver-

tices in a manner analogous to the convolution performed on images in standard

CNNs [7, 8, 4, 9, 10]. This approaches however present two challenges, namely

(1) the definition of a receptive field/neighborhood, because spatial convolutions

are usually position dependent and lack a meaningful global interpretation and35

(2) how to implement weight sharing in a spatial structure with a variable num-

ber of adjacent neighbors adjacent and where the ordering of neighborhoods is

not well defined.

To solve these problems, in this paper, we adopt a graph decomposition strat-

egy based on quantum walks. When compared to their classical counterparts,40

quantum walks capture different aspects of the patterns of node connectivity

in a graph via constructive and destructive interference. Here we use them to

determine the nodes belonging of each receptive field used for convolution in a

CNN. This can lead to the convolution operations being performed both more

effectively and more efficiently. We commence by decomposing a graph into a45

family of K-layer m-ary expansion trees, each rooted at a unique vertex. We

then scan a subgraph based window defined over an m-ary tree in a manner

similar to the standard convolution operation on grid data (depicted in Figure

1). This allows us to extract structural features reflecting the local connectiv-

ity, and this in turn helps in capturing multi-scale patterns in the data. In50

particular, the convolution operation not only captures local structural infor-

mation within the graph, but also exhibits weight sharing among the subgraphs.

This results in a significant parameter reduction. The weight sharing is induced

by a pooling operation that acts directly on the output of the preceding net-

work layer, and without resorting to a preprocessing scheme (e.g., clustering or55

other techniques). Finally, we can learn a better representation for the purposes

of prediction by simultaneously considering both the node features and graph

structure information delivered by our subgraph convolution operation.

The remainder of this paper is organized as follows. In Section 2, we present

related work and discuss the relationship between our proposed model QS-CNNs60

and alternative methods. In Section 3, we introduce some preliminary concepts

3

PoolConv1
Y

FC

Conv2

Figure 1: An illustrative example of our QS-CNNs with K = 4 and m = 3. The ‘Conv’

arrow depicts the convolution operation. The subgraph above the ‘Conv’ arrow represents a

convolution kernel, extracting structural features along the tree. Then the extracted features

are summarized by pooling operation.

that will be used for developing the work presented in this paper. In Section

4, we present a formal definition of the model, including descriptions of graph

depth-based representation and graph learning procedures (i.e. subgraph convo-

lution and pooling operations). This is followed by an experimental evaluation65

in Section 5 which explores the performance of QS-CNNs at node and graph

classification tasks. Finally, conclusions and directions for future work are pre-

sented in Section 6.

2. Related Work

Most of the recent work on extending CNNs to non-lattice graphical struc-70

tures fall into two broad categories a) spectral and b) spatial approaches.

2.1. Spectral Methods

Spectral approaches provide a well-defined localization operator on graphi-

cal data via convolutions in the spectral domain. Spectral graph theory defines

4

convolutions in terms of an array of filter coefficients multiplied by the graph75

signals, after transforming the graph signal to a spectral domain representation.

Several authors propose graph CNN models that are based on this method of

filtering [4, 6, 5]. For instance, Bruna et al. [4] and Henaff et al. [6] used a gener-

alization of graph convolutions via the graph Fourier transform. Unfortunately,

this involves the computationally expensive multiplication of node features with80

the eigenvector matrix of the graph Laplacian. Furthermore, computing the re-

quired eigenvector matrix is cubic in the number of vertices. To circumvent this

problem, Defferrard et al. [11] have proposed an efficient filtering scheme which

operates in the spectral domain by using Chebyshev polynomials, and which

does not require explicit computation of the Laplacian eigenvectors. Instead, it85

uses the kth order Chebyshev polynomials of Laplacian eigenvalues as the pa-

rameters of filters that act on k-hop neighbourhoods of the graph. This model

was later simplified by Kipf and Welling [12] to use first order polynomials only

for the task of semi-supervised nodes classification.

The major drawback of most spectral methods is that they are based on90

a spectral formulation of the convolution which uses the spectrum of graph

Laplacian [13]. It is thus restricted to a fixed and regular graph structure,

i.e. the graphs must have the same number of nodes and the nodes must have

a fixed degree. This precludes applications on heterogeneous graph datasets,

whose structure (number of nodes and nodes degrees) varies from sample to95

sample. Examples of such heterogeneous data include biochemical datasets.

To overcome these limitations of spectral methods, and considering the re-

strictions imposed by complexity, we formulate our approach in the spatial do-

main by using a depth-based representation of a graph. The main challenge here

is to define a receptive field over the neighbourhoods and to specify how weights100

are shared between different local neighbourhoods [4]. Recently, quantum walks

have provided a powerful way to solve this challenge. By analogy with a par-

ticle propagating on a graph structure, a quantum walk allows different paths

interfere with each other in both constructive and destructive manner. This

property exponentially speeds up the computation compared to other spectral105

5

algorithms [14, 15]. As a consequence, quantum walkers can reach a vertex

through multiple paths, thus the probability of visiting nodes in the neighbour-

hoods increases. This leads to the probability of identifying local neighbour

structure more effectively and efficiently [16, 17].

2.2. Spatial Methods110

As mentioned above, spatial approaches have the advantage over spectral

approaches in that they can operate on problems where the graph structure

varies in the dataset. However, they generally require sophisticated data trans-

formations to enable effective learning. Bruna et al. [4] used a spatial method

based on multi-scale clustering. Here the required convolutions are defined per115

cluster, without any weight sharing among neighbourhoods. Duvenaud et al. [9]

on the other hand, have proposed a convolution-like propagation rule on graphs.

This induces weight sharing among edges. Local filters are applied over neigh-

bouring nodes. Another interesting example of a weight-sharing strategy has

recently been suggested by Atwood and Towsley [10]. They perform a random120

walk on the graph in order to select spatially close neighbouring nodes. These

nodes are used for the purposes of convolution. Weight sharing is controlled by

the number of hops between two nodes. However, the convolution operations

underpinning this method are related to the power series of the full transition

matrix. Computing this series is computationally expensive, and thus limits its125

range of applications. In related work, Niepert et al. [7] use a node ordering

step which converts graphs locally to a regular 1D grid so that a conventional

1D Euclidean CNN can be used. The main drawback of this method is that

the 1D sequences extracted from the graphs discard large amounts of structural

information about the detailed arrangement of the nodes. Thus, it does not130

replicate the standard convolution on regular grids. Moreover, this method [7]

is limited since it is only designed for graph classification and does not admit

any pooling operations.

In contrast to the previous research, we suggest a novel method which is im-

plemented using subgraph convolution and pooling operators that capture both135

6

the global topological and local connectivity structures within the graph. This

allows the method to capture multi-scale patterns in the data. We implement

the method by applying convolution filters that slide over the entire subgraphs

of a vertex. In this way extract local features in a manner similar to the stan-

dard convolution operation on grid data. As a result, it induces weight sharing140

property. Moreover, our method can be applied to the tasks of both node and

graphs classification, where pooling operations can be used.

3. Preliminary Concepts

In this section, we introduce some preliminary concepts that will be used

for developing the work presented in this paper. To this end, we commence145

by introducing the background on convolutional neural networks. We then

introduce the related basics of graph theory and quantum walks.

3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) introduce hidden convolution and

pooling layers to identify localized features which are independent of spatial150

location via a set of rectangular filters. The convolution operator scans a set of

‘square’ kernel filters across a grid-structure as input, returning feature maps

that represent the response to the filters. Given a multi-channel input, a feature

map is the summation of the convolutions with separate kernels for each input

channel. In the CNN architecture, the pooling operator is utilized to compress155

the spatial resolution of each feature map, leaving the number of feature maps

unchanged. Applying a pooling operator across a feature map enables the algo-

rithm to handle a large number of feature maps and, moreover, it generalizes the

feature maps by resolution reduction. Common pooling operations are those of

taking the average and the maximum of the receptive cells over the input map160

[18].

In order to extract input feature effectively for the convolution operation, we

need to assume that there exists some locality structure for the spatial arrange-

ment of the input. This means that the input signal should be highly correlated

7

Figure 2: Example of regular grid data and irregular grid data.

over local regions and mostly uncorrelated at a global scale. This works well for165

data on a regular low-dimensional grid, for instance, images and sound are mod-

eled as 2-D grids and 1-D sequences respectively (see Figure 2(a)). However, in

many real world problems, the data reside on irregular grids or more generally

in non-Euclidean domains. Examples are furnished by social networks, chemical

compounds, protein and knowledge graphs, all of which are better structured170

as a graph (see Figure 2(b)). When confronted by graph data-streams, on the

other hand, one is confronted with irregular structures, the basic operations of

convolution, pooling and weight-sharing in CNNs, which are only designed for

regular grids, are no longer applicable. Therefore, it is necessary to reformu-

late the convolution operator on graph structured data. Moreover, to explicitly175

capture such structures in the data, it may be important and beneficial to inte-

grate priors that capture the structure of the mammalian visual cortex into the

network architecture [19].

3.2. Graphs

A graph G is a pair of sets (V,E), where V = {v1, ..., vn} is the set of vertices180

and E ⊆ V × V is the set of edges, formed by pairs of vertices. Each graph can

be represented by an adjacency matrix A of size n× n, where n is the number

of vertices in G. In particular, Ai,j = 1 if there is an edge between vertex vi

and vertex vj , i.e. vi and vj are adjacent, and Ai,j = 0 otherwise. A walk is a

8

sequence of edges and vertices, where the endpoint of each edge are adjacent.185

A path is a walk in which all vertices are distinct (except possibly the first and

last).We denote d(vi, vj) as the length of the shortest path between vertex vi

and vertex vj , and denote k-hop(vi) as the k-neighborhoods of vertex vi, i.e.

d(vi, vj) = k for any vertices vj of k-hop(vi).

3.3. Quantum Walks190

Quantum walks have recently emerged as a tool for designing novel algo-

rithms on graph structures. They have important properties not exhibited by

their classical counterparts [16, 14, 17]. A quantum walk is defined as a dynami-

cal process over the vertices of the graph. Moreover, because it is determined by

the complex solutions of the Schrödinger equation, the continuous time quan-195

tum walk allows different paths of the walk to interfere with each other in both a

constructive and a destructive manner via a complex amplitude. This produces

non-classical behavior of quantum walks [20]. While classical walks are ergodic

and irreversible, their quantum counterparts are non-ergodic and reversible. As

a result, a quantum walk does not approach a steady state with time.200

The Dirac notation represents the complex amplitudes corresponding to the

different states of quantum system using bras and kets. A ket |m〉 can be

interpreted as a column vector, while a bra with the same state label 〈m| is

its conjugate transpose (which is a row vector). We use the Dirac notation to

represent the basis state corresponding to the walk being at vertex u ∈ V as205

|u〉. The ket |ψt〉 is a vector representing the state of the walk at time t , such

that its u-th entry determines the probability of the walk being at vertex u at

time t. A general state of the walk is a complex linear combination of the basis

states, which is defined as

|ψt〉 =
∑

u∈V

αu(t)|u〉 (1)

where both αu(t) and |ψt〉 are complex numbers, and αu(t)α
⋆
u(t) gives the prob-210

ability of finding the walk at the vertex u at time t. Thus
∑

u∈V αu(t)α
⋆
u(t) = 1

and αu(t)α
⋆
u(t) ∈ [0, 1] for all u ∈ V and t ∈ R.

9

The evolution of the walk is then given by the Schrödinger equation, where

we denote the time independent Hamiltonian as H

∂

∂t
|ψt〉 = −iH|ψt〉 (2)

Given an initial state |ψ0〉, the solution for Eq(2) is215

|ψt〉 = e−iHt|ψ0〉 (3)

The Hamiltonian operator governs the time evolution of the continuous time

quantum walk. It is characterized by a unitary matrix, which renders the walk

reversible. In the case where the Hamiltonian is identical to the graph Lapla-

cian matrix [21, 22], i.e., H = L, then the structural information residing in

the graph is encoded by the Hamiltonian. In the Hilbert space formulation of220

Quantum Mechanics, the state of a quantum mechanical system associated to

the n-dimensional Hilbert space H ∼= Cn is identified with an n × n positive

semidefinite, trace-one, Hermitian matrix, called a density matrix. The Lapla-

cian of a graph is symmetric and positive semidefinite. The Laplacian of a graph

G, scaled by the degree-sum of G, has trace one and it thus has the requested225

properties of a density matrix.

4. Proposed QS-CNNs Model

In this section we combine the idea of subgraph convolution with that of

using a depth-based representation to develop a novel subgraph convolution

architecture for a graph. Our idea is to decompose a graph into substructures230

(i.e., subgraphs) spanned from a root vertex to the remaining vertices with a

K-layer expansion. More specifically, for each vertex, a neighborhood subgraph

consisting of exactly m vertices is extracted by quantum walks and normalized

as am-ary tree by leveraging graph grafting and graph pruning procedures. The

leaf nodes of the m-ary tree are further replaced by their own neighbourhood235

m-ary trees. This process is performed recursively until a K-level m-ary tree

is constructed for each vertex. We then construct a set of subgraph feature

10

detectors, which can be viewed as convolution with a set of finite support kernels.

These are computed by sliding the kernels over the K-levelm-ary tree to extract

local features, in a manner analogous to that used in the standard convolution240

operation. After one layer of convolution computations over different positions

of the subgraph along the tree structure, structural features are extracted, and

a new tree is generated. The new tree has a reduced number of levels when

compared with the original input tree. Each parent node and its child nodes

in the input layer become a single new node in the next layer. The extracted245

local features produced by the convolution layer are forwarded to the pooling

layer. Thereafter they are packed into one or more fixed-size vectors by taking

the max/mean value in each dimension. After the pooling layer, the fixed-size

feature vector is subsequently presented to the fully-connected layers (FC) to

compute the predicted probability over the class labels. One merit of such an250

architecture is that each vertex has K-layer expansion subgraphs. Hence both

the a) global topological arrangement information and b) local connectivity

structural information contained within a graph can be learned effectively and

efficiently by subgraph convolution. This allows our method to capture multi-

scale patterns in the data.255

4.1. The Depth-Based Representation for a Graph

In order to exploit topological information concerning the arrangement of

vertices and edges in a graph, we develop a K-layer depth-based representation

for a graph. Concretely, the representation comprises two steps: (1) Performing

quantum walks on graph for node ranking; (2) Mapping graph to tree: we260

construct a m-ary tree for each vertex in the original graph by leveraging graph

grafting and graph pruning procedures. The leaf nodes of the i-level m-ary tree

are replaced by their neighborhood m-ary trees and thus a K-level m-ary tree

is recursively constructed for each vertex.

4.1.1. Quantum Walks on Graph265

11

The fundamental challenge in generalizing CNNs to graph-structured data

is to determine the nodes belonging of each receptive field used for convolution

while maintaining the shared weights. Recall that the standard convolution

operator selects the neighboring pixels of a given pixel and computes the inner

product of the weights and these neighbors. We propose a spatial convolution270

that performs a quantum walk on the graph in order to select the top m closest

neighbors for every node, as shown in Figure 1. The intuition underpinning the

use of a quantum walk is that it can capture the global topological arrangement

information for substructures contained within a graph. Quantum walks cap-

ture different patterns of node connection. Moreover, a quantum walk allows275

the complex amplitudes corresponding to different paths between two nodes on

a graph interfere with each other in both a constructive and a destructive man-

ner. Although the classical concepts of hitting and commute time, allow the

averaging of path length over the different paths [23] in the case of a quantum

walk the effects are more subtle because of the complex nature of the associated280

amplitude [14]. For instance, if the walk is suitably initialised, then symmetric

structure results in a zero amplitude and the amplitude capture long-range as

well as local connectivity information [14]. In fact for certain types of sym-

metrically structured graphs, quantum walks have exponentially faster hitting

times than their classical counterparts [24]. This has obvious benefits in terms285

of problems involving search on a graph or network.

As a consequence, quantum walkers can reach a vertex simultaneously through

multiple paths, and thus at a given time the probability of visiting nodes in the

neighbourhoods increases with respect to the classical counterpart. This means

that a quantum walker can potentially identify the salient connectivity or neigh-290

bourhood structure more effectively and efficiently than its classical counterpart.

Given the adjacency matrix A of a graph, the spectral decomposition of

the adjacency matrix is A = ΦΛΦT , where Φ = (|ψ1〉, |ψ2〉, · · · , |ψn〉) is the

n× n matrix and Λ is the ordered eigenvalue matrix Λ = diag(λ1, λ2, · · · , λn).

According to Eq.(3), we set the initial state Φ0 as Φ and the evolution of the295

12

(a) (b) (c)

Figure 3: An illustrative example of graph grafting. Vertices connected in dotted line are the

pink vertex’s 2-hop, the red vertex has a higher QW score than other vertices of pink vertex’s

2-hop.

quantum walk on the graph at time t is given by

Φt = e−iLtΦ0 (4)

After the above measurement, the n × n state matrix At in quantum walks at

time t becomes

At = ΦtΛΦ
T
t (5)

For every node u, we define the quantum walks score (referring to as QW) for

the node as300

QW (u) =
∑

v∈n

(At)uv (6)

We then sort all the nodes according to their QW scores in descending order.

4.1.2. Mapping Graph to Tree

For each vertex, a receptive field of the same size should be constructed.

However, the size of the 1-hops for different nodes are different. To overcome

13

(a) (b) (c)

Figure 4: An illustrative example of graph pruning. The pink vertex has a smaller QW score

than other vertices of green vertex’s 1-hop.

this problem, we use graph grafting and graph pruning to standardise the neigh-305

borhood subgraph for each node to be an m-ary tree.

Graph Grafting For node v whose 1-hop size is less than m, we use graph

grafting to choose nodes from node k-hop(v) (k >=2) to fill node 1-hop(v).

As shown in Figure 3, besides the vertex coloured pink itself, we still need to

incorporate m = 1 vertex into the receptive field from node k-hop(v) (k >=2).310

We commence by selecting nodes from node 2-hop(v). However, if the nodes in

the 2-hop are insufficient in number, then we select nodes from the 3-hop and

so on. If there exist more nodes than we need, we select nodes with higher QW

scores. In this way, the neighborhood subgraph consisting of exactly m vertices

is extracted and standardised as an m-ary tree. We then rank the leaf nodes of315

the m-ary tree according to their QW scores.

Graph Pruning For node v whose 1-hop size is greater than m, we use

graph pruning to select nodes from node 1-hop(v). As shown in Figure 4,

besides the vertex coloured green, we need to cut one node so that only m = 3

vertices are reserved. We cut nodes with smaller QW scores. In this way,320

14

the neighborhood subgraph consisting of exactly m vertices is extracted and

standardised as an m-ary tree. We then rank the leaf nodes of the m-ary tree

according to their QW scores.

Using graph grafting and graph pruning, we normalized the subgraph of

each node’s as an m-ary tree. The leaf nodes of each m-ary tree are further325

replaced by their own m-ary neighborhood trees. In this way, a K-level m-ary

tree is recursively constructed for each vertex. Algorithm 1 gives the steps of

the Mapping Graph to Tree algorithm.

Algorithm 1: Mapping Graph to Tree

Input: state matrix At, receptive field size m+ 1, the depth K

Output: normalized neighborhood graph (K-level m-ary tree) for each

vertex

1 initialization;

2 compute the QW score for each vertex according to Eq.6;

3 construct a m-ary tree with each vertex by the graph grafting and graph

pruning algorithm;

4 for i = 2, i ≤ K − 1 do

5 The leaf nodes of the i-level m-ary tree are further replaced by their

own neighborhood m-ary trees;

6 end

7 return K-level m-ary tree for each vertex;

4.2. Depth-based Subgraph Convolution Operator

In this section, we first list the notation used in the paper, in Table 1. We330

then present our depth-based subgraph convolution operator for the K-level m-

ary tree. Figure 1 shows an example of the complete process with K = 4 and

m = 3. In a manner similar to CNNs on images, our QS-CNNs also involves

convolution and pooling operations. Our depth-based subgraph convolution

operation extracts structural features on the tree. The extracted features are335

15

then summarized by a depth-based subgraph pooling operation. In this way,

our QS-CNNs allows effective structural feature learning.

Table 1: Important notations used in this paper and their descriptions.

Symbol Definition

node(s, t) the t-th node in level s

X l,p the p-th feature channel in layer l

X l,p
s,t the node (s, t)′ p-th feature channel in layer l

H l,p
s,t

H l,p
s,t = {X l,p

s,t , X
l,p

s+1,(t−1)m+1, ..., X
l,p
s+1,tm}

i.e. the p-th feature channel of node (s, t)′

receptive field in layer l + 1

W l,k,p
the filter mapping from the p-th feature channel in

layer l to the k-th feature channel

f the activation function

fl−1 the number of filters in layer l − 1

bl,k the bias of the k-th filter in layer l

⊙ element-wise multiplication

When CNNs are applied to images, a square grid is moved over each image

with a particular step size to extract structural features as the output of the

convolution. More precisely, a receptive field in the preceding layer becomes a340

neuron in the next layer after a convolution operation. In this way, the local

structural features of images are well captured by the convolution operation.

By generalizing CNNs to the K-level m-ary tree obtained in previous steps of

graph grafting and graph pruning, we scan a subgraph-based window along the

tree to extract structural features as the output of our convolution.345

The convolutional activation X l,k
s,t for node (s, t), feature k and layer l is

given by

X l,k
s,t = f(

fl−1∑

p=1

(

m+1∑

j=1

W l,k,p
j H l−1,p

s,t,j) + bl,k) s ≤ K − l + 1

16

The activation X l,k for k-th feature channel in layer l can be expressed more

concisely using tensor notation as

X l,k = f(

fl−1∑

p=1

(W l,k,p ⊙H l−1,p) + bl,k)

4.3. Depth-based Subgraph Pooling Operator

Another important operation proposed by CNNs is pooling. Reducing the

dimensionality of the input data allows the convolution filters to have a large

receptive field and at the same time decrease the number of parameters. One of

the most common methods for pooling graphs is by performing multi-scale clus-

tering of the grid and then performing a pooling operation over each extracted

cluster. Instead, our pooling operation acts directly on the output of the pre-

ceding layer without any kind of preprocessing scheme. The pooling activation

X l+1,k
s,t for node (s, t), feature k and layer l + 1 is given by

X l+1,k
s,t = f(W l+1,k · pool(H l,k

s,t) + bl+1,k)

A maximum pooling function poolmax can be found by taking the maximum

value over a region and an average pooling function poolave can be obtained by

taking the mean value over a region, thus

poolmax(Rk) = maxi∈Rk
ai

poolavg(Rk) =
1

|Rk|

∑

i∈Rk

ai

4.4. Applying QS-CNNs to Node Classification

For the purpose of node classification, each node can be represented by a

K-level m-ary tree constructed through Algorithm 1. After multiple layers of350

applying the depth-based subgraph convolution and pooling operations, mul-

tiple features which carry different structural information constitute the final

representation XN of the input node. Then, the final node representation XN

is passed to a fully connected layer and outputs a conditional probability distri-

bution P(Y |X), which can be obtained by applying the softmax function. This355

process can be formulated as below:

17

1

2

w
3

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

conv1 pool1
. . .

conv n .
.

.

.

.

.

Y

FC

Figure 5: Illustration of the proposed QS-CNNs model for graph classification.

P(Y |X) = softmax(f(W d ⊙XN))

4.5. Applying QS-CNNs to Graph Classification

For the graph classification task, we encapsulate a graph by the information

conveyed by a set of selected nodes. This potentially allows us to make predic-

tions concerning the features of these nodes. We use a node sequence selection360

algorithm to select a sequence (V) of important nodes. Algorithm 2 illustrates

the Node Sequence Selection steps. First, we sort the nodes of the input graph

into descending order according to their QW scores. Second, we select the first

W nodes to represent the graph and create a null entry for the node sequence

if the number of nodes is smaller than W .365

The resulting node sequence is traversed and each visited node is represented

by a K-level m-ary tree constructed through the algorithm above if the node

value is not 0. Otherwise, we represent the node with a K-level m-ary tree, with

all node values set to zero. After multiple depth-based subgraph convolution

and pooling operations simultaneously have acted on these K-level m-ary trees,

we obtain the feature map XG of the graph. The architecture is completed

by a dense layer that connects XG to predict Y . A conditional probability

18

Algorithm 2: Node Sequence Selection

Input: QW scores for all nodes, width W

Output: selected node sequence V

1 initialization;

2 sort (descend) the nodes of the input graph using the given QW scores to

get Vsort;

3 if |Vsort| >=W then

4 V = the first W elements of Vsort

5 else

6 V = Vsort and W − |Vsort| dummy nodes

7 end

8 return selected node sequence V ;

distribution P(Y |X) can be obtained by applying the softmax function:

P(Y |X) = softmax(f(W d ⊙XG))

A generic illustration of the proposed QS-CNNs architecture for graph clas-

sification is shown in Figure. 5. It is important to note that our depth-based

convolutional representation for the graph is invariant with respect to the per-

mutation of node index (rather than the node position). This means that the

activations of two isomorphic input graphs will be the same. We prove it as370

follows.

Theorem 1. The depth-based convolutional activations of two isomorphic input

graphs will be the same.

Proof. We prove this theorem by contradiction.

Assume two graphs G1 and G2 are isomorphic but their depth-based convolu-

tional activations are different. At least a pair of nodes u,w, where u, v belongs

to the resulting node sequence of graph G1 and G2 respectively and will have

the same position in the resulting node sequence. The activations of u and v

in layer l are different. The depth-based convolutional activations of two nodes

19

can be written as

X l,k
u = f(

fl−1∑

p=1

(W l,k,p
u ⊙H l−1,p

u) + bl,ku)

X l,k
v = f(

fl−1∑

p=1

(W l,k,p
v ⊙H l−1,p

v) + bl,kv)

Note that

W l,k,p
u =W l,k,p

v =W l,k,p

bl,ku = bl,kv = bl,k

Graphs that are isomorphic (the same except for vertex labels) become identical

after canonical graph labeling, so

H l−1,p
u = H l−1,p

v = H l−1,p

by isomorphism, allowing us to rewrite the activation as

X l,k
u = f(

fl−1∑

p=1

(W l,k,p ⊙H l−1,p) + bl,k)

X l,k
v = f(

fl−1∑

p=1

(W l,k,p ⊙H l−1,p) + bl,k)

Which implies that X l,k
u = X l,k

v and presents a contradiction and completes the

proof.375

4.6. Learning Filters

We assume that each convolution layer l is followed by a pooling layer l+1.

According to the back propagation algorithm, in order to compute the sensitivity

for a unit at layer l, we should first sum over the sensitivities of the next layer

corresponding to units that are connected to the node of interest in the current

layer l. We multiply each of these connections by the associated weights defined

at layer l+1. We then multiply this quantity by the derivative of the activation

function evaluated at the pre-activation inputs of the current layer Z. In the case

of a convolutional layer followed by a pooling layer, we can upsample the pooling

20

layers sensitivity map δl+1,k to make it the same size as the convolutional layer

map. Then we perform elementwise multiplication of the upsampled sensitivity

map from layer l+1 with the activation derivative map at layer l. The ‘weights’

defined at a pooling layer map are all equal to W l,k, snd so we simply scale the

previous step result by W l,k to complete the computation of δl,k. So we can

get:

δl,k ,
∂E

∂Zl,k

δl,k =
∂E

∂Zl+1,k
·
∂Zl+1,k

∂X1,k
·
∂X l,k

∂Z1,k

δl,k = f ′(Zl)⊙ (up(W l+1,kδl+1,k))

δl,k =W l+1,k(f ′(Zl)⊙ up(δl+1,k))

where up is the Upsampling function and E is the loss energy. Finally, the

gradients for the kernel weights are computed using back propagation:

∂E

∂W l,k,p
=

∑

i,j

(δl,k)i,j(P
l−1,p)i,j

where (P l−1,p)i,j is the patch in X l−1,p that was multiplied element-wise by

W l,k,p during convolution. we can compute the bias gradient by simply summing

over all the entries in δl,k :

∂E

∂bl,k
=

∑

i,j

(δl,k)i,j

5. Experiments and Comparisons

In this section, we experimentally investigate the merits and limitations of

the proposed QS-CNNs model, including its computational complexity and pa-

rameter determination. A comprehensive experimental study on a variety of380

data sets is conducted in order to compare our proposed model QS-CNNs with

several state-of-art methods for node classification and graph classification tasks.

In this section, we denote a graph convolution layer with k feature maps by Ck

and a fully connected layer with k hidden units by FCk. In addition, lr stands

for the learning rate, L2 denotes the L2 regularization parameter and dropout385

denotes the drop out rate.

21

5.1. Node Classification

To demonstrate the effectiveness of the proposed approach on the node clas-

sification task, we conduct experiments on two citation network datasets and

one data set arising from e-mail communications in a social network. These390

are respectively the Cora, Pubmed datasets [25] and the Email-Eu dataset [26].

Each citation dataset consists of scientific papers (represented by nodes), cita-

tion links (represented by edges), and topics or subjects (represented by labels).

Table. 2 summarizes the coverage and properties of the three data sets. For

node classification, six alternative algorithms are selected as baseline compara-395

tors. We briefly describe these methods in turn.

Table 2: Dataset statistics of node classification task.

Dataset Type Nodes Edges Classes Features

Cora Citation network 2,708 5,429 7 1433

Pubmed Citation network 19,717 44,338 3 500

Email-Eu Communication network 1005 25,571 42 -

Datasets The Cora dataset [25] contains 2,708 machine learning articles cat-

egorized into seven possible machine learning subject or topic classes. Each

article is represented by a binary 0/1-valued word vector where each feature400

corresponds to the presence or absence of a term drawn from a dictionary. The

dictionary contains 1,433 unique entries. This graph contains 5,429 citation

edges. We treat the citation links as undirected edges and construct a binary,

symmetric adjacency matrix.

The Pubmed dataset [25] consists of 19,717 scientific papers from the Pubmed405

database on the subject of diabetes. Each paper is classified into one of three

classes. This citation network that links the papers consists of 44,338 links.

Each paper is represented by a Term Frequency Inverse Document Frequency

(TFIDF) vector drawn from a dictionary with 500 terms. As with the CORA

corpus, we construct an adjacency-based QS-CNNs that treats the citation net-410

22

work as an undirected graph.

The Email-Eu dataset [26] was generated using email data from a large Eu-

ropean research institution. There is an edge (u, v) in the network if person

u sent person v at least one email. The e-mails only represent communication

between institution members. The dataset also contains ”ground-truth” com-415

munity memberships of the nodes. Each individual belongs to exactly one of 42

departments at the research institute. Note that the vertices of the Email-Eu-

Core have no vertex information, so we only take the structural information of

the vertices as the input.

420

Baseline MethodsWe compare our proposed method QS-CNNs with six state-

of-the-art methods for node classification. The methods used for comparisons

are (1) ℓ1-regularized logistic regression (l1logistic), (2) ℓ2-regularized logistic

regression (l2logistic), (3) exponential diffusion kernels-on-graphs (KED) [25],

(4) Laplacian exponential diffusion kernels-on-graphs (KlED) [25], (5) diffusion425

convolutional neural networks (DCNNs) [10], (6) GraphSAGE [27]. For the

‘l1logistic’ and ‘l2logistic’ methods, we use node features alone as the input for

logistic regression. This means that graph structure information is not consid-

ered, and the regularization parameter is fine tuned by the validation set. For

‘KED’ and ‘KlED’ , we take the graph structure as input, which means that node430

feature information is not considered. Similar to previous work [10], we chose

parameters for various baseline methods as follows: a) the penalty for l1logistic

and l2logistic is chosen from the set {10−4, 10−3, ..., 103, 104}, b) the parameter

α for ‘KED’ and ‘KlED’ is chosen from the set {10−6, 10−5, ..., 102}, c) the pa-

rameter H = 2 is used for DCNNs because it results in the best classification435

accuracy, d) GraphSAGE provides a variety of alternative approaches for ag-

gregating features within a sampled neighborhood, and we choose GraphSAGE-

mean because it almost always results in the best accuracy. For each baseline

method, we report the results for the parameters which give the best classifica-

tion accuracy.440

23

Table 3: The details of some parameters for node classification.

Dataset Layer2 Layer3 FC layer lr L2 dropout

Cora C32 C32 FC64 10−6 10−2 0.3

Pubmed C32 C64 FC32 10−6 10−2 0.8

Email-Eu C32 C32 FC64 10−4 10−2 0.8

Experimental Set-up For all datasets, we standardize each node as a 3 level

3-ary tree. We train a five-layer QS-CNNs, where the first layer is the input

layer, the second and third layers are the convolutional layer, the fourth layer

is the fully-connected layer, and the final layer is the output layer. We use445

the Adam optimization algorithm [28] for gradient descent. All weights are

randomly initialized from a normal distribution with mean zero and variance

0.01. We choose ReLU as the activation function. This model was implemented

in Python using tensorflow [29]. A 10-fold cross-validation strategy is employed

to evaluate the classification performance. Specifically, the entire sample is450

randomly partitioned into 10 subsets and then we choose one subset for test

and use the remaining 9 for training, and this procedure is repeated 10 times.

The final accuracy is computed by averaging the accuracies from each of the

random subsets.

Network Configuration For node classification, our QS-CNNs has 3 para-455

metric layers. Its configuration for different datasets are as follows: a) for Cora:

C32−C32−FC64, 10
−6 (learning rate), 10−2 (L2 regularization) and 0.3 (dropout

rate); b) for Pubmed: C32 − C64 − FC32, 10
−6 (learning rate), 10−2 (L2 reg-

ularization) and 0.8 (dropout rate); and c) for Email-Eu: C32 − C32 − FC64,

10−4 (learning rate), 10−2 (L2 regularization) and 0.8 (dropout rate). These460

properties can be found in Table 3.

Results Discussion Table. 4 reports the average classification accuracy of the

different algorithms on node classification. The boldfaced values are the best

result in each row. Our proposed five-layer QS-CNNs outperforms each of the465

24

Table 4: Study of node classification: classification accuracy (in MEAN± STD). A comparison

of the performance between six baseline methods and our proposed QS-CNNs on three node

classification datasets. The QS-CNNs offers the best performance. - means the model is not

suitable for the data set.

Model Cora Pubmed Email-Eu

l1logistic 71.63 ± 0.71 87.68 ± 0.89 -

l2logistic 71.81 ± 0.69 86.54 ± 0.93 -

KED 81.92 ± 0.91 83.15 ± 0.64 70.28 ± 0.87

KlED 83.27 ± 0.76 84.11 ± 0.77 71.54 ± 0.81

DCNN 82.52 ± 2.11 88.57 ± 1.34 -

GraphSAGE 82.68 ± 1.83 88.41 ± 1.25 73.59 ± 1.72

DS-CNNs 84.72 ± 2.28 89.63 ±1.67 76.61 ± 2.33

QS-CNNs 85.95 ± 1.58 89.63 ±1.67 77.63 ±1.94

Figure 6: Impact of the receptive field size and the depth of the m-ary tree on performance

for node classification

25

competing methods for all datasets studied and the improvement is in the range

from 2.68% to 14.32% on the Cora dataset, from 1.06% to 6.48% on the Pubmed

dataset and from 4.04% to 7.35% on the Email-Eu dataset respectively. On the

Cora dataset, l1logistic and l2logistic give the worst performance. This may

be explained by the fact that the logistic regression models only take the node470

features as input and neglect graph structure information. KED and KLED

both take graph structure as input (e.g. node features are not used) and show

inferior performance to our QS-CNNs. This indicates that our QS-CNNs is able

to extract graph structure features. On the Pubmed dataset, we observed that

those methods which incorporate node features outperform those methods that475

do not, i.e., l1logistic and l2logistic are superior to both KED and KLED in

terms of accuracy. Furthermore, our QS-CNNs still maintains the best classi-

fication accuracy. Our QS-CNNs outperforms GraphSAGE-mean (taking the

elementwise mean value of feature vectors) suggesting that assigning different

weights to different nodes within a subgraph while dealing with differently sized480

neighbourhoods may be beneficial. Based on these results, it is demonstrated

that our proposed method QS-CNNs integrates the merits of using both the

global topological and local connectivity structures within a graph. Thus, it

performs better than the traditional methods.

To investigate the effect of different receptive field size ofm+1 and the depth485

K of the m-ary tree on the node classification performance of our proposed

method QS-CNNs, we test several values of m + 1 and K. We report the

results in Figure 6, in which we plot the classification accuracies of our QS-

CNNs method versus m + 1 and K respectively. The different coloured lines

represent the results on the different datasets. The classification accuracies tend490

to increase with increasing values of m+ 1 and K. This is because the greater

the values of m + 1 and K, the more global topological and local connectivity

information can be captured using our QS-CNNs method.

26

5.2. Graph Classification

To demonstrate the effectiveness of the proposed approach on graph classi-495

fication, we conduct experiments on five benchmark data sets abstracted from

bioinformatics databases, i.e., a) MUTAG [30], b) PTC [31], c) NCI1 [32], d)

D&D [33], and e) PROTEINS [34]. Information concerning the properties of

these datasets is listed below and summarized in Table. 5. For graph classi-

fication, eight alternative algorithms are selected as baselines. We will briefly500

detail these methods in turn.

Table 5: Dataset statistics for graph classification task.

Dataset Size Classes Avg.nodes Labels

NCI1 4110 2 29.8 37

MUTAG 188 2 17.9 7

PTC 344 2 25.5 19

D&D 1178 2 284.32 89

PROTEINS 1113 2 39.1 3

Datasets The NCI1 [32] dataset made publicly available by the National Cancer

Institute (NCI) is a subset of balanced datasets of chemical compounds screened

for the ability to suppress or inhibit the growth of tumours. It consists of 4100505

graphs that represent chemical compounds and each node is assigned one of

37 possible labels. MUTAG [30] is a data set of 188 nitro compounds where

the class label is as either aromatic or heteroaromatic with seven node features.

PTC [31] comprises 344 compounds where the class label indicates whether they

are carcinogenic or not in rats with 19 node features. D&D is a data set of 1178510

protein structures obtained from [33], classified into enzymes and non-enzymes.

Each protein is represented as a graph whose nodes correspond to amino acids

and two nodes are linked by an edge if they are less than 6 Ångstroms apart.

PROTEINS is a dataset obtained from [34] where these nodes are secondary

structure elements and there is an edge between two nodes if they are neigh-515

27

bours in the amino-acid sequence or in 3D space. It has 3 discrete labels, which

represent helix, sheet or turn.

Baseline Methods We compare our proposed method QS-CNNs with eight

state-of-the-art methods for graph classification. These methods are used for520

comparisons are (1) the Weisfeiler-Lehman subtree kernel (WL) [35], (2) the

random walk kernel (RW) [36], (3) the shortest-path kernel (SP) [37], (4) the

graphlet count kernel (GK) [38], (5) the PATCHY-SAN method which combin-

ing receptive fields for nodes and edges using a merge layer k = 10E (PSCN-

10E) [7], (6) p-step random-walk kernel (p-RW) [39], (7) Ramon-Gärtner kernels525

(RG) [40], (8) FGSD[41]. In accordance with established [42], the decay fac-

tor for random-walk is chosen from {10−6, 10−5, . . . , 10−1}, the p value in the

p-step random-walk kernel is chosen from {1, 2, . . . , 10}, the height parameter

in Ramon-Gärtner subtree kernel is chosen from {1, 2, 3}. For each kernel, we

report the results for the parameters which give the best classification accuracy.530

For Weisfeiler-Lehman subtree kernel, we set the height parameter h = 2 for it

could increase the feature space exponentially. For the graphlet kernel, we set

the size of the graphlets k to 7 since it could exhibit the sparsity problem. We

set the parameter k = 10E for PSCN becasue a receptive size of 10 results in

the best classification accuracy and the result is quoted from [7]. For FGSD,535

the parameters are set the same as [41].

Experimental Set-up For the NCI1 dataset, we set width W=25 (W rep-

resents the number of selected nodes from each graph), and standardize each

vertex as a 3 level 9-ary tree. We train a six-layer QS-CNNs, where the first540

layer is the input layer, the second, third and fourth layers are the convolu-

tional layer, the fifth layer is the fully-connected layer, and the final layer is the

output layer. For the remaining datasets, we set the width W=15, and again

standardize each vertex as a 3 level 9-ary tree, but instead, we train a five-layer

QS-CNNs, where the second and third layers are the convolutional layer, the545

fourth layer is the fully-connected layer. We again use the Adam optimization

28

Table 6: The details of some parameters for graph classification.

Dataset Layer2 Layer3 Layer4 FC lr L2 dropout

NCI1 C32 C32 C64 FC32 5 · 10−3 10−2 0.8

MUTAG C32 C32 - FC64 10−2 10−2 1

PTC C32 C32 - FC64 10−2 10−2 1

D&D C32 C32 - FC64 10−2 10−2 1

PORTEINS C32 C32 - FC64 10−2 10−2 1

Table 7: Study of graph classification: classification accuracy (in MEAN ± STD). A compar-

ison of the performance between eight baseline methods and our proposed QS-CNNs on five

graph classification datasets. The last column shows the averaged classification accuracy of

all the algorithms over the five datasets. The QS-CNNs offers the best performance.
Algorithm NCI1 MUTAG PTC PROTEIN D&D AVG

WL 80.22 ± 0.51 80.71 ± 0.31 56.77 ± 2.11 72.92 ± 0.56 77.95 ± 0.7 73.71 ± 0.84

RW >72h 83.73 ± 1.51 57.85 ± 1.30 74.22 ± 0.42 >72h -

SP 73.00± 0.24 85.22 ± 2.43 58.24 ± 2.44 75.07 ± 0.54 >72h -

GK 62.28 ± 0.29 81.66 ± 2.11 57.26 ± 1.41 71.67 ± 0.55 78.45 ± 0.26 70.26 ± 0.92

p-RW >72h 80.05 ± 1.64 59.38 ± 1.66 71.16 ± 0.35 >72h -

RG 56.61 ± 0.53 84.88 ± 1.86 59.47 ± 1.66 70.73 ± 0.35 >72h -

PSCN-10E 78.59 ± 1.89 92.63 ± 4.21 60.00 ± 4.82 75.89 ± 2.76 77.12 ± 2.41 76.85 ± 3.22

FGSD 79.80 ± 2.36 92.12 ± 3.98 62.80 ± 4.07 73.42 ± 3.42 77.10 ± 2.78 76.46 ± 3.25

DS-CNNs 80.12 ± 2.87 92.87 ± 4.81 64.67 ± 5.00 78.35 ± 4.00 79.22 ± 4.06 79.05 ± 4.15

QS-CNNs 81.43 ± 2.56 93.13 ± 4.67 65.99 ± 4.43 78.80 ± 4.63 81.41 ± 3.46 80.15 ± 3.95

algorithm [28] for gradient descent. The initial values of weights, the type of

activation function and the implementation environment are set in the same

manner as for node classification. We again adopt a 10-fold cross-validation

strategy as described above.550

Network Configuration For graph classification, we used the following sets of

hyperparameters a) for MUTAG, PTC, D&D and PORTEINS: C32−C32−FC64,

10−2 (learning rate), 10−2 (L2 regularization) and 1 (dropout rate); b) for NCI1:

C32 − C32 − C64 − FC32, 5 · 10
−3 (learning rate), 10−2 (L2 regularization) and555

0.8 (dropout rate). These properties can be found in Table 6.

Discussion of Results The classification accuracies obtained with the different

29

Figure 7: Impact of the receptive field size and the depth of the m-ary tree on the performance

for graph classification

methods are shown in Table 7, in which the boldfaced values again indicate the

best result in each row. Again, we observe that our proposed method QS-CNNs560

outperforms the alternative for all five datasets. The last column of Table.

7 shows the averaged classification accuracy over all the algorithms tested for

the five datasets. Note that, some kernels cannot complete the kernel matrix

computation on some of the datasets. For these kernels, we perform the sta-

tistical analysis on those datasets on which the computation can be completed.565

Our method has improved the classification accuracy by 6.44% (WL), 9.89%

(GK), 3.3% (PSCN-10E) and 3.69% (FGSD) respectively, compared to the av-

eraged classification of all competing methods over the five datasets. Moreover,

our QS-CNNs performs better than the PSCN-10E algorithm, although they

are both have a CNN architecture. The main reason is that the PSCN-10E570

[7] uses node ordering step which converts graphs locally to a regular 1D grid

hence discarding a large amount of the structural information residing in the

graphs. Our proposed QS-CNNs is fundamentally different from most existing

graph CNNs framework, where each vertex has K-layer expansion subgraphs,

and hence structural information can be learned effectively and efficiently by575

subgraph convolution. Thus, it is capable of revealing both the global topolog-

ical and local connectivity structures for a graph. The relatively high standard

deviations can be explained by the small size of the benchmark datasets and the

30

fact that we normalize each node neighbourhood as the same 3 level 9-ary tree

for different datasets. Finally, as with node classification, we evaluate how the580

graph classification accuracies vary with increasing receptive field size of m+ 1

and the depth K of the m-ary tree. Figure 7 gives the classification results.

The results show that with increasing m+ 1 and K, the classification accuracy

first increases to a maximum value (i.e., at m+1 = 4 and K = 3) and then de-

creases slightly, finally reaching a steady state. This observation further verifies585

the effectiveness of our proposed method QS-CNNs which integrates both global

topological arrangement information and local connectivity properties within a

graph to conduct graph convolution.

5.3. The Effect of Quantum Walks

Finally, in order to study the contribution of quantum walks in terms of its590

impact on final classification accuracy, we ran experiments by replacing quantum

walks with random walk (referred to as DS-CNNs) and keep the pruning and

grafting trick. The results are shown in Table. 4 and Table. 7. As can be

observed, QS-CNNs is superior to DS-CNNs in terms of accuracy values for all

datasets studied. Meanwhile, QS-CNNs gives a lower standard deviation and595

hence more stable than the DS-CNNs. It is demonstrated that quantum walks

can identify local neighbor structure of nodes more effectively and efficiently.

6. Conclusions and Future Work

In this paper, we have shown how to construct quantum-based subgraph

convolution network for a graph. The convolution process makes use of both600

the global topological arrangement information and local connectivity struc-

tures within a graph. Experimental results on node classification and graph

classification show our QS-CNNs is superior to a number of baseline methods.

Our future plans are to extend the work in a number of ways. First, in prior

work, we have developed methods for characterizing graphs using the commute605

time [23] and the heat kernel [43]. For an undirected graph, both of these

31

methods encapsulate the path length distribution between vertices. It would be

interesting to use the commute time or heat kernel as a means of node ordering.

Second, the current formulations of graph convolution are restricted to use ver-

tex information and do not make use of edge labels. It would be interesting to610

design convolution operation which simultaneously learns properties from both

graph vertices and edges. Finally, in [44], Brabandere et al. proposed dynamic

filter networks, to define a subnetwork, taking the preceding feature maps as

input and generating data-adaptive convolutional filters that can be applied to

the preceding feature maps. It would be interesting to use such a subnetwork615

to determine the local filters dynamically for each specific input subgraph. This

may provide a more meaningful interpretation concerning the graph structure

by the means of filter generating networks.

Acknowledgment

This work is supported by National Natural Science Foundation of China620

(Grant Nos.61402389, 61503422 and 11401499), the Natural Science Founda-

tion of Fujian Province of China (Grant No.2015J05016) and the Fundamental

Research Funds for the Central Universities in China (no. 20720160073).

References

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst,625

Geometric learning: going beyond euclidean data, arXiv preprint

arXiv:1611.08097.

[2] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-

plied to document recognition, Proceedings of the IEEE 86 (11) (1998)

2278–2324.630

[3] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)

436–444.

32

[4] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally

connected networks on graphs, arXiv preprint arXiv:1312.6203.

[5] O. Rippel, J. Snoek, R. P. Adams, Spectral representations for convolu-635

tional neural networks, in: Advances in Neural Information Processing

Systems, 2015, pp. 2449–2457.

[6] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-

structured data, arXiv preprint arXiv:1506.05163.

[7] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural net-640

works for graphs, in: Proceedings of The 33rd International Conference on

Machine Learning, 2016, pp. 2014–2023.

[8] J.-C. Vialatte, V. Gripon, G. Mercier, Generalizing the convolution opera-

tor to extend cnns to irregular domains, arXiv preprint arXiv:1606.01166.

[9] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,645

A. Aspuru-Guzik, R. P. Adams, Convolutional networks on graphs for

learning molecular fingerprints, in: Advances in neural information pro-

cessing systems, 2015, pp. 2224–2232.

[10] J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in: Ad-

vances in Neural Information Processing Systems, 2016, pp. 1993–2001.650

[11] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural net-

works on graphs with fast localized spectral filtering, in: Advances in Neu-

ral Information Processing Systems, 2016, pp. 3837–3845.

[12] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolu-

tional networks, arXiv preprint arXiv:1609.02907.655

[13] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The

emerging field of signal processing on graphs: Extending high-dimensional

data analysis to networks and other irregular domains, IEEE Signal Pro-

cessing Magazine 30 (3) (2013) 83–98.

33

[14] D. Emms, R. C. Wilson, E. R. Hancock, Graph matching using the in-660

terference of continuous-time quantum walks, Pattern Recognition 42 (5)

(2009) 985–1002.

[15] F. Zhang, E. R. Hancock, Graph spectral image smoothing using the heat

kernel, Pattern Recognition 41 (11) (2008) 3328–3342.

[16] L. Bai, L. Rossi, A. Torsello, E. R. Hancock, A quantum jensen–shannon665

graph kernel for unattributed graphs, Pattern Recognition 48 (2) (2015)

344–355.

[17] J. Wang, R. C. Wilson, E. R. Hancock, Spin statistics, partition functions

and network entropy, Journal of Complex Networks 5 (6) (2017) 858–883.

[18] Y.-L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling670

in visual recognition, in: Proceedings of the 27th international conference

on machine learning, 2010, pp. 111–118.

[19] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review

and new perspectives, IEEE transactions on pattern analysis and machine

intelligence 35 (8) (2013) 1798–1828.675

[20] L. Rossi, A. Torsello, E. R. Hancock, Measuring graph similarity through

continuous-time quantum walks and the quantum jensen-shannon diver-

gence, Physical Review E 91 (2) (2015) 022815.

[21] S. L. Braunstein, S. Ghosh, S. Severini, The laplacian of a graph as a

density matrix: a basic combinatorial approach to separability of mixed680

states, Annals of Combinatorics 10 (3) (2006) 291–317.

[22] F. Passerini, S. Severini, Quantifying complexity in networks: the von neu-

mann entropy, International Journal of Agent Technologies and Systems

(IJATS) 1 (4) (2009) 58–67.

[23] H. Qiu, E. R. Hancock, Clustering and embedding using commute times,685

IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (11).

34

[24] J. Kempe, Quantum random walks hit exponentially faster, arXiv preprint

quant-ph/0205083.

[25] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad,

Collective classification in network data, AI magazine 29 (3) (2008) 93.690

[26] H. Yin, A. R. Benson, J. Leskovec, D. F. Gleich, Local higher-order graph

clustering, in: Proceedings of the 23rd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 555–

564.

[27] W. L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning695

on large graphs, in: Neural Information Processing Systems (NIPS), 2017.

[28] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale700

machine learning on heterogeneous distributed systems, arXiv preprint

arXiv:1603.04467.

[30] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,

C. Hansch, Structure-activity relationship of mutagenic aromatic and het-

eroaromatic nitro compounds. correlation with molecular orbital energies705

and hydrophobicity, Journal of medicinal chemistry 34 (2) (1991) 786–797.

[31] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, C. Helma, Statistical

evaluation of the predictive toxicology challenge 2000–2001, Bioinformatics

19 (10) (2003) 1183–1193.

[32] N. Wale, I. A. Watson, G. Karypis, Comparison of descriptor spaces for710

chemical compound retrieval and classification, Knowledge and Information

Systems 14 (3) (2008) 347–375.

35

[33] P. D. Dobson, A. J. Doig, Distinguishing enzyme structures from non-

enzymes without alignments, Journal of molecular biology 330 (4) (2003)

771–783.715

[34] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola,

H.-P. Kriegel, Protein function prediction via graph kernels, Bioinformatics

21 (suppl 1) (2005) i47–i56.

[35] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, K. M.

Borgwardt, Weisfeiler-lehman graph kernels, Journal of Machine Learning720

Research 12 (Sep) (2011) 2539–2561.

[36] T. Gärtner, P. Flach, S. Wrobel, On graph kernels: Hardness results and

efficient alternatives, in: In Proceedings of the 16th Annual Conference on

Learning Theory and Kernel Machines, Springer, 2003, pp. 129–143.

[37] K. M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in: In725

Proceedings of the 15th IEEE International Conference on Data Mining,

IEEE, 2005, pp. 74–81.

[38] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, K. Borgwardt,

Efficient graphlet kernels for large graph comparison, in: Artificial Intelli-

gence and Statistics, 2009, pp. 488–495.730

[39] A. J. Smola, R. Kondor, Kernels and regularization on graphs, in: Learning

theory and kernel machines, Springer, 2003, pp. 144–158.

[40] J. Ramon, T. Gärtner, Expressivity versus efficiency of graph kernels, in:

Proceedings of the first international workshop on mining graphs, trees and

sequences, 2003, pp. 65–74.735

[41] S. Verma, Z.-L. Zhang, Hunt for the unique, stable, sparse and fast feature

learning on graphs, in: Advances in Neural Information Processing Systems

30, 2017, pp. 87–97.

36

[42] P. Yanardag, S. Vishwanathan, Deep graph kernels, in: Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and740

Data Mining, ACM, 2015, pp. 1365–1374.

[43] B. Xiao, E. R. Hancock, R. C. Wilson, Graph characteristics from the heat

kernel trace, Pattern Recognition 42 (11) (2009) 2589–2606.

[44] B. De Brabandere, X. Jia, T. Tuytelaars, L. Van Gool, Dynamic filter

networks, in: Neural Information Processing Systems (NIPS), 2016.745

37

Zhihong Zhang received his BSc degree (1st class Hons.) in computer

science from the University of Ulster, UK, in 2009 and the PhD degree in

computer science from the University of York, UK, in 2013. He won the K.

M. Stott prize for best thesis from the University of York in 2013. He is

now an associate professor at the software school of Xiamen University,

China. His research interests are wide-reaching but mainly involve the

areas of pattern recognition and machine learning, particularly problems

involving graphs and networks.

Dongdong Chen is now a master student at the software school of

Xiamen University, China. His research interests include data mining,

machine learning, and network representation learning.

Jianjia Wang received the B.Sc. degree from Nanjing University of Posts

and Telecommunications (2011) and M.Sc. degrees from Hong Kong

University of Science and Technology (2013). He worked as a research

assistant at Hong Kong Applied Science and Technology Research

Institute from 2013 to 2014. He is currently pursuing the Ph.D. degree in

the Department of Computer Science, University of York, U.K. His

research interests include statistical pattern recognition, complex

networks, information theory, thermodynamic and quantum statistics,

especially in graph and network analysis.

Lu Bai received the Ph.D. degree from the University of York, York, UK,

and both the B.Sc. and M.Sc degrees from Faculty of Information

Technology, Macau University of Science and Technology, Macau SAR, P.R.

China. He is now a Associate Professor in School of Information, Central

University of Finance and Economics, Beijing, China. His current research

interests include structural pattern recognition, machine learning,

quantum walks on networks and graph matching, especially in kernel

methods and complexity analysis on (hyper)graphs and networks.

Edwin R. Hancock holds a BSc degree in physics (1977), a PhD degree in

high-energy physics (1981) and a D.Sc. degree (2008) from the University

of Durham, and a doctorate Honoris Causa from the University of

Alicante in 2015. From 1981-1991 he worked as a researcher in the fields

of high-energy nuclear physics and pattern recognition at the

Rutherford-Appleton Laboratory (now the Central Research Laboratory

of the Research Councils). During this period, he worked on high energy

physics experiments at the Stanford Linear Accelarator Center (SLAC)

*Author Biography

providing the first measurements of charmed particle lifetimes. He also

held adjunct teaching posts at the University of Surrey and the Open

University. In 1991, he moved to the University of York as a lecturer in

the Department of Computer Science, where he has held a chair in

Computer Vision since 1998. He leads a group of some 25 faculty,

research staff, and PhD students working in the areas of computer vision

and pattern recognition. His main research interests are in the use of

optimization and probabilistic methods for high and intermediate level

vision. He is also interested in the methodology of structural and

statistical and pattern recognition. He is currently working on graph

matching, shape-from-X, image databases, and statistical learning theory.

His work has found applications in areas such as radar terrain analysis,

seismic section analysis, remote sensing, and medical imaging. He has

published about 170 journal papers and 610 refereed conference

publications. He was awarded the Pattern Recognition Society medal in

1991 and an outstanding paper award in 1997 by the journal Pattern

Recognition. He has also received best paper prizes at CAIP 2001, ACCV

2002, ICPR 2006, BMVC 2007 and ICIAP in 2009 and 2015. In 2009 he

was awarded a Royal Society Wolfson Research Merit Award. In 1998, he

became a fellow of the International Association for Pattern Recognition.

He is also a fellow of the Institute of Physics, the Institute of Engineering

and Technology, and the British Computer Society. In 2016 he became a

fellow of the IEEE and was named Distinguished Fellow by the British

Machine Vision Association. He is currently Editor-in-Chief of the journal

Pattern Recognition, and was founding Editor-in-Chief of IET Computer

Vision from 2006 until 2012. He has also been a member of the

editorial boards of the journals IEEE Transactions on Pattern Analysis and

Machine Intelligence, Pattern Recognition, Computer Vision and Image

Understanding, Image and Vision Computing, and the International

Journal of Complex Networks. He has been Conference Chair for BMVC

in 1994 and Progrmme Chair in 2016, Track Chair for ICPR in 2004 and

2016 and Area Chair at ECCV 2006 and CVPR in 2008 and 2014, and in

1997 established the EMMCVPR workshop series. He has been a

Governing Board Member of the IAPR since 2006, and is currently Vice

President of the Association.

