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Abstract

This paper examines a dynamic incumbent-entrant framework with stochastic evolution of the (in-

verse) demand, in which both the optimal timing of the investments and the capacity choices are explicitly

considered. We find that the incumbent invests earlier than the entrant and that entry deterrence is

achieved through timing rather than through overinvestment. This is because the incumbent invests

earlier and in a smaller amount compared to a scenario without potential entry. If, on the other hand,

the size of the investment is exogenously given, the investment order changes and the entrant invests

before the incumbent does.

Keywords: Game Theory, Incumbent/Entrant, Capacity choice, Investment under Uncertainty, Real-

Option Games

JEL classification: C73, D92, L13

1 Introduction

Starting with the seminal paper by Spence (1977) the choice of production capacity as an instrument for

entry deterrence has been extensively studied in the literature. In a standard two-stage set-up, where the

incumbent chooses its capacity before the potential competitor decides about entry, entry deterrence is
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achieved by the incumbent through overinvestment and leads to absence of the competitor from the market.

After installing a sufficiently large capacity by the incumbent, the potential entrant finds the market not

profitable enough to undertake an investment. In a dynamic setting, where the demand evolves over time

(with a positive trend), however, it cannot be expected that potential entrants are perpetually deterred from

the market. Hence, the question arises how the investment behavior of the incumbent is affected by the

threat of entry in such a setting.

This paper considers a dynamic model where both an incumbent and an entrant have the option to acquire

once some (additional) production capacity. Both firms are free to choose the size of their installment, which

is assumed to be irreversible and is fully used in the market competition. A situation, where some firms

become active on an established market after incumbents have already invested, could arise, e.g., when these

firms are new entrepreneurs, when firms did not have sufficient funds during the earlier stages, or when the

market was not open to competition in the first place.

As a first result, we find that under general conditions the incumbent is most eager to undertake the

investment first. In this way the incumbent accomplishes that it delays the investment of the entrant and

it extends its monopoly period. The entrant reacts by waiting with investment until demand has become

sufficiently large.

A second important result is that entry deterrence is not achieved via overinvestment, but via timing.

The threat of entry makes the incumbent invest sooner in order to precede investment of the entrant. Since

the incumbent’s investment increases the quantity on the market, the output price is reduced, which in turn

reduces the profitability of entering this market, and thus delays entry. Furthermore, whereas explained in,

e.g., Tirole (1988, p. 315), the monopolist sets a smaller capacity than a (potential) duopolist facing a threat

of entry, we find the opposite result. Since the incumbent invests early, i.e. in a market with a still relatively

small demand, it pursues a small capacity expansion. In the absence of an entry threat the monopolist would

wait for a market with a higher demand and invest in a larger capacity. In other words, when deterring

entry, timing is of greater importance than overinvesting.

A crucial aspect of these results is that the size of the investment is flexible. Considering a variant of

our model in which investment sizes are fixed, the incumbent no longer has the possibility to undertake a

small investment in a small market in order to preempt the entrant. Interestingly, we find that in such a

setting the investment order is reversed; the entrant undertakes an investment first. The reason is that in

this situation, where the investment size and thus investment costs are equal, the entrant, which does not

suffer from cannibalization, has a larger incentive to invest. Being able to choose the investment size is thus

of key importance for making preemption optimal for the incumbent.

Focusing again on the framework where investment size can be chosen freely, another key result worth

mentioning arises from taking into account uncertainty. For an incumbent with a small initial capacity it

is found that in scenarios where the market uncertainty is small the entrant becomes market leader in the

long run, i.e. produces higher output after both firms have invested, whereas for large market uncertainty
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the incumbent is the largest firm on the market in the long run. Uncertainty creates a value of waiting with

investment (Dixit and Pindyck (1994)). This dilutes the preemption effect, so that when demand is more

uncertain, the investment of the incumbent occurs later, thus when demand is higher. This implies that

under large uncertainty the optimal size of the incumbent’s investment is larger. For larger initial capacities

of the incumbent it stays market leader irrespective of the level of uncertainty.

Next we review the relevant literature with the aim to highlight our contributions. The literature review

is mainly structured around the three dimensions relevant for our paper, namely (i) flexibility in capacity

choice, (ii) flexibility in timing the investment, and (iii) uncertainty modeled via diffusion. Flexibility in

capacity choice is already present in the early contributions by Spence (1977) and Dixit (1980). Based on

these papers, a rich literature has explored the rationale behind entry deterrence in two-stage games under

a variety of assumptions about the mode of post-entry competition between firms. What we add to this

literature is the ability of firms to determine their optimal investment time, whereas, in addition, they have

to deal with a stochastically evolving demand.

In addition to flexibility in capacity choice, flexibility in timing the investment is present in early dynamic

models of entry deterrence, like Spence (1979) or Fudenberg et al. (1983). These contributions focus on the

dynamics of (irreversible) capacity build-up in static market environments, if investment is bounded from

above. A key insight in this literature is that, in addition to equilibria which essentially correspond to a

Stackelberg equilibrium with the incumbent as leader, there exist Markov Perfect equilibria in which the

incumbent can strategically deter the follower from investing, thereby weakening competition. This is due

to the initial asymmetry and the dynamic build-up of capacity. Robles (2011) develops a two-period game

where demand is deterministic and increasing between the two periods. He characterizes conditions under

which incumbents build capacities, which are partly idle in the first period, in order to deter other firms

from the market. We extend this literature by considering uncertainty in future demand.

An early stochastic model is Perrakis and Waskett (1983), in which it is shown that key insights about

optimality of deterrence respectively accommodation might change qualitatively if it is assumed that demand

is uncertain for the firms until the time of investment. In more recent contributions to this stream of literature

Maskin (1999) and Swinney et al. (2011) highlight that high demand uncertainty makes entry deterrence less

attractive and fosters the use of accommodation strategies by incumbents. Our main contribution relative

to these papers is not only that we address the role of investment timing for potential entry deterrence, but

also that we consider a stochastically evolving market environment.

An important paper in this area that captures flexibility in timing the investment and uncertainty modeled

via a diffusion is Boyer et al. (2004). They study entry deterrence in a dynamic setting with price competition

and a stochastically evolving willingness to pay of consumers. They assume that firms can invest repeatedly,

where the size of each investment is fixed, and point out that in such a setting an important effect of

investment is the delay of the competitor’s investment. It is shown that different types of equilibria might

arise in such a setting. In spite of the usual logic associated with preemption under price competition, in some
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of these equilibria firms acquire positive rents. Concerning the timing of investment, Boyer et al. (2004) show

that in their setting (under certain conditions) the incentives for preemption are smaller for the incumbent

than for the challenger with lower capacity. A similar setting with Cournot competition is studied in Boyer

et al. (2012). It is shown that competition induces too early first investment relative to the social optimum

and that the smaller firm invests first. The market environment considered in Boyer et al. (2004, 2012) is

closely related to our setup. However, the assumption of fixed investment units crucially distinguishes these

studies from our approach, where both timing and investment size are chosen by the firms. We find that the

endogeneity of investment size is crucial and leads to qualitatively different insights compared to settings

with fixed investment size. Also, due to the consideration of Cournot competition, investment in Boyer et al.

(2012) has considerably less commitment power compared to the setup we consider. A main focus of Boyer

et al. (2004, 2012), as well as of recent studies by Besanko et al. (2004) and Besanko et al. (2010) dealing

with (partly) reversible capacity investments in oligopolistic markets with stochastically evolving demand,

is the long run industry structure that emerges. Considering only one investment option for each firm, our

paper does not address this issue, but rather focuses on entry deterrence in the early phase of an industry

with evolving demand.

As discussed above, in this paper we show that in an incumbent-entrant framework uncertainty may

play an important role, in particular when the incumbent’s initial capacity is relatively small. The effect of

uncertainty on market leadership in a setting with endogenous choice of timing and size of investment has

also been analyzed by Huisman and Kort (2015) in a setting with two symmetric firms both entering the

market.

The main insight of our analysis that the incumbent invests prior to the entrant can be seen to follow the

logic to “eat your own lunch before someone else does” (Deutschman (1994)). This logic has been, among

others, explored in Nault and Vandenbosch (1996) in the framework of a model, where firms endogenously

choose the time to launch a new product generation. Nault and Vandenbosch (1996) develop a deterministic

timing game similar to Fudenberg and Tirole (1985), but where in the latter paper firms are symmetric,

Nault and Vandenbosch consider an incumbent-entrant framework. Apart from the fact that their paper

does not explicitly deal with capacity investment, the key difference to our approach is that the type of

expansion as such is fixed and the size of the expansion cannot be chosen by the firms.

Within a strategic real options framework, investment decisions involving both capacity choice and timing

have first been considered by Huisman and Kort (2015). They study this problem for two symmetric entrants

on a new market. This paper differs from their analysis by considering an incumbent-entrant framework,

in which one of the players has an initial capacity. The latter model characteristic enabled us to establish

the new result that entry deterrence takes place by timing rather than overinvestment. Also, it allows us

to characterize under which circumstances in such a dynamic market setting the incumbent ends up as the

larger firm in the long run and to explore which role a flexible choice of investment size has for optimal entry

deterrence behavior.
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This paper is organized in the following way. Section 2 explains the model and discusses its assumptions.

Section 3.1 looks at the case of exogenous firms roles, i.e. an individual firm knows beforehand whether it

will be the first or second investor. Then the other firm can choose to invest at the same time or later. This

is followed by Section 3.2 studying the game when endogenizing investment roles, i.e. both firms are allowed

to become the first investor. Section 3.3 focuses on the size of the incumbent’s investment relative to that

of the entrant. An analysis on extreme parameter values is performed in Section 3.4. Section 4 shows that

the incumbent does not overinvest to deter entry and analyzes a variant of the model where investment size

is exogenous. The paper is concluded in Section 5. The appendices provide all proofs as well as the details

of the strategy profiles underlying the considered Markov Perfect Equilibria as well as numerical robustness

checks.

2 The Model

Consider an industry setting with two firms. One firm is actively producing and the other firm is a potential

entrant. The first firm is the incumbent and is denoted as firm I. The potential entrant is denoted as firm

E. Both firms have a one-off investment opportunity. For firm I this means an expansion of its current

capacity and for the entrant an investment means starting up production and entering this market. Both

firms are assumed to be rational, risk neutral and value maximizing. The inverse demand function on this

market is multiplicative and equals

p(t) = x(t)(1− ηQ(t)),

where p(t) is the output price, x(t) a process that models exogenous shocks to the system, Q(t) equals the

total quantity sold at the market at time t ≥ 0, and η > 0 is a fixed price sensitivity parameter.

The exogenous shock process (x(t))t≥0 follows a geometric Brownian motion, i.e.

dx(t) = αx(t)dt+ σx(t)dz(t).

The right hand side contains two terms. The first term represents the trend of the process with trend

parameter α. Although from an economic perspective the consideration of a positive α seems most relevant

in our framework, formally no assumption about the sign of α is required to carry out our analysis. The

second term brings in the exogenous shocks through z(t), a Wiener process which has a normal distribution

with expectation 0 and volatility
√
t. Here σ > 0 is the volatility parameter. Throughout the paper we will

refer to the initial value of the process x(t) as X, i.e., X = x(0).

We denote by F = (Ft)t≥0 the filtration associated with the process x(·) capturing the available informa-

tion at time t.

Discounting takes place under a fixed positive rate r > α. The investment cost is linearly related to the

investment size, where the marginal cost parameter equals δ. The inverse demand function is chosen to be

in line with e.g. Pindyck (1988), He and Pindyck (1992), Aguerrevere (2003), Wu (2007), and Huisman
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and Kort (2015). In this model firms are committed to produce the amount their capacity allows. This

assumption is widely used in the literature on capacity constrained oligopolies (e.g. Deneckere et al. (1997),

Chod and Rudi (2005), Anand and Girotra (2007), Goyal and Netessine (2007), and Huisman and Kort

(2015)). For example, Goyal and Netessine (2007) argue that firms may find it difficult to produce below

capacity due to fixed costs associated with, for example, labor, commitments to suppliers, and production

ramp-up. Since firms’ outputs are dictated by their capacities, we are considering, as standard in real options

games, closed-loop equilibria, so that each firm is able to observe the opponent’s capacity investments (see,

e.g., Huisman and Kort (2015)).

To formulate the firms’ objective function, we denote by QI(t), QE(t) the capacities of the incumbent

and the entrant at time t with QI(0) = q1I > 0, QE(0) = q1E = 0, where q1I denotes the initial capacity of

the incumbent. Capacities can be changed by lumpy investments and are given by

Qf (t) = Qf (0) + 1[τf ,∞)(t)q2f

for f ∈ {I, E}, where τf and q2f are measurable with respect to Ft and determined based on both players’

strategy profiles, as explained below.

Using this notation the firms’ objective functions can be written as

Jf (x(0), QI(t), QE(t)) = E

∞∫

t=0

e−rt
[
Qf (t)x(t)(1− η(Qf (t) +Qg(t)))dt− e−rτf δq2f

]
,

where f, g ∈ {I, E}, g 6= f and the expectation is taken with respect to the Wiener process x(t).

The capacity dynamics QI(t), QE(t) are determined by the firms’ strategies each of which comprises two

decisions: timing and capacity size of the investment. In our analysis we consider Markov Perfect Equilibria

(MPE) of the game and hence restrict attention to strategies under which the firms’ actions at each point in

time t are functions of the state (x(t), QI(t), QE(t)). Following e.g. Riedel and Steg (2017) we interpret the

game as one with three modes and formulate mode-dependent strategies. In mode m0 no firm has invested

yet, whereas in mode mf , f ∈ {I, E} firm g 6= f has already invested, but firm f still has to invest. Each

firm’s strategy is then given by a triple

(q̃2f (x(t), QI(t), QE(t),m(t)), τ̃f (QI(t), QE(t),m(t)), κf (x(t), QI(t), QE(t)))

with f ∈ {I, E} and m(t) ∈ {m0,mf}. Whereas q̃2f is a non-negative real number the second component

τ̃f is a stopping time measurable with respect to Ft and κf is binary, i.e., κf ∈ {0, 1} on the entire state

space1. The third component is only relevant in mode m0 and therefore does not depend on m. The actual

1Strictly speaking stopping times might not only condition on the current, but also on past values of x(t) and might therefore

not be Markovian. However, as it turns out in equilibrium all stopping times condition only on the current value of x(t) and

hence indeed are Markovian strategies.
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investment time τf of firm f ∈ {I, E} is then determined as follows

τf =







τ̃f (q1I , 0,m0) if

τ̃f (q1I , 0,m0) < τ̃g(q1I , 0,m0)

or

τ̃f (q1I , 0,m0) = τ̃g(q1I , 0,m0) and

κf (x(τ̃f ), q1I , 0) > κg(x(τ̃g), q1I , 0),

τ̃f (QI(τ̃g), QE(τ̃g),mf ) else.

with g 6= f . If τ̃f (q1I , 0,m0) = τ̃g(q1I , 0,m0) and κf (x(τ̃f ), q1I , 0) = κg(x(τ̃g), q1I , 0), then with probability

0.5 the incumbent invests first, i.e. τ I = τ̃ I(q1I , 0,m0), τE = τ̃E(QI(τ̃ I), QE(τ̃ I),mE) and with probability

0.5 the entrant invests first, i.e. τE = τ̃E(q1I , 0,m0), τ I = τ̃ I(QI(τ̃E), QE(τ̃E),mI). The investment quantity

follows directly as

q2f =







q̃2f (x(τf ), QI(0), QE(τf ),m(τf )) if f = I,

q̃2f (x(τf ), QI(τf ), QE(0),m(τf )) if f = E,

where m(t) denotes the mode of the game at time t.

Intuitively this formulation captures that if one of the two firms has an earlier stopping time in mode m0

than its competitor it is the leader and invests first. If the two stopping times in mode m0 coincide then

only one firm actually invests, namely the one that has chosen the higher value of κf . In case both have

chosen the same value of κ the incumbent invests. This setup allows a firm to threaten to invest at a certain

stopping time τ̃f (·,m0) conditional on the fact that the other firm does not invest at the same time. For

the existence of a preemption equilibrium, like to ones we will consider in this paper, it is essential that

such a conditional investment can be implemented through a Markovian strategy. Our setting allows for this

and at the same time allows for a much simpler representation of the equilibrium profiles than in standard

symmetric timing games2. Given the asymmetric setting considered in this paper and the focus on entry

deterrence strategies, rather than on coordination problems in preemption games, we consider such a setup

as a suitable formal framework for our analysis.

Following the standard procedure in real option games the game is solved by first determining the reaction

curve of the firm investing last and then determining the optimal strategy of the firm that invests first. This

means that we first consider the subgames in which the mode of the game is mf for some f ∈ {I, E}. Since
only one firm still can act in these subgames, they correspond to (infinite horizon) stochastic optimization

2Formally, the way the planned investment times τ̃f , which are the firms strategies, are transformed into the actual investment

times τf , is part of the game-form of our considered game. Thijssen et al. (2012) (see also Riedel and Steg (2017)) provide an

approach for a rigorous foundation of preemption-type equilibria in stochastic duopolistic timing games with symmetric firms.

Their analysis is based on the original ideas of extended mixed strategies by Fudenberg and Tirole (1985). In such a setting

it is not known ex-ante which firm will invest first. In the asymmetric setting considered in this paper, the situation is less

complicated, since at the preemption point of the entrant, the entrant is indifferent between being leader or follower, whereas

the incumbent strictly prefers to be the leader. Intuitively, it therefore is suitable to consider a game form which allows for an

equilibrium where the incumbent makes the investment at the entrant’s preemption point, but the entrant would invest in case

no investment was made by the incumbent at that point.
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problems which can be solved by standard techniques. We then use the value functions of both firms in these

subgames to analyze the states of the game in mode m0 with QI(t) = q1I , QE(t) = q1E = 0. In this analysis

we will determine the investment thresholds and capacity choices of both firms in equilibrium, which will be

sufficient for the economic analysis of the emerging market dynamics. A formal representation of the actual

strategy profiles underlying the considered Markov Perfect Equilibrium and a proof that this profile indeed

constitutes a MPE is provided in Appendix B.

Concerning the initial capacity of the incumbent, in principle, the parameter q1I can take any value. As a

reference case, however we will often consider the capacity value that would emerge as the long run capacity

of a monopolist, which can make a single investment and is myopic in a sense that it does not take into

account possible future capacity additions on this market, either by itself or by a potential entrant. We refer

to such an initial capacity as the myopic investment level qmyop
1I . Following Huisman and Kort (2015) this

value is given by

q
myop
1I =

1

η(β + 1)
,

where

β =
1

2
− α

σ2
+

√
(
1

2
− α

σ2

)2

+
2r

σ2
. (1)

Due to the assumption that r > α, we have β > 1.

3 Equilibrium Analysis

In this section we characterize the investment behavior in the Markov Perfect Equilibrium of the game

described above. Employing the standard terminology in timing games (see, e.g., Fudenberg and Tirole

(1985)), the first investor is called the leader and the second investor is called the follower. Before we are

able to fully describe the equilibrium, in Section 3.1 we carry out two intermediate steps. We first characterize

the optimal behavior of the follower firm in a situation in which the other firm, labeled as the leader, has

already invested, i.e. we consider subgames in modes mf with f ∈ {I, E}. Then, as a second intermediary

step, we consider subgames (X,QI , QE) with Qf = q1f , f ∈ {I, E}, i.e., scenarios in mode m0 prior to the

first investment, and characterize a given firm’s optimal investment size, if it invests instantaneously, as well

as determine under which conditions it is optimal for the firm to delay its own investment, assuming that it

will not be preempted by the opponent’s investment. Formally, we do this by considering the game under

the assumption of a fixed investment order, in which the opponent firm (the follower) cannot invest before

the firm itself (the leader) has invested. The insights from these two preliminary steps carried out in Section

3.1 then allow us to characterize the equilibrium behavior on the entire state space in Section 3.2.
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3.1 Leader and Follower Payoff Functions

In this section we present the set-up and a brief summary of the results describing optimal behavior of the

follower, after the leader has invested, as well as optimal behavior of the leader in situations in which none

of the firms has invested yet. Appendix A provides all elaborations underlying these results.

For a given sequence of investments, we denote the follower firm as firm F and similarly, the leading firm

as firm L. The follower’s and leader’s initial capacities are denoted by q1F and q1L, respectively. Capacity

expansion is done by installing additional quantities q2F and q2L
3.

Follower’s Decision

The follower’s optimization problem is to determine, for a given quantity QL = q1L + q2L of the leader, the

time and size of its own investment in order to maximize the expected payoff. Formally, the problem can be

written as4

VF (X, q2L) =

sup
τF≥0, q2F≥0

{

E

[ τF∫

t=0

q1F x(t)(1− η(q1L + q1F + q2L))e
−rtdt

+

∞∫

t=τF

(q1F + q2F )x(t)(1− η(q1L + q1F + q2L + q2F ))e
−rtdt− e−rτF δq2F

∣
∣
∣ x(0) = X

]}

,

where τF is the stopping time of firm F ∈ {I, E} in mode mF . The following proposition characterizes the

follower’s optimal investment strategy. Here, the optimal moment of investment is derived as the investment

threshold X∗
F (q2L). Investment takes place at the moment the stochastic process x(t) reaches this level for

the first time (see, e.g., Dixit and Pindyck (1994)). Therefore the optimal stopping time of the follower

relates to X∗
F (q2L) in the following way: τ∗F = inf{t ≥ 0 | x(t) ≥ X∗

F (q2L)}. This means that the follower

waits for X < X∗
F (q2L), in the so-called continuation region, but invests in the stopping region, that is, for

X ≥ X∗
F (q2L). It follows that the optimal strategy of the follower in these subgames can be characterized

by the tuple of non-negative functions (X∗
F (q2L), q

opt
2F (X, q2L)).

3In principle, one could then distinguish two cases. In the first case which corresponds to mode mE , the incumbent takes

the role of the leader and the entrant takes the role of the follower, with q1L = q1I , q1F = 0, q2L = q2I and q2F = qE . In

the second case which corresponds to mode mI , the entrant undertakes an investment before the incumbent expands and we

have q1L = 0, q1F = q1I , q2L = qE and q2F = q2I . For the analysis, both cases are analyzed simultaneously by keeping the

notation open. In terms of the investment strategies introduced in Section 2, a capacity expansion choice q2L respectively q2F

corresponds to an investment strategy q̃2L(X̃L, q1L, q1F ,m0) = q2L, where X̃L is the level of x(t) at which the leader invests

and q̃2F (X̃F , q1L + q2L, q1F ,mF ) = q2F , where X̃F is the level of x(t) at which the follower invests.
4To simplify notation in the following derivations, we will not explicitly list the full state vector (X,QL, QF ,m), L, F ∈ {I, E},

as the argument of the value function of the player, but only the parts of the state vector that conveys relevant information

about the current state. In the subgames in mode mF considered here, knowing X and the size of the leaders prior investment

q2L is sufficient to recover the full state vector. Hence, we only list these two values explicitly as arguments of the value function.

Similar notation is used in the different types of subgames treated in the following sections.
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Proposition 1 For X < X∗
F (q2L) the follower waits until the process x(t) reaches the investment trigger

X∗
F (q2L) to install capacity q∗2F (q2L) = q

opt
2F (X∗

F (q2L), q2L) and for X ≥ X∗
F (q2L) the firm invests immediately

and installs capacity qopt2F (X, q2L). The optimal capacity level qopt2F (X, q2L) and the investment trigger X∗
F (q2L)

are given by

q
opt
2F (X, q2L) =

1

2η

(

1− η(q1L + 2q1F + q2L)−
δ(r − α)

X

)

, (2)

X∗
F (q2L) =

β + 1

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L)
. (3)

The follower’s capacity in case the follower invests at the investment trigger equals

q∗2F (q2L) = q
opt
2F (X∗

F (q2L), q2L) =
1− η(q1L + 2q1F + q2L)

η(β + 1)
. (4)

It then follows that the follower’s value function is given by

VF (X, q2L)

=







δ

β − 1

(
X

X∗
F (q2L)

)β

q∗2F (q2L) +
X

r − α
q1F (1− η(q1L + q1F + q2L)) if X < X∗

F (q2L),

X

r − α
(q1F + q

opt
2F (X, q2L))(1− η(q1L + q1F + q2L + q

opt
2F (X, q2L)))

− δq
opt
2F (X, q2L)

if X ≥ X∗
F (q2L).

(5)

Leader’s Decision

From equation (3) it follows that there is a positive relation between the leader’s investment quantity q2L

and the follower’s investment threshold. This means that it will depend on the leader’s choice of its capacity

when the follower undertakes investment. The leader can thus delay the follower’s investment by setting

q2L in such a way that the follower’s trigger X∗
F (q2L) exceeds the current value of x(t), i.e., X ≤ X∗

F (q2L).

We refer to the outcome where the leader’s choice leads to this outcome as delaying the follower5 and to

the opposite case of X ≥ X∗
F (q2L) as inducing immediate follower investment6. For the following analysis

and comparison of these two types of leader’s investment strategies we denote by V det
L (X, q2L) respectively

V acc
L (X, q2L) the value of the leader’s objective function that can be reached under instantaneous investment

by a strategy under which the follower is delayed respectively invests immediately7.

Using this notation, for any X at which it is optimal for the leader to invest immediately, the leader’s

5In case the incumbent is the leader, we have that the incumbent is a monopolist as long as X < X∗

F (q2L), and as soon as x

hits X∗

F (q2L) a duopoly arises, since at that point the entrant undertakes an investment. Hence, this strategy of the incumbent

corresponds to entry deterrence.
6In case the incumbent is the leader such behavior corresponds to an entry accommodation strategy.
7Since, as we will show later, in equilibrium the incumbent becomes the leader, we associate these strategies with deterrence

respectively entry accommodation and we will hence use det respectively acc to signify the strategy where the leader delays

respectively does not delay the follower’s investment.
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value function can be written as

VL(X) = sup
q2L≥0

JL(X, q2L) (6)

with

JL(X, q2L) =







V det
L (X, q2L) if X∗

F (q2L) > X,

V acc
L (X, q2L) if X∗

F (q2L) ≤ X.

(7)

Below we will determine for which ranges of values of X it is optimal for the leader to invest immediately,

which is referred to as the stopping region. The payoff which can be obtained by the leader with a strategy

under which the follower is delayed, is given by

V det
L (X, q2L) = E

[
∫ τ∗

F

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L))e
−rtdt

+

∫ ∞

t=τ∗

F

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q∗2F (q2L)))e
−rtdt

∣
∣
∣x(0) = X

]

− δq2L. (8)

The first integral in this expression denotes the expected discounted revenue stream obtained by the leader

before the follower has invested. Then, at the (stochastic) time τ∗F ≥ 0 the follower decides to make an

investment. The second integral reflects the leader’s expected discounted revenue stream from that moment

on. The third term is the investment outlay. Details of the calculation of the function V det
L (X) (as well as

V acc
L (X)) are provided in the proof of Proposition 2.

If the leader chooses a capacity such that it induces immediate investment by the follower it nevertheless

acts as Stackelberg capacity leader. The highest payoff the leader can obtain by instantaneous investment

without delaying the follower is given by

V acc
L (X, q2L) = E

[
∫ ∞

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q
opt
2F (X, q2L)))e

−rtdt− δq2L

∣
∣
∣x(0) = X

]

.

(9)

This expression contains two terms, the expected discounted revenue stream resulting from investment

and the investment cost.

Considering the level of investment, which solves the optimization problem on the right hand side of (6),

it follows from the monotonicity of X∗
F (q2L) with respect to q2L that for a fixed level of X, there exists a

function q̂2L(X) such that for q2L < q̂2L(X) we have that X > X∗
F (q2L) and for q2L > q̂2L(X) it holds that

X < X∗
F (q2L). This means that to solve the optimization problem we need to consider two regions with

respect to q2L. For each state region one can find the point that yields the supremum of the payoff function.

If the supremum of the payoff function associated with the delaying the follower strategy is found at q2L

such that q2L ≤ q̂2L(X), that is, X ≥ X∗
F (q2L), then we say that the delaying the follower strategy is not

feasible. Similarly, we say that the inducing immediate investment strategy is feasible for some X, if the

maximizer of (9) is in the interval [0, q̂2L(X)]. We will show that always at least one strategy is feasible. We

then find the following result.
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Proposition 2 There exist unique values X1 < X2 such that there is an interval of positive length [X1, X2)

on which both the delaying the follower investment strategy and the inducing immediate follower investment

strategy are feasible for the leader. For X < X1 it is optimal for the leader to delay the follower’s investment

and for X ≥ X2 optimal investment by the leader induces the follower to invest instantaneously.

We denote the optimal capacity that solves the optimization problem as qdetL (X) for the strategy where the

follower is delayed and, similarly, qaccL (X) denotes the optimal capacity when inducing immediate follower

investment. It should be noted that for low values of X the optimal investment size qdetL (X) might be zero

even though the delaying the follower investment strategy is feasible for that value of X. However, it is

evident that in such a case the leader is better off by delaying its investment rather than by (formally)

carrying out his single investment option with an investment size of zero.

In Proposition 3 below, which characterizes the leader’s optimal behavior, it is shown that for values

of X below a certain threshold Xdet
L respectively Xacc

L it is indeed optimal for the leader to delay own

investment rather than making an instantaneous investment under the delaying the follower investment

strategy respectively the inducing immediate follower investment strategy. Here, we assume that the follower

will only be able to invest after the leader’s investment, which means that the leader will not be preempted by

the opponent’s investment. This ensures that waiting is optimal in the continuation region. The maximum

obtainable payoff for the leader which optimally delays own investment is obtained with the same method as

used for the determination of follower’s value function in the continuation region. Details of these calculations

are provided in the proof of the proposition.

Proposition 3 There exists a unique value X0, X0 < X2 such that qdetL (X) > max{0, q̂2L(X)} if and only if

X ∈ (X0, X2). Furthermore, for sufficiently small q1L there exists a pair (Xdet
L , qdet∗L ) with Xdet

L ∈ (X0, X2)

satisfying qdet∗L = qdetL (Xdet
L ) and

Xdet
L =

β

β − 1

δ(r − α)

1− 2ηq1L − ηq1F − ηqdet∗L

, (10)

such that under the delaying follower investment strategy, for X < Xdet
L the leader waits until x(t) reaches

the investment threshold Xdet
L to install qdet∗L , while for X ≥ Xdet

L the leader invests immediately and sets

capacity qdetL (X).

The capacity qdetL (X) is the solution with respect to q2L of

X

r − α
[1− η(2q1L + q1F + 2q2L)]−

δ

β − 1

(
X

X∗
F (q2L)

)β [

1− ηβ(q1L + q2L)

1− η(q1L + 2q1F + q2L)

]

− δ = 0.

Finally, for sufficiently small q1L there exists a pair (Xacc
L , qacc∗L ) satisfying qacc∗L = qaccL (Xacc

L ) and

Xacc
L =

δ(r − α)β

β − 1

qacc∗L − q1L

(qacc∗L − q1L)(1− ηq1L)− ηqacc∗L (qacc∗L + q1L)
, (11)

such that under the inducing immediate follower investment strategy, for X < Xacc
L the leader waits until

x(t) reaches the investment threshold Xacc
L to install qacc∗L , while for X ≥ Xacc

L the leader invests immediately

and sets capacity qaccL (X), which is given by
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qaccL (X) =
1

2η

[

1− 2ηq1L − δ(r − α)

X

]

.

Although the proof of Proposition 3 assumes that q1L is small, numerical analysis indicates that the range

of values of q1L for which the threshold Xdet
L exists and the leader therefore eventually invests, is typically

of substantial size. In case the initial capacity of the leader is large, it is optimal for the leader to abstain

from any further investment, since this also blocks any further investment of the follower8 and allows the

leader to sell the quantity corresponding to its current output level at a larger price.

From Proposition 2 it follows that there exists X̂ ∈ (X1, X2) with the property that it is the largest value

X̂ such that the delaying follower investment strategy is always optimal for X < X̂. Extensive numerical

exploration shows that X̂ is indeed a threshold in the sense that for allX ≥ X̂ inducing immediate investment

by the follower is optimal for the leader.

Furthermore, we find that X̂ > max{Xdet
L , Xacc

L }, which implies that the leader waits in the region

0 ≤ X < Xdet
L and invests qdetL (X) in the region Xdet

L ≤ X < X̂, thereby delaying investment by the

follower. For X ≥ X̂ it is optimal for the leader to immediately invest qaccL (X), which triggers an immediate

investment of the follower. The optimal payoff of the leader in mode m0 conditional on that the other firm

cannot preempt it with own investment, is therefore given by

VL(X) =







F det
L (X) if X ∈ (0, Xdet

L ),

V det
L (X) if X ∈ [Xdet

L , X̂),

V acc
L (X) if X ∈ [X̂,∞).

(12)

Here F det
L (X) denotes the value of waiting for the leader in the continuation region, where it delays investment

till the threshold Xdet
L is reached9.

Figure 1 illustrates these findings.10 The investment of the leader, conditional on that no firm has

invested before (i.e. for states with QL = q1L, QF = q1F ) and that the other firm cannot preempt, can then

be characterized as

q̃L(X) =







0 if X ∈ (0, Xdet
L ),

qdetL (X) if X ∈ [Xdet
L , X̂),

qaccL (X) if X ∈ [X̂,∞).

(13)

Assuming x(0) to be sufficiently small, our analysis implies that for exogenous firm roles the leader waits

until x(t) reaches Xdet
L and then invests qdet∗L . The follower waits until x(t) reaches X∗

F (q
det∗
L ), at which

point in time the follower invests.

8Note that we are here considering the scenario where the follower is only allowed to invest after the leader has chosen to

do so.
9The explicit expression for F det

L (X) is given in the proof of Proposition 3.
10All examples in this paper use the following parametrization: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, δ = 1000, q1I = 1

η(β+1)
.
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Figure 1: The leader’s payoff functions while delaying the follower (solid) and while inducing immediate

follower investment (dashed).

Let us, for future notation, denote X̂ in case the entrant takes the leader role by X̂E and, in case the

incumbent is the leader, by X̂I .

3.2 Equilibrium Investment Order

Based on the results of the previous section we can now examine the equilibrium behavior in our considered

game. Hence, we consider the general scenario, where the investment order is not fixed ex-ante and both

firms are allowed to invest first. Since the focus of our analysis is on the main economic effects arising in a

setting with endogenous choice of timing and size of investments, rather than on the technical details arising

in timing games, we abstain here from giving the full profile of Markovian strategies corresponding to the

equilibrium outcome discussed below. The full description of the underlying equilibrium strategy profile is

provided in Appendix B.

To characterize the firms’ optimal behavior in mode m0 we need to consider the payoff functions of a

firm if it acts as leader and as follower. Figure 2a shows the two payoff functions for the entrant, denoted

by VLE(X) and VFE(X), depending on the current value X of the state variable assuming that the entrant

immediately invests when being leader. This means that

VLE(X) = sup
q2L≥0







V det
LE (X, q2L) if X∗

F (q2L) > X,

V acc
LE (X, q2L) if X∗

F (q2L) ≤ X.

=







supq2L≥0 V
det
LE (X, q2L) if X < X̂E ,

supq2L≥0 V
acc
LE (X, q2L) if X ≥ X̂E .

for all X where V det
LE (X, q2L) and V

acc
LE (X, q2L) are the leader payoff function as given by (8) and (9) under
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(a) The entrant’s payoff functions that correspond to be-

coming leader (solid) and follower (dashed) for the en-

trant. The follower is delayed for X < X̂E and invests

immediately for X ≥ X̂E .
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q
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(b) Preemption points XPI (solid) and XPE (dashed)

with free capacity choice for different values of q1I .

Figure 2: Preemption points. Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, and δ = 1000.

state QL = 0, QF = q1I . Analogously for VFE(X).

The solid curve corresponds to the outcome if the entrant takes the leader role, where the payoff of

immediate investment is depicted. If the firm takes the position of the follower, one arrives at the dashed

curve, corresponding to (5). For the incumbent both curves are qualitatively the same so that a comparable

figure is obtained.

For small values of X investment is not profitable. Then no firm wants to invest first, which is why

the follower curve lies above the leader curve. For larger values, though, each firm wants to be the first

investor. Since the curves are qualitatively similar for the incumbent and the entrant firm, both firms prefer

to become the leader when X is large enough, that is, when VLf (X) > VFf (X) for f ∈ {I, E}. To prevent

that the competitor undertakes an investment first, thereby making the firm end up with the follower value

instead of the higher leader value, each firm prefers to invest strictly before the competitor’s investment

moment, i.e., it is best to preempt the other firm. Hence, assuming that the initial value of the process

x(t) is in the region where the follower curve exceeds the leader curve, the first moment for a firm to invest,

that is, when investment as a leader becomes worth-while, is at the lowest value of X for which the leader

curve no longer yields a smaller value than the follower curve. This point is called the preemption point

XP . To formally define the preemption points, let us slightly change notation. Let us denote the leader’s

payoff function when delaying the follower as V det
L (X, q2L, q1L, q1F ). Similarly let VF (X, q1L + q2L, q1F )

and qdetL (X, q1L, q1F ) denote the follower payoff function and the leader’s optimal capacity while delaying the

follower, respectively. Then, the preemption points of the incumbent and entrant are defined in the following
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way,

XPI = min{X > 0 | V det
L (X, qdetL (X, q1I , 0), q1I , 0) = VF (X, q

det
L (X, 0, q1I), q1I)},

XPE = min{X > 0 | V det
L (X, qdetL (X, 0, q1I), 0, q1I) = VF (X, q1I + qdetL (X, q1I , 0), 0)}.

Since q1I > 0, the two firms are asymmetric and therefore their preemption points do not coincide. Clearly,

for a firm, of which its preemption point is below that of the competitor, it can never be an equilibrium

strategy to choose an investment trigger above the competitor’s preemption point. If the firm would choose

such a large trigger the opponent’s best response would imply that the firm ends up as follower, and therefore

with a smaller value compared to what it can gain as leader (see Figure 2a). If, furthermore, the optimal

trigger Xdet
L under the delaying follower investment strategy of that firm is larger than the opponent’s

preemption point, then the firm has no incentives to invest before the opponent’s preemption point is

reached. In such a situation it constitutes equilibrium behavior for the firm with the lower preemption point

to set its investment trigger to the opponent’s preemption point and to invest an amount which delays the

opponent’s investment. Following its optimal strategy the opponent chooses the follower’s investment trigger

and invests once this trigger is reached. Such an equilibrium is referred to as a preemption equilibrium and

the following proposition shows that at least for appropriate initial capacity of the incumbent no other types

of subgame-perfect equilibria exist in the considered game.

Proposition 4 Let q1I = q
myop
1I . Then, preemptive investment constitutes a unique subgame perfect Nash

equilibrium.

In Appendix A it is shown that Proposition 4 applies also when the initial capacity of the incumbent is

sufficiently close to qmyop
1I .

As discussed in more detail in Appendix B, the planned stopping times of both firms in mode m0 in this

equilibrium coincide, i.e. τ̃f (q1I , 0,m0) = inf{t : x(t) ≥ XPE} with f ∈ {I, E}. Furthermore, we have in

equilibrium κI(q1I , 0, XPE) = 1, κI(q1I , 0, XPE) = 0, which implies that the incumbent actually invests at

this stopping time.

In order to clarify which firm acts as leader in the preemption equilibrium, we depict in Figure 2b the

preemption points of the incumbent and the entrant for values of q1I . It can be clearly seen that the

preemption point of the incumbent is below that of the entrant. Furthermore, it is easy to check that

the leader’s investment trigger under the delaying follower investment strategy, if it is finite, is generically

much larger than the entrant’s preemption point (see also Lemma 2 in Appendix A).11 Together, these

two observations establish that the incumbent acts as leader in the preemption equilibrium. Hence, for

x(0) < XPE it is optimal for the incumbent to wait and to invest the amount qdetL (X) when the process

reaches the preemption point of the entrant. The investment is chosen in a way to delay the investment of

11As elaborated in Section 3.4 these two inequalities do not depend on the particular parametrization of the model chosen

here but stay intact over a large range of relevant parameter settings.
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the entrant and therefore it is an instrument of entry deterrence. Using this strategy the incumbent can

delay the entry of its opponent till the trigger X∗
F (q2I) is reached by x(t).

Example 1 Considering, as an illustrative example, the case q1I = q
myop
1I , which under our default parametriza-

tion yields q1I = 2.37, we obtain XPI = 134 and XPE = 167. This means that for X < 134 both firms

prefer to wait, for 134 ≤ X < 167 the incumbent prefers to be leader and the entrant prefers to wait and for

X ≥ 167 both want to invest. The investment trigger Xdet
LI is not finite in this situation since the incumbent

would not undertake an investment in the case of exogenous firm roles (see Lemma 2 in Appendix A). It

seems the main reason the incumbent invests at X = XPE = 167 is to delay the competitor’s entry: until

x(t) reaches X∗
F = 208 the incumbent is the only firm on the market.

In this example, the incumbent expands with qdetL (XPE) = 0.33 so that it ends up with a total capacity of

q1I + q2I = 2.70, the entrant installs a capacity equal to qE = 1.73.

To understand this result one must realize that any investment reduces the output price, since this price

is negatively related with the total market output. Investment by the entrant thus reduces the incumbent’s

value. It is then better for the incumbent to cannibalize than let the entrant reduce the price. To do so, the

incumbent installs a small capacity level: small in order not to make the cannibalization effect too large,

but large enough to delay investment of the entrant. To conclude, the incumbent installs a small additional

capacity with the aim to protect its demand, and to prolong the period where it can profit from its monopoly

position. The entrant will invest later when, for larger levels of x, demand is stronger so it is profitable to

set a larger quantity on the market. This leads to the result that the incumbent invests first and expands

to delay a large investment by the entrant. The entrant waits until the state variable hits the follower’s

investment threshold.

3.3 Market leadership

When studying industry evolution and entry deterrence, a crucial issue is the question under which circum-

stances early incumbents in an industry are able to maintain their market leadership as the market grows.

A firm is considered the market leader when its (accumulated) capacity exceeds its competitor’s. This sec-

tion illustrates that in our considered setting the incumbent does not necessarily maintain its market leader

position after the entrant’s investment.

We find that for a small initial capacity level the entrant becomes the market leader. This means that the

entrant’s capacity exceeds the incumbent’s initial capacity together with its expansion. However, when the

incumbent starts with a sufficiently large capacity level, it keeps its position as market leader after the second

firm’s entry. This is illustrated in Figure 3, which shows the level qML
1I of the incumbent’s initial capacity for

which the total incumbent’s capacity equals the amount set by the entrant. Market leadership thus depends

on the initial capacity size. Intuitively, a larger initial capacity level has two contradictory effects on the

expansions. First, a larger initial capacity, makes the expansion size decrease, for the cannibalization effect is
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larger for the firm already owning a larger capital stock. Second, since investment is delayed, a larger market

is observed at the moment of investment, which gives an incentive to increase investment size. The former

effect, however, is dominant and one observes that a larger initial capacity makes the size of the expansion

decrease. The incumbent’s total capacity, however, increases when the initial market’s output size is larger.

In a framework with two potential entrants, i.e. no firm possesses an initial capacity, Huisman and Kort

(2015) point out that market leadership is dependent on uncertainty. In particular, they show that for large

demand uncertainty the first investor becomes market leader, while the second investor will invest in a larger

capacity when the demand uncertainty is low. Their model considers symmetric firms, which, in our setting,

would come down to q1I = 0. Combining this with our findings implies that market leadership depends on

both initial capacity and demand uncertainty.

As illustrated in Figure 3, qML
1I decreases when uncertainty increases. Larger uncertainty makes the

incumbent delay investment, which results in a larger expansion investment, making it market leader for

smaller values of q1I relative to the case of smaller uncertainty. In this figure one can clearly observe for

which combinations of the initial capacity level and the uncertainty level the incumbent is market leader

and in which region the entrant becomes market leader.

One key observation would be that in the situation of Huisman and Kort (2015) where firms are symmetric,

i.e. q1I = 0, we would find that the entrant is market leader as long as the market uncertainty is not high.

However, when considering asymmetric firms this is already no possibility anymore when q1I > 0.62 for

our basic parametrization. Comparing this value to the myopic value of the incumbent’s initial capacity

(qmyop
1I = 2.37) suggests that only for rather small values of the incumbent’s initial capacity the entrant in

equilibrium can become the market leader.

0.4

σ0

0.62

q1I
ML

Incumbent

Entrant

Figure 3: Market leader regions for different σ. Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1,

and δ = 1000.
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Figure 4: Regions where the incumbent invests first (above the curve) and where the entrant invests first

(below the curve). Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, and δ = 1000.

3.4 Parameter variations

In order to inspect the effect of changes in parameter values on the investment order, the difference between

the two preemption points as well as the difference between the incumbent’s investment threshold and the

entrant’s preemption trigger is shown for a variation of all parameters in Appendix C. This makes clear

that the insight that the incumbent invests first to delay the entrant’s investment is very robust. There is a

single exception, which occurs when the sensitivity of the market clearing price with respect to the supplied

quantity (η) is very small or when there is an almost negligible size of the incumbent’s initial capacity. In

such a setting the entrant’s preemption trigger might fall below the one of the incumbent. The trade-off

between the initial capacity and the sensitivity parameter is depicted in Figure 4. This figure shows the two

regions where either of the firms invest first. The curve in between depicts all values of η and q1L for which

both firms’ preemption triggers are identical. We see that the incumbent invests first, except for a small

region close to both axes where the entrant is the first investor. In fact, it holds that for η · q1L > 0.01413

the incumbent is leader and the entrant invests first for η · q1L < 0.01413. Intuition behind this result is that

for the situation where η and q1L are small the cannibalization effect is small. The incentives to preempt

the entrant vanish the moment there is almost nothing to protect.

4 Investment Size

In this section we discuss in more detail two important aspects of the investment size in our setting. First,

we analyze the question, whether the threat of entry by a competitor makes the incumbent invest more

than it would in the absence of such a threat. Second, we show that the results obtained in the previous

section significantly change if we assume that investment size is not a choice variable of the firm, but rather

exogenously given, e.g., due to technical requirements. Finally, we briefly focus on two alternative scenarios:
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one where we have two incumbents and one with product differentiation.

4.1 Overinvestment

In the literature on entry deterrence incumbents mainly deter entrants by means of overinvestment (e.g.,

Spence (1979) and Dixit (1980)). That is, by building large capacities on the market, it becomes unprofitable

for other firms to enter this market. These entry deterrence models suggest that, apart from cases where

markets are blocked (e.g. due to high entry costs), the quantity put on the market under an entry threat

exceeds the amount that would be optimal for the firm in case that there is no potential entrant. This section

investigates whether this notion of overinvestment also applies to the dynamic stochastic market framework

presented in Section 2. Thereto, we compare the outputs in the long run, i.e. after the incumbent has made

its expansionary investment, for two models: the model with (potential) competition, analyzed in Section 3,

and a model where there is no threat of a potential entrant.

Overinvestment is defined as the difference between the quantity an incumbent sets on the market in the

long run when there exists a threat of entry and the quantity it would set in the long run when this threat

would not be present. In other words, the incumbent’s expansion in the duopoly setting as presented in the

previous section is compared to the incumbent’s expansion in case it is a monopolist forever. To this end,

the monopolist’s model is presented and analyzed.

The value function of the monopolist is given by

VM (X) = sup
τM≥0, q2≥0

{

E

[ τM∫

t=0

q1 x(t)(1− ηq1)e
−rtdt

+

∞∫

t=τM

(q1 + q2)x(t)(1− η(q1 + q2))e
−rtdt− e−rτM δq2

∣
∣
∣ x(0) = X

]}

,

in which q1 is the initial capacity, q2 corresponds to the capacity acquired by investment, and τM is a

stopping time. The optimal expansion is denoted by qmon
2 (X). Standard analysis, see Appendix A.2, shows

that for the expansion, the threshold and capacity size equal

X∗
M =

β + 1

β − 1

δ(r − α)

1− 2ηq1
,

qmon∗
2 =

1− 2ηq1
η(β + 1)

,

where qmon∗
2 = qmon

2 (X∗
M ) is the realized expansion at investment. For X > X∗

M this quantity equals

qmon
2 (X) =

1

2η

(

1− 2ηq1 −
δ(r − α)

X

)

.

This means that τ∗M is the first hitting time of x(t) reaching X∗
M .

To measure overinvestment, the difference between qdetL (XPE) and qmon∗
2 needs to be considered, which

represent the realized outputs in the case entry threat is present and not, respectively. Figure 5 illustrates

this difference for our standard parameter setting. In Figures (a) and (b), the optimal investment moment
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Figure 5: Expansions made by the incumbent with and without entry threat for different values of q1I .

Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, and δ = 1000.

and the optimal investment size are given for different values of the initial investment size. Overinvestment

would occur if qdetL (XPE) > qmon∗
2 . However, the figure illustrates the opposite. To explain this, one must

realize that the investment threshold values of the monopolist are higher than the ones of the incumbent in

a duopoly setting. The incumbent, by all force, prefers to keep its monopoly position as long as possible

and thereto it delays investment of the entrant by preempting the entrant’s preferred investment moment.

This leads to an investment in a market that is still small at the moment of investment. For this reason

the capacity investment of the firm is small as well. The monopolist, however, has the flexibility to wait

for a price that has grown to a considerable level before investing. We conclude that, under consideration

of endogenous timing as well as endogenous investment size, entry deterrence is not so much about the size

but more about the timing of the investment.

4.2 Fixed Investment Size

In order to highlight the importance of the endogenous choice of investment size for our main finding that the

incumbent invests prior to the entrant, in this section, we consider a scenario where the size of investment

is fixed. Apart from improving our understanding of the role of endogenous investment size, the main

motivation for considering a scenario with fixed investment is that for industries where expansion has to

be typically carried out in fixed units, for example the establishment of an additional laboratory in the

pharmaceutical industry, the assumption of a fixed investment size seems more appropriate than that of

complete flexibility in the size of investment. This section shows that whether investment size is exogenous

or endogenous is indeed crucial for the emerging investment order.

Consider the model presented above, but assume investment size is fixed such that q2I = qE = K. Now

the situation is one of a stochastic timing game with asymmetric firms in the sense that one firm is the

incumbent with initial capacity q1I , whereas the other firm is the entrant that has thus no initial capacity.
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Technically the problem is similar as in Pawlina and Kort (2006). That paper also studies a duopoly with

asymmetric firms, but there asymmetry is due to investment costs being different for the firms.

The incumbent’s optimal payoff functions as leader in the stopping region (under the deterrence strategy)

and follower are then similar to what was found previously,

V det
LI (X) =

X

r − α
(q1I +K)(1− η(q1I +K))− X∗

FE

r − α
ηK(q1I +K)

(
X

X∗
FE

)β

− δK,

VFI(X) =







δK
β−1

(
X

X∗

FI

)β

+ X
r−α

q1I(1− η(q1I +K)) if X < X∗
FE ,

X
r−α

(q1I +K)(1− η(q1I + 2K))− δK if X ≥ X∗
FE ,

where X∗
FE = β

β−1
δ(r−α)

1−η(q1I+2K) and X∗
FI = β

β−1
δ(r−α)

1−2η(q1I+K) are the investment triggers of the entrant and

the incumbent as follower. In a similar way one can determine the payoff functions of the entrant.

Next, one can calculate the preemption points. In Section 3.2 it was shown that under endogenous choice

of the investment size the incumbent invests first, where it expands by an adequate amount such that the

entrant’s investment is temporarily hold off. Figure 6 shows the preemption points for the model presented

in this section, i.e. where investment size is fixed. The relative position of the curves has changed compared

to Figure 2b, which depicts the case with endogenous investment size: the entrant’s curve now lies below

the incumbent’s curve, signifying that in this model the entrant precedes the incumbent in undertaking an

investment. Thus, the entrant takes the leader role and the incumbent becomes follower.

If firms are free to choose the size of their installment, the incumbent has the largest incentive to invest

first, for it can undertake a small investment in order to delay a large investment by the entrant. When fixing

capacity for both firms at an equal level, this no longer applies: since capacity size is fixed, the incumbent

cannot make a small investment to delay a large investment by the follower. Then the incentive to invest is

higher for the entrant, since it does not suffer from cannibalization. As a result, the incumbent is more eager

XPI

XPE

0.5 1 1.5 2 q
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myop
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q
1 I

X
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Figure 6: Preemption triggers XPI (solid) and XPE (dashed) with fixed capacity for different values of q1I

with K = 2.5. Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, and δ = 1000.
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Figure 7: Preemption triggers XPI (solid) and XPE (dashed) with fixed capacity for different values of K

with q1I = q
myop
1I . Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, and δ = 1000.

to delay its own investment and the entrant is the investment leader. Figure 7 shows that the observation

that the entrant invests first when capacity size is fixed, is robust with respect to changes in the size of

investment K.

5 Conclusions

The main message of this paper is that the interaction between timing and size of investment plays a

crucial role in the strategy of an incumbent facing the threat of entry in a dynamic market environment.

Where entry deterrence is generally understood to ward off entrants by overinvesting, we find that entry

is delayed by accelerating the investment. This induces an investment, which is smaller than that of an

incumbent in a comparable market without an entry threat. This implication of our analysis is well suited

to explain the empirical observations reported in Leach et al. (2013). These authors show that, contrary to

the predictions of the standard entry deterrence literature, the entry threat generated by the deregulation

of the U.S. telecommunication industry did not result in an increase of capacity investments by incumbents.

As the telecommunications industry in this period clearly has the characteristics of an expanding market,

it fits well with the setup of our model. Therefore, our insight that in the presence of choices about both

timing and size the incumbent’s investment should be smaller than without an entry threat, provides a

clear theoretical guidance for understanding these empirical observations. Also our result that, depending

on whether investment size is flexible or fixed, the incumbent or the entrant invests first, is not only a new

insight in the theoretical literature, but also gives rise to potentially testable empirical implications.

Our model considers the situation of one incumbent and one entrant. One could wonder how our results

change when the initial capacity of the entrant is not set to be equal to zero, i.e., the scenario where q1E > 0.

A model with two incumbents is very similar to the the model treated in Huberts (2017, Chapter 3). Applying

this paper’s model to that setting shows us that qualitatively our results remain intact. In this case it is the

larger firm that preempts the smaller firm rather than the incumbent preempting the entrant.
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Alternatively, one could consider a situation where instead of expanding, the firms have the option to

invest in an innovative product that is differentiation from the existing product. Findings in Huberts

(2017, Chapter 3) suggest that our result that the incumbent invests first carry over to scenarios where

the considered investments are not made for exactly the product the incumbent already has on the market,

but for a differentiated (new) product. A more extensive treatment of optimal investment patterns in

scenarios with product innovations by incumbent firms in our dynamic stochastic setting in any case is an

interesting avenue for future research.

Acknowledgements

The authors thank four referees for their excellent comments and constructive feedback. Furthermore, we

like to thank Maria Lavrutich, Hettie Boonman, Frank Riedel, Jan-Henrik Steg, Dolf Talman, Cláudia
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Appendix A: Proofs

A.1 Equilibrium Analysis

Proof of Proposition 1

We will first determine the payoff in the stopping and continuation region, which is followed by verification.

After that we determine for which values of X the firm optimally stops.

In the stopping region the firm realizes the accumulated and discounted expected profits VF (X, q2L) which

maximizes, with respect to q2F ,

E

[
∫ ∞

t=0

x(t)(q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))e
−rtdt

∣
∣
∣ x(0) = X

]

− δq2F (14)

= (q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))E

[∫ ∞

t=0

x(t)e−rtdt
∣
∣
∣ x(0) = X

]

− δq2F

= (q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))

∫ ∞

t=0

x(0)e(α−r)tdt− δq2F

=
X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))− δq2F . (15)

The follower’s payoff function consists of two terms. The expected discounted cash inflow stream resulting

from selling goods on the market is reflected by the first term. The involved cost, when making the invest-

ment, is captured by the second term. The optimal size of the investment is found by first optimizing the

payoff function, i.e. the firm chooses its capacity q2F ≥ 0 such that it maximizes its profits. Thereto we first

find the solution for the first order condition,

0 =
X

r − α
[1− η(q1L + 2q1F + q2L)− 2ηq2F )]− δ

⇔ (16)

q2F =
1

2η

[

1− η(q1L + 2q1F + q2L)−
δ(r − α)

X

]

. (17)

The right hand side of (17) is positive for X >
δ(r−α)

1−η(q1L+2q1F+q2L) and is an increasing function of X. As we

will show later, this forms the solution of the optimization problem in the stopping region. Let us therefore

already denote (17) by qopt2F (X, q2L). Since the control variable is measurable, continuous, and {Ft}-adapted,
we conclude that it is admissible.

The second order condition reassures us that this is indeed a maximum, −2η X
r−α

< 0.

In the continuation region, in which it is optimal for the firm to delay investment, the value function for

the leader, following standard real options analysis (see e.g. Dixit and Pindyck (1994)), is given by the value

of waiting, which follows from the following differential equation,

rφF (X, q2L) = Xq1F (1− η(q1F + q1L + q2L)) + αX
∂

∂X
φF (X, q2L) +

1
2σ

2X2 ∂2

∂X2
φF (X, q2L), (18)

with the restriction that φF (0) = 0. The solution is given by

VF (X, q2L) = AFX
β +

X

r − α
q1F (1− η(q1L + q1F + q2L)), (19)
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where β is the positive root (see e.g. Dixit and Pindyck (1994)) following from,

σ2β2 + (2α− σ2)β = 2r, (20)

which gives us (1). This function equals the sum of two terms reflecting the value of waiting and the value

of current production.

Showing optimality requires a verification theorem. Here we follow Gozzi and Russo (2006). First, we

observe that the integrand of (14) is continuous and bounded (since r > α). Secondly, (19) is a solution of

the HJB in the continuation region (18), and (15) solves the HJB in the stopping region,

rφF (X, q2L) = X(q1F + q2F )(1− η(q1F + q1L + q2L + q2F ))

+ αX
∂

∂X
φF (X, q2L) +

1
2σ

2X2 ∂2

∂X2
φF (X, q2L), (21)

with φF (0) = 0 (see Dixit and Pindyck (1994, p. 181-182) for the restrictions on φF (X) as X → ∞).

Moreover, (5) is finite and C1 (continuity at X = X∗
F (q2L) is shown below), and the first terms on the right

hand side of (18) and (21) are well defined, finite, and continuous. Finally, (17) is the solution of the first

order condition of (15) with respect to q2L. Then, optimality follows according to Theorem 2.8 (Gozzi and

Russo, 2006, p. 1534).

The investment trigger and the value of the parameter AF (q2L) can be found by applying the value

matching and smooth pasting conditions12,

X

r − α
(q1F + q

opt
2F (X, q2L))(1− η(q1L + q1F + q2L+q

opt
2F (X, q2L)))− δq

opt
2F (X, q2L)

= AFX
β +

X

r − α
q1F (1− η(q1L + q1F + q2L)), (22)

1

r − α
(q1F + q

opt
2F (X, q2L))(1− η(q1L + q1F + q2L+q

opt
2F (X, q2L)))

= AFβX
β−1 +

1

r − α
q1F (1− η(q1L + q1F + q2L)). (23)

Together they make

X

r − α
(q1F + q

opt
2F (X, q2L))(1− η(q1L + q1F + q2L + q

opt
2F (X, q2L)))

(

1− 1

β

)

− X

r − α
q1F (1− η(q1L + q1F + q2L))

(

1− 1

β

)

= δq
opt
2F (X, q2L),

which leads to

X =
β

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L + q
opt
2F (X, q2L))

.

Substituting qopt2F (X, q2L) and rewriting leads to the unique solution

X∗
F (q2L) =

β + 1

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L)
.

12Following the related real options literature we use value matching and smooth pasting conditions, which implicitly rely on

regularity assumptions with respect to the value function, for characterizing the investors’ inter-temporally optimal behavior

and abstain from providing explicit verification theorems for the optimality of the determined strategies.
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Notice that since β+1
β−1 > 1 we have that X∗

F (q2L) >
δ(r−α)

1−η(q1L+2q1F+q2L) . This means that for investments

undertaken in the stopping region we have that qopt2F (X, q2L) > 0 and that therefore (17) is in the control

space. For X < X∗
F (q2L) the firm waits to invest

q∗2F (q2L) = q2F (X
∗
F (q2L), q2L)

=
1− η(q1L + 2q1F + q2L)

η(β + 1)
.

Since (17) is positive for values of X around X∗
F (q2L) we have that (22)-(23) is sufficient, despite the fact

that strictly speaking max{0, qopt2F (X, q2L)} should have been used instead of qopt2F (X, q2L).

Moreover,

AF · (X∗
F (q2L))

β =
X∗

F (q2L)

r − α
q∗2F (q2L)(1− η(q1L + 2q1F + q2L + q∗2F (q2L)))− δq∗2F (q2L)

=
δq∗2F (q2L)

β − 1
.

This leads to

VF (X, q2L) =
δ

β − 1

(
X

X∗
F (q2L)

)β

q
opt
2F (X∗

F (q2L), q2L) +
X

r − α
q1F (1− η(q1L + q1F + q2L))

for the continuation region. Due to the assumption that r > α we have β > 1. The value function VF (X, q2L)

consists of two terms. The second term represents the current profit stream. In case the incumbent is follower,

this stream is positive with q1F = q1I . When the entrant is the follower one has q1F = 0 leading to zero

current profits. The first term is the current value of the option to invest.

To show that there is a single threshold with respect to the current value of X, separating the follower’s

continuation from the stopping region, we need to study

Xq1F (1− η(q1F + q1L + q2L))− rVF (X, q2L) + αX
∂

∂X
VF (X, q2L) +

1
2σ

2X2 ∂2

∂X2
VF (X, q2L). (24)

This is the difference between the value of waiting and the termination payoff (see e.g. Dixit and Pindyck

(1994, p. 130)). For X below
δ(r − α)

1− η(q1L + 2q1F + q2L)
(25)

we have that (17)< 0 so that the optimal follower capacity is equal to qopt2F (X, q2L) = 0. For these values of

X we find that (24) is equal to zero. For X above (25), equation (24) can be rewritten as

δ2(r − α)

4ηX
(σ2 − r − α)− X

4η
(1− η(q1L + 2q1F + q2L))

2
+ r

δ

2η
(1− η(q1L + 2q1F + q2L)).

Since the second term is always nonnegative it follows that this function is decreasing in X if σ2 > r+α. If

σ2 < r + α the following holds. For X between (25) and

δ

1− η(q1L + 2q1F + q2L)

√

(r − α)(r + α− σ2) (26)
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it holds that (24) is increasing and for X above (26), (24) is decreasing. Finally, for X equal to (25) we have

that (24) is equal to
δ

4η
(1− η(q1L + 2q1F + q2L))σ

2 > 0.

At this point it is strictly profitable to marginally wait, so investing cannot be optimal. From this,

as the second order condition is strictly negative for all X, we can conclude that in the region where

q
opt
2F (X, q2L) > 0, (24) has a unique root such that (24) is decreasing in that point. It now follows from Dixit

and Pindyck (1994, p. 130) that therefore the follower waits for X < X∗
F (q2L) and invests for X ≥ X∗

F (q2L).

�

The following lemma shows that the price remains positive after the follower’s investment.

Lemma 1 If 1− η(q1L + q1F + q2L) > 0, then 1− η(q1L + q1F + q2L + q
opt
2F (X, q2L)) > 0

Proof of Lemma 1

Assume 1− η(q1L + q1F + q2L) > 0. Rewriting gives

1− η(q1L + q1F + q2L + q
opt
2F (X, q2L)) =

1
2 (1− η(q1L + q1F + q2L)) +

1
2

(

ηq1F +
δ(r − α)

X

)

Since both terms are positive we conclude that the price after the follower’s investment remains positive. �

Proof of Proposition 2

In order to prove this proposition, we first have to derive the expressions for V det
L (X, q2L) and V

acc
L (X, q2L)

in case of instantaneous investment of the leader. Considering V det
L (X, q2L) we have

V det
L (X, q2L) = E

[
∫ τ∗

F

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L))e
−rtdt

+

∫ ∞

t=τ∗

F

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q∗2F (q2L)))e
−rtdt

∣
∣
∣x(0) = X

]

− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L)

− η(q1L + q2L)q
∗
2F (q2L)

X∗
F (q2L)

r − α

(
X

X∗
F (q2L)

)β

− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L))−

δ

β − 1
(q1L + q2L)

(
X

X∗
F (q2L)

)β

− δq2L (27)

where τ∗F = inf{t ≥ 0 | x(t) ≥ X∗
F (q2L)} is a stopping time of the follower. Here, as shown in Dixit and

Pindyck (1994) (Chapter 9, Section 3), we use that

E

[
∫ ∞

t=τ∗

F

x(t)e−rtdt
∣
∣
∣ x(0) = X, x(τ∗F ) = X∗

F (q2L)

]

=

(
X

X∗
F (q2L)

)β
X∗

F (q2L)

r − α
.

Since β > 1 we have that Xβ is (at least) C2 for all X > 0 and therefore we have that (27) is continuous

in X∗
F (q2L).
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Expression (27) can be interpreted as the expected revenue stream in case the follower will never invest

minus the adjustment of the cash flow stream from the moment the second firm makes an investment, followed

by the investment cost. The second term includes the discount factor E [e−rτF ] =
(

X
X∗

F
(q2L)

)β

, where again

τF is the time of investment of the follower (see Dixit and Pindyck (1994), Chapter 9, for derivations).

Similarly, for V acc
L (X, q2L) for the case of instantaneous investment:

V acc
L (X, q2L) = E

[
∫ ∞

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q
opt
2F (X, q2L)))e

−rtdt− δq2L

∣
∣
∣x(0) = X

]

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + q

opt
2F (X, q2L)))− δq2L

=
X

r − α
1
2 (q1L + q2L)(1− η(q1L + q2L))− 1

2δ(q2L − q1L). (28)

In the remainder of the proof we denote by qdetL (X) respectively qaccL (X) the maximizers of (27) respectively

(28) without taking into account the constraints on q2L. For any X for which the corresponding strategy is

feasible this value coincides with the definition of qdetL (X) and qaccL (X) in the main text.

The capacity qdetL (X) can be found by solving the first order condition,

X

r − α
[1− η(2q1L + q1F + 2q2L)]−

δ

β − 1

(
X

X∗
F (q2L)

)β [

1− ηβ(q1L + q2L)

1− η(q1L + 2q1F + q2L)

]

− δ = 0. (29)

From the second order condition

X

r − α
2η








β

β + 1
︸ ︷︷ ︸

<1

(
X

X∗
F (q2L)

)β−1

︸ ︷︷ ︸

<1

2− η(4q1F + (β + 1)(q1L + q2L))

2− η(4q1F + 2(q1L + q2L))
︸ ︷︷ ︸

<1

−1







< 0

we can conclude that V det
L (X, q2L) is concave with respect to q2L in the region where q2L is such that

X < X∗
F (q2L).

To find the value of qaccL (X) we solve the first order condition
∂V acc

L (X,q2L)
∂q2L

= 0 which gives

qaccL (X) =
1

2η

[

1− 2ηq1L − δ(r − α)

X

]

. (30)

It is easily checked that qaccL (X) ≥ 0 if and only if 1− 2ηq1L ≥ δ(r−α)
X

, i.e., if and only if

X ≥ δ(r − α)

1− 2ηq1L
.

The second order condition again makes sure that we obtain a maximum, −2η X
r−α

< 0.

Equation (3) gives the relation between the leader’s investment quantity q2L and the follower’s investment

threshold X∗
F (q2L). To that extent, there exists q̂2L(X) such that for q2L > q̂2L(X) it holds that X <

X∗
F (q2L). From (3) one obtains

q̂2L(X) =
1

η

[

1− η(q1L + 2q1F )−
δ(β + 1)(r − α)

(β − 1)X

]

.

If the leader chooses an investment q2L at a trigger XL such that q2L > q̂2L(XL), then the follower invests

with a delay after the leader’s investment and if the leader sets q2L at a trigger XL such that q2L ≤ q̂2L(XL)
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then the follower invests immediately. Note that since q̂2L(X) is a strictly increasing function of X and

q̂2L(X) = 0 for X = δ(β+1)(r−α)
(β−1)(1−η(q1L+2q1F )) , it follows that the follower’s investment is always delayed if the

leader invests at X <
δ(β+1)(r−α)

(β−1)(1−η(q1L+2q1F )) .

The optimization problem given on the right hand side of (6) can then be solved as follows. Let X ≥
δ(β+1)(r−α)

(β−1)(1−η(q1L+2q1F )) . The objective function is a piecewise function of V det
L (X, q2L) for q2L > q̂2L(X) and

V acc
L (X, q2L) for q2L ≤ q̂2L(X). Since (27) and (28) are both concave functions of q2L we can make the

following observations:

• If qdetL (X) < q̂2L(X), then q2L = q̂2L(X) gives the supremum of the payoff function V det
L (X, q2L) in

the region where q2L > q̂2L(X).

• If qaccL (X) > q̂2L(X), then q2L = q̂2L(X) gives the supremum of the payoff function V acc
L (X, q2L) in

the region where q2L ≤ q̂2L(X).

We then have four cases. In the first case qdetL (X) < q̂2L(X) and qaccL (X) ≥ q̂2L(X), in which case the

supremum is reached at q̂2L(X). As we will show later this case does not arise in our set-up. If qdetL (X) >

q̂2L(X) and qaccL (X) ≥ q̂2L(X), then the leader delays the follower and sets qdetL (X). The follower invests

immediately after the leader if qdetL (X) < q̂2L(X) and qaccL (X) ≤ q̂2L(X), where the leader sets qaccL (X). In

the last case where qdetL (X) > q̂2L(X) and qaccL (X) ≤ q̂2L(X) the optimum is found by comparing the payoff

functions at qdetL (X) and qaccL (X).

To show that for X > X2 delaying follower investment is not optimal we show that there exists X2

such that qdetL (X) > q̂2L(X) if and only if X < X2. The threshold X2 is determined by the condition

qdetL (X2) = q̂2L(X2). Total differentiating (29) with respect to X gives

dqdetL (X)

dX
=

1− η(2q1L + q1F + 2qdetL )− β
β+1

(
X

X∗

F
(q2L)

)β−1

(1− 2ηq1F − (1 + β)η(q1L + qdetL ))

X

[

2− β
β+1

(
X

X∗

F
(q2L)

)β−1 (

1− 1−η(2q1F+βq1L+βqdet
L

)

1−η(2q1F+q1L+qdet
L

)

)] > 0.

Since at X2 we have X∗
F (q

det
2L (X2)) = X2 the first order condition (29) reduces to,

0 =
δ

β − 1

1− 2ηq1L + η(β − 1)q1F − 2ηq2L
1− η(q1L + 2q1F + q2L)

⇔

qR2L =
1

2η
(1− 2ηq1L + (β − 1)ηq1F ). (31)

By plugging the latter expression into X∗
F (q2L) one obtains X2,

X2 = X∗
F (q

R
2L) =

β + 1

β − 1

2δ(r − α)

1− (β + 3)ηq1F
.

Considering now the feasibility of the inducing immediate follower investment strategy, we show that

there exists X1 such that qaccL (X) ≥ 0 and qaccL (X) ≤ q̂2L(X) if and only if X ≥ X1. A similar argument as
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above applies here that this is sufficient. Solving qaccL (X) = q̂2L(X) leads to

qaccL (X) =
1

2η

[

1− 2ηq1L − δ(r − α)

X

]

=
1

η

[

1− 2ηq1F − ηq1L − δ(β + 1)(r − α)

(β − 1)X

]

= q̂2L(X)

⇔

1− 4ηq1F =
δ(r − α)(β + 3)

(β − 1)X
⇔ X =

β + 3

β − 1

δ(r − α)

1− 4ηq1F
.

Hence,

X1 = max

{
β + 3

β − 1

δ(r − α)

1− 4ηq1F
,
δ(r − α)

1− 2ηq1L

}

.

Assume β+3
β−1

δ(r−α)
1−4ηq1F

≥ δ(r−α)
1−2ηq1L

. Then, we observe that

X1

X2
=

β + 3

2β + 2
︸ ︷︷ ︸

<1

1− (3 + β)ηq1F
1− 4ηq1F

︸ ︷︷ ︸

<1

< 1.

Assume β+3
β−1

δ(r−α)
1−4ηq1F

<
δ(r−α)
1−2ηq1L

. Then,

X1

X2
=

1− (β + 3)ηq1F
1− 2ηq1L

β − 1

2β + 2
︸ ︷︷ ︸

<1

In case q1L = 0 it follows straight that the first fraction is smaller than 1. For the case where q1F = 0,

rewriting X1

X2
< 1 gives

q1L <
1

η

β + 3

4β + 4
.

Since the right hand side is larger than q
myop
1I we can conclude that this inequality holds and therefore

X1 < X2.

Furthermore, for X = X1 we have by definition qaccL (X) = q̂2L(X) (ignoring the trivial case where

qaccL (X) = 0) and, due to X1 < X2, q
det
L (X1) > q̂2L(X1). Since qdetL (X) is the maximizer of V det

L (X, q2L),

where this function denotes the expression in (27) for a general investment size q2L, this yields

V det
L (X1, q

det
L (X1)) > V det

L (X1, q
acc
L (X1)) = V acc

L (X1, q
acc
L (X1)),

where the last equality follows from the observation that at q2L = qaccL (X1) = q̂2L(X1) the payoff functions

for both investment strategies coincide. Similarly, we obtain for X = X2

V acc
L (X2, q

acc
L (X2)) > V acc

L (X2, q
det
L (X2)) = V det

L (X2, q
det
L (X2)),

because it holds that qdetL (X2) = q̂2L(X2). Since the delaying follower investment strategy is feasible for

X ∈ [0, X2] and the inducing immediate follower investment strategy for X ∈ [X1,∞) we conclude that for

X ≤ X1 the leader optimally delays the follower’s investment and for X ≥ X2 the follower is induced to

invest immediately.

A verification theorem shows (27), (28), (29), and (30) are indeed solutions and optimal controls for the

problem in the stopping region posed in the main text. This verification theorem is equivalent to the one
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described in the proof op Proposition 1 where we follow Gozzi and Russo (2006). The HJB in the stopping

region is given by

rφL(X, q2L) = X(q1L + q2L)(1− η(q1L + q1F + q2L + q
opt
2F (X, q2L)))

+ αX
∂

∂X
φL(X, q2L) +

1
2σ

2X2 ∂2

∂X2
φL(X, q2L),

with φL(0) = 0 (see Dixit and Pindyck (1994, p. 181-182) for the restrictions on φL(X) as X → ∞) for the

case where the follower invests immediately after the leader and

rφL(X, q2L) = X(q1L + q2L)(1− η(q1L + q1F + q2L)) + αX
∂

∂X
φL(X, q2L) +

1
2σ

2X2 ∂2

∂X2
φL(X, q2L),

with φL(0) = 0 and

φL(X, q2L) =
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + q∗2F (q2L) as X ↑ X∗

F (q2L)

when the follower is delayed. As the payoff functions and investment sizes are continuous in X, we have that

the value function is continuous as well. Since the other verification conditions for problems of the follower

and leader are very similar on a technical level, we refrain from further elaboration. The analysis on the

continuation region is done in the proof of Proposition 3.

�

Technically speaking, the values of X2 and X1 are not strictly positive for all parameter settings. Since

X2 > 0 if X1 > 0 let us look at the case where X1 < 0. If the incumbent is the leader (as we will see later,

this is indeed the equilibrium outcome), it follows from the arguments in the proof of Proposition 2 that

X1 > 0. When the incumbent is the follower, cases arise where X1 < 0. This simply means that for all

values of X the optimal investment size of the leader determined under the assumption that the follower

invests immediately indeed induces immediate investment by the follower. A similar analysis can be done

for X2 < 0. Nevertheless, since, as we will see later, the incumbent will take the leader role, we refrain from

further analyzing these cases.

Proof of Proposition 3 First, we establish the existence of the threshold X0. In the case X is so small

that qdetL (X) = 0, no investment is made at this point. We define a corresponding lower bound for X, under

which the optimal investment, under the assumption that the follower is delayed, is zero, by

X0 = inf{X | qdetL (X) > 0}.

The conditions determining X0 follows from the first order condition (29) by setting q2L = 0. To show

that there exists a unique point X0, it is sufficient to do the following. Define ψ(X) =
∂V det

L (X,q2L)
∂q2L

|q2L=0,
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this function dictates the first order conditions for the value of X yielding zero capacity,

ψ(X) =
X

r − α
[1− η(2q1L + q1F )]

− δ

β − 1

(
β − 1

β + 1

1− ηq1L − 2ηq1F
δ(r − α)

X

)β [

1− ηβq1L

1− ηq1L − 2ηq1F

]

− δ.

Then,

ψ(0) = − δ < 0,

ψ(X∗
F ) =

δ

β − 1

1− 2ηq1L + (β − 1)ηq1F
1− ηq1L − 2ηq1F

,

ψ′(X) =
1− η(2q1L + q1F )

r − α

[

1− β

β + 1

(
X

X∗
F (q2L)

∣
∣
∣
q2L=0

)β−1
]

+
β

β + 1

(
X

X∗
F (q2L)

∣
∣
∣
q2L=0

)β−1
ηq1F + (β − 1)ηq1L

r − α
.

From (31) it follows that ψ(X∗
F ) > 0. Since ψ′(X) > 0 one can conclude that, according to the Mean Value

theorem, there exists a unique X0 ∈ (0, X∗
F ) such that qdetL (X0) = 0.

In order to obtain the thresholds Xdet
L and Xacc

L we compare the value for the leader when investing

immediately, which was calculated in the proof or Proposition 2 with the value obtained by the leader if

it delays investment to a later point in time. Assuming the leader uses the delaying follower investment

strategy in the stopping region, the leader’s payoff function is given by (27). If X is in the continuation

region, in which the leader does not invest immediately, the leader’s value is obtained (following the same

arguments as used in the determination of the follower’s value function in its continuation regions) by setting

F det
L (X) = Adet

L Xβ +
X

r − α
q1L(1− η(q1L + q1F )).

Applying the value matching and smooth pasting conditions shows that waiting increases the leader’s payoff

up to a value of XL given in (10) and

Adet
L = (Xdet

L )−β δq
det
L (Xdet

L )

β − 1
− δ

β − 1
(q1L + qdetL (Xdet

L )) (X∗
F ( q

det
L (Xdet

L )))−β . (32)

In order to show that for sufficiently small q1L there exists a pair (Xdet
L , qdet∗L ) satisfying (10) and the first

order condition for the leader, we insert (10) into (29). We treat the following two cases separately. First

we look at the scenario where the incumbent is the investment leader. Then, q1F = 0 and one obtains the

equivalent condition

β

(

1− 1− η(2q1L + 2q2L)

1− η(2q1L + q2L)

)

= 1− 1− η(β + 1)(q1L + q2L)

1− η(q1L + q2L)

(
β

β + 1

)β

. (33)

After rewriting this equation, one could similarly say that it is required that H(q2L) = 0, where,

H(q2L) = 1− η(q1L + q2L) + β

[
1− η(2q1L + 2q2L)

1− η(2q1L + q2L)
− 1

]

(1− η(q1L + q2L))

− (1− η(β + 1)(q1L + q2L))

(
β

β + 1

1− η(q1L + q2L)

1− η(2q1L + q2L)

)β

.
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Then,

H(0) = (1− ηq1L)









1−
(

β

β + 1

1− ηq1L

1− 2ηq1

)β

︸ ︷︷ ︸

<1 if q1L< 1
η(β+2)

1− η(β + 1)q1L
1− ηq1L

︸ ︷︷ ︸

<1









> 0,

H

(
1− 2ηq1L

2η

)

= −1

2
(β − 1)

[

1−
(

β

β + 1

1

1− 2ηq1L

)β
]

< 0, and

dH(q2L)

dq2L
= −η + η(β + 1)

(
β

β + 1

1− η(q1L + q2L)

1− η(2q1L + q2L)

)β

︸ ︷︷ ︸

(∗)

− βηq2L

1− η(2q1L + q2L)

[
1− η(q1L + q2L)

1− η(2q1L + q2L)
− 1

]

︸ ︷︷ ︸

>0

− β

(
β

β + 1

1− η(q1L + q2L)

1− η(2q1L + q2L)

)β
η2q1L(1− η(β + 1)(q1L + q2L))

1− η(2q1L + q2L)
− ηβ

1− η(q1L + q2L)

1− η(2q1L + q2L)
< 0.

We observe that H(0) is positive for at least q1L < 1
η(β+2) . The first order condition should show that

H(q2L) as a unique root. For the first two terms, labeled by (∗), one can show that these together are

negative for small values q2L and positive for high value of q2L when q1L is below 1
η(β+2) . Moreover, (∗)

is a strictly increasing function with respect to q2L. All the other terms in the first order condition are

negative. It can be concluded that, according to the Mean Value Theorem, there exists a q2L on the interval
(

0, 1−2ηq1L
2η

)

, such that H(q2L) = 0 for sufficiently small value of q1L. This value is denoted by qdet∗L . Earlier

we showed that qdetL is an increasing function. Then, since 1
2η (1 − 2ηq1L) = qR2L, it follows that Xdet

L > X0

and Xdet
L < X2. Note that this also implies X0 < X2.

In a similar way one can prove this for the scenario where the entrant is the leader. Here, one shows that

for q2L = 0 the function H takes a positive value, while for q2L = 1
2η < qR2L the function becomes negative.

In this scenario there is a unique root for all values of q1F > 0.

The leader’s payoff function under the inducing immediate follower investment strategy is determined in

the same way as before. Upon immediate investment the leader’s optimal payoff is given by (28), where the

leader’s optimal investment is given by (30).

With respect to the value before investment, assuming again a function of the form

F acc
L (X) = Aacc

L Xβ +
X

r − α
q1L(1− η(q1L + q1F ))

one can apply the value matching and smooth pasting conditions while applying the envelope theorem. Using

q1L · q1F = 0, to simplify the term for Xacc
L (q2L) resulting from these two conditions one ends up with (11).

Moreover,

Aacc
L (Xacc

L )β =
Xdet

L

r − α
[(q1L + qaccL )(1− η(q1L + q1F + qaccL + q∗2F ))− q1L(1− η(q1L + q1F ))]− δqaccL

=
δβ

β − 1
qaccL − δqaccL =

δqaccL

β − 1
.

To show existence of (qacc∗L , Xacc
L ) for sufficiently small q1L we insert q1L = 0 and (11) into the equation

qacc∗L = qaccL (Xacc
L ). Solving for q2L gives qacc∗L = 1

3β−1 > 0. Therefore, by continuity, we haveXacc
L >

δ(r−α)
1−2ηq1L

for sufficiently small q1L.
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To verify optimality we need to check that the value function solves the HJB. Optimality of the control

variable, which is set at q2f = 0, f ∈ {I, E} in the continuation region, follows from the same arguments as

before. The HJB in the continuation region is given by

rφL(X, q2L) = Xq1L(1− η(q1L + q1F )) + αX
∂

∂X
φL(X, q2L) +

1
2σ

2X2 ∂2

∂X2
φL(X, q2L).

where the first term on the right hand side is well defined, finite and continuous. This extends and completes

the verification of the leader’s optimization problem. �

For the proof of Proposition 4, we follow Pawlina and Kort (2006) who show that there are four types of

equilibria in these types of games:

• preemption equilibria,

• sequential investment,

• simultaneous investment, and

• joint investment.

Preemptive equilibria are explained in the text. Sequential equilibria would imply that one firm is investing

strictly before the preemption point of the competitor, which occurs when the investment trigger Xdet
L of

the firm with the smallest preemption point lies between the two firms’ preemption points. In this type of

equilibrium the entrant has no influence on the timing of the first investor. The remaining two types of

equilibria involve tacit collusion among the firms. When firms decide to collude, they wait for the market to

expand, that is, wait for a larger value of X, before investment is undertaken together at the same time. One

can discriminate two types of collusion, distinguished by the order in which firms determine their capacity

size. In the first type, one firm is Stackelberg capacity leader and decides upon the amount first where

subsequently the second firm makes an immediate investment. The second investor sets its capacity after

the first firm decided upon its investment scale. This type is called simultaneous investment. The second

type, referred to as joint investment, is the category where there is no colluded investment order. Firms

simultaneously decide upon capacities, leading to a Cournot type of equilibrium.

Proof of Proposition 4

Existence of the preemption equilibrium follows from the arguments given in the text. The following three

lemmas rule out the existence of sequential investment, simultaneous investment, and joint investment equi-

libria. Hence, for this setting only the preemptive type of equilibrium exists.

Notice that since Xacc
L < X̂ we have that V det

L (X) > V acc
L (X) at Xacc

L and therefore also at Xdet
L .

Lemma 2 Assume that q1I = q
myop
1I . Then for the incumbent the leader’s investment threshold Xdet

L (qmyop
1I , 0)

does not exist. Hence, it is optimal for the incumbent to delay investment as much as possible and to invest

just before the entrant’s preemption point XPE.
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Proof of Lemma 2

Recall that before investment, the option value is given by

F det
L (X) =

X

r − α
q1L(1− η(q1L + q1F )) +Adet

L Xβ .

Then Adet
L reflects the net gain from investment and can be found by solving the value matching condition,

lim
X↓Xdet

L

V det
L (X) = lim

X↑Xdet
L

V det
L (X).

Let Xdet
L and X∗

F (q2L) be defined as in equations (10) and (3). Let q1L = q
myop
1I = 1

η(β+1) and q1F = 0.

Then we get, from (32),

Adet
L = (Xdet

L )−β δq
det
2I

β − 1
− δ

β − 1
(qmyop

1I + qdet2I )(X∗
F )

−β

=
δ

β − 1

[

qdet2I

[(
1

Xdet
L

)β

−
(

1

X∗
F (q2L)

)β
]

− q
myop
1I

(
1

X∗
F (q2L)

)β
]

.

Next,

Xdet
L

X∗
F (q2L)

=
β − 1 + 1

β+1 − βηqdet2I

β − 1− (β + 1)ηqdet2I

> 1,

so that Xdet
L > X∗

F (q2L), and therefore

(
1

Xdet
L

)β

−
(

1

X∗
F (q2L)

)β

< 0.

If follows that Adet
L < 0. This means that investment decreases the incumbent’s payoff and the incumbent

would never choose this strategy as a leader, if investment roles were exogenously determined. Hence, Xdet
L

does not exist and under endogenous investment roles it is optimal for the incumbent to delay investment

as long as possible without jeopardizing the role as leader. �

Lemma 3 Simultaneous investment does not yield an equilibrium.

Proof of Lemma 3

For the resulting payoff functions, the curves in Figure 2a should be considered. Here, the Stackelberg leader

utilizes the inducing immediate follower investment strategy, denoted by acc. As a result, the competitor

receives the follower value, being smaller than the leader value. For this reason neither of the firms would

prefer to be a follower in the outcome and they would, consequently, preempt each other in taking the leader

role. This forces the firms to end up in the region where the leader delays the follower’s investment and the

sole resulting equilibrium is the preemptive equilibrium where the follower prefers to wait rather than invest

at the same time. Hence, simultaneous investment is not an equilibrium. �

Lemma 4 Joint investment does not yield an equilibrium.
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Proof of Lemma 4

Let J(X, q2L, q2F ) be the firm value for joint investment, then,

J(X, q2L, q2F ) =
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + q2F ))− δq2L.

Optimal capacities equal

q
join
2L =

1

3η

(

1− δ(r − α)

X

)

− q1L,

q
join
2F =

1

3η

(

1− δ(r − α)

X

)

− q1F .

This leads to

V acc
L (X, qaccL ) =

X

r − α

1

8η

(

1− δ(r − α)

X

)2

+ δq1L,

J(X, qjoin2L , q
join
2F ) =

X

r − α

1

9η

(

1− δ(r − α)

X

)2

+ δq1L.

Hence, it holds that V acc
L (X, qaccL ) > J(X, qjoin2L , q

join
2F ) for all X > δ(r − α). This is sufficient to show that

joint investment does not yield an equilibrium. �

Intuition behind this result is that when a firm is the leader, it can set a larger capacity which leads to a

higher payoff.

This concludes the proof of the proposition.

A.2 Overinvestment

The value function of the monopolist, in the stopping region, is given by

VM (X) = sup
q2≥0

{

E

[
∫ ∞

0

(q1 + q2)X(t)(1− η(q1 + q2))e
−rtdt

∣
∣
∣ x(0) = X

]

− δq2

}

= sup
q2≥0

{
X

r − α
(q1 + q2)(1− η(q1 + q2))− δq2

}

,

in which q1 is the initial capacity and q2 corresponds to the capacity acquired by investment. Maximizing

the monopolist’s payoff function leads to the optimal capacity expansion size,

qmon
2 (X) = max

{

0,
1

2η

(

1− 2ηq1 −
δ(r − α)

X

)}

.

Hence, one obtains,

VM (X) =







X
r−α

q1(1− ηq1) +
(

X
X∗

M

)β
δ

β−1q
mon∗
2 if X < X∗

M ,

(X(1−2ηq1)−δ(r−α))2

4η(r−α)X + Xq1(1−ηq1)
r−α

if X ≥ X∗
M ,

where β is defined as in (1). The optimal moment of expansion is defined as the value of x for which the

option to wait no longer yields a larger value than immediate investment. The value matching and smooth
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pasting conditions give the threshold and capacity size

X∗
M =

β + 1

β − 1

δ(r − α)

1− 2ηq1
,

qmon∗
2 =

1− 2ηq1
η(β + 1)

.

Appendix B: Markov Perfect Equilibrium Strategies

In order to provide the profile of equilibrium strategies corresponding to the outcomes discussed in the

treatment of endogenous firm roles in Section 3.2 we consider a scenario, in which, in accordance with

the presented numerical evidence, we have XPI < XPE and Xdet
L (q1I , 0) > XPE . This means that the

preemption point of the incumbent is below that of the entrant and the incumbent has no incentive to

invest below the opponent’s preemption point. Furthermore, we denote by X̂I and X̂E the thresholds

separating the regions where delaying the follower investment and inducing immediate follower investment

are optimal from the perspective of the incumbent and the entrant. The two inequalities above imply that

XPE < min{X̂I , X̂E}. Consider now for a given initial capacity of the incumbent, q1I , the following profile

of Markovian strategies

q̃2I(X,QI , QE ,m) =







q
opt
2F (X,QE , 0; q1I) m = mI ∧X ≥ X∗

F (QE ; 0, q1I),

qdetL (X, q1I , 0) m = m0 ∧XPI ≤ X < X̂I ,

qaccL (X, q1I , 0) m = m0 ∧ X̂I ≤ X,

0 else.

In order to be able to distinguish between the cases in which the incumbent and the entrant are the follower,

we write here the optimal quantity of the follower, given in (2), as qopt2F (X, q2L; q1L, q1F ), explicitly listing the

initial quantities of leader and follower as arguments. Similarly we write the follower’s investment threshold,

given in (3), as X∗
F (q2L; q1L, q1F ). Note that the first line corresponds to the mode where the incumbent is

the follower, whereas the second and third line determine behavior in mode m0 where both firms have not

invested yet. By definition, the incumbent is the leader in these scenarios if it invests. Similarly, the entrant

is the leader if it invests in this mode and we have

q̃2E(X,QI , QE ,m) =







q
opt
2F (X,QI − q1I ; q1I , 0) m = mE ∧X ≥ X∗

F (QI − q1I ; q1I , 0),

qdetL (X, 0, q1I) m = m0 ∧XPE ≤ X < X̂E ,

qaccL (X, 0, q1I) m = m0 ∧ X̂E ≤ X,

0 else.

The planned stopping times of the firms are given by

τ̃f (QI , QE ,m) =







inf{t ≥ 0|x(t) ≥ X∗
F (Qg − q1g, q1g, q1f )} m = mf , g 6= f

inf{t ≥ 0|x(t) ≥ XPE m = m0.
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To complete the profile we also have

κf (X,QI , QE) =







0 X ≤ XPf

1 X > XPf

, f ∈ {I, E}.

To see that this profile is indeed an equilibrium profile, first note that it follows directly from our analysis

of the follower’s problem that both firms act optimally in all subgames where the opponent has already

invested. Considering the subgames where the opponent has not invested yet and X > XPE , both firms

face an opponent which instantaneously invests. Hence, both are the follower for sure if they do not invest,

whereas with probability 0.5 they are the leader if they choose a positive investment. Since the leader’s payoff

function is above the follower’s payoff function for both firms, it is optimal for each firm to try to invest

instantaneously and to choose the investment according to the optimal leader value. Hence, both choose a

positive q̃2F and κf = 1 in all these subgames. For the subgame where X = XPE the entrant is indifferent

between being the leader and the follower. Hence, it is optimal for this firm to choose q̃2E according to the

optimal value as a leader and at the same time κE = 0. Given the strategy of the incumbent this implies

that the entrant does not invest at this point and receives the follower value, which is the optimal value it

could gain in this subgame. On the other hand, any deviation of the incumbent from κI = 1 would induce

a positive probability to become the follower, and therefore reduce the value of the incumbent (since the

incumbents leader payoff function is above the follower payoff function at X = XPE). Hence, the optimal

strategy of the incumbent must have a positive value q̃2I and κI = 1 in this subgame. The actual value of

q̃2I then follows directly from the analysis of the leader’s problem in Section 3.1. Finally, for all subgames

with X < XPE neither of the firms can gain by instantaneous investment and hence the given strategies

are optimal. Overall, these arguments show that the strategy profile given above indeed corresponds to a

Markov Perfect equilibrium of the game and yields the behavior and outcome discussed in Section 3.2.

Finally, we like to point out that for x(0) < XPE , which is the only initial condition relevant for our

economic analysis, it is not only ruled out that any subgame with X > XPE and no prior investment is ever

reached, but also no firm can make it possible that such a subgame is reached by a unilateral deviation of

its strategy. Hence, in principle the fact that the discussed behavior for such initial conditions corresponds

to a Markov Perfect equilibrium could be established without determining equilibrium behavior and payoff

functions for the subgames with X > XPE and no prior investment. In particular, this highlights that the

exact values of X̂E or X̂I are irrelevant for our economic analysis given that they are above XPE .

Appendix C: Robustness

Robustness of the preemption equilibrium

In Figures 8 and 9 we show the differences in preemption points (XPE − XPI) for variations of all model

parameters in a relevant range. This is done for both q1I = q
myop
1I and q1I = 0.5. Similarly, in Figure 10,
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the difference between the leader’s investment trigger under the delaying follower investment strategy under

the entrant’s preemption point (Xdet
L −XPE) is shown for the same parameter variations and q1I = 0.5. For

q1I = q
myop
1I the investment trigger Xdet

L does not exist and hence the incumbent does not have an incentive

to invest before the entrant’s preemption point is reached (see Lemma 2 in Appendix A). These figures

confirm the claim that, apart from the hardly relevant case where η is extremely small (discussed in Section

3.4), under all parameter variations the preemption equilibrium with the incumbent as leader exists.

Sensitivity Analysis

The aim of this section is to briefly study the effect of the model parameters on the equilibrium. In this model

there are six parameters to be taken a closer look at. First of all, the sensitivity parameter η capturing the

negative relation between prices and output. The second parameter is the discount rate r. Then, the drift

parameter α and the volatility parameter σ reflecting the market’s uncertainty, both present in the geometric

Brownian motion describing the state variable’s path. Subsequently, we have the marginal investment cost

δ.

η r α δ σ

XPE (q1I = q
myop
1I ) 0 + -/+ + +

qdet2I (q1I = q
myop
1I ) - +/- +/- 0 +/-

XPE (q1I fixed) + + - + +

qdet2I (q1I fixed) - - + 0 +

Table 1: Effect of an increase in parameter values on triggers and capacities.

When η increases the output q2I decreases exactly canceling out the increase in η, i.e. the product η · q2I
remains constant. Similarly η · qmyop

1I and η · qE remain constant. In this way, when assuming q1I = q
myop
1I ,

neither the investment threshold Xdet
L , nor the preemption trigger are affected by an increase in η. However,

when one assumes q1I to be fixed, triggers are affected. An increase in η means an increase in ηq1I and

therefore a decrease in the price, which, hence, makes firms delay investment. Nevertheless, the total effect

on the investment size is negative, considering the different effects. When discounting is done under a

higher rate, firms value future revenues relatively less, become more concerned about current profits, and

therefore delay investment. In the first place, this increases the myopic capacity size on the initial market.

In the second place, since there are two effects that influence the optimal investment size for the expansion

- delaying increases the capacity level, but a larger old market decreases it - it is found that the change is

ambiguous. For small r the installment increases, but for relatively large r it decreases. When one fixes

the initial capacity, the effect of the old market dominantly influences the capacity leading to decreasing

installments. As standard in literature, the drift parameter has an opposite effect: a larger α makes firms

invest earlier. The main line of reasoning is the same, when the drift parameter increases. Market demand,
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Figure 8: Difference between preemption points with q1I = q
myop
1I . Default parameters: α = 0.02, r =

0.1, σ = 0.1, η = 0.1, and δ = 1000.
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Figure 9: Difference between preemption points with q1I = 0.5. Default parameters: α = 0.02, r = 0.1, σ =

0.1, η = 0.1, and δ = 1000.
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Figure 10: Difference between the incumbent’s investment triggers and the entrant’s preemption point for

q1I = 0.5. Default parameters: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, and δ = 1000.
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and therefore profits, are expected to increase more rapidly; one is then prepared to invest earlier to meet the

same expectations concerning expected revenues. Nevertheless, when the initial capacity also changes under

a change in parameter values,13 a second effect comes in, similar to the analysis of η: A larger drift increases

the initial capacity which leads to a delay of the investment. The effect on the optimal capacity is similar to

the effect of r when the initial capacity is determined endogenously as qmyop
1I , but is, as expected, opposite

to r when fixing it. The marginal investment cost has a positive effect on the investment trigger. When

investing becomes more expensive, firms prefer to wait for a market where a larger output is required in

order to meet the larger costs. The optimal capacities, both when fixing the initial market size and taking it

myopically, are not affected. Finally, in a more uncertain market, i.e., a larger σ, future realizations become

more important. Waiting gives more information. This leads to the decision to wait for a higher price, in

other words, the firm is only prepared to invest for a larger value of x. This leads to an increase in the

optimal capacity size. However, as in the case of r and α, the effect is ambiguous when assuming a myopic

initial market size.

13Note that, since the initial capacity equals the myopic investment level, i.e. q1I = 1
η(β+1)

, its level depends on the other

parameter values.
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