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Improved Realtime State-of-Charge Estimation
of LiFePO4 Battery Based on a Novel

Thermoelectric Model

Cheng Zhang, Kang Li, Senior Member, IEEE, Jing Deng, and Shiji Song

Abstract—Li-ion batteries have been widely used in elec-
tric vehicles, and battery internal state estimation plays an
important role in the battery management system. How-
ever, it is technically challenging, in particular, for the
estimation of the battery internal temperature and state-of-
charge (SOC), which are two key state variables affecting
the battery performance. In this paper, a novel method is
proposed for realtime simultaneous estimation of these two
internal states, thus leading to a significantly improved
battery model for realtime SOC estimation. To achieve this,
a simplified battery thermoelectric model is firstly built,
which couples a thermal submodel and an electrical sub-
model. The interactions between the battery thermal and
electrical behaviours are captured, thus offering a compre-
hensive description of the battery thermal and electrical
behaviour. To achieve more accurate internal state estima-
tions, the model is trained by the simulation error mini-
mization method, and model parameters are optimized by
a hybrid optimization method combining a meta-heuristic
algorithm and the least square approach. Further, time-
varying model parameters under different heat dissipation
conditions are considered, and a joint extended Kalman
filter is used to simultaneously estimate both the battery
internal states and time-varying model parameters in re-
altime. Experimental results based on the testing data of
LiFePO4 batteries confirm the efficacy of the proposed
method.

Index Terms—Internal temperature estimation, SOC esti-
mation, thermoelectric model, joint extended Kalman Filter

I. INTRODUCTION

E
LECTRIC vehicles (EVs) and hybrid electric vehicles

(HEVs) have gained rapid development worldwide in

recent years as a means to tackle the pollutions and low

efficiency problems of internal combustion engine based ve-

hicles in the transportation sector. The EV and HEV batteries

usually consist of hundreds or even thousands of battery cells
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connecting in series/parallel configuration. Therefore, a battery

management system (BMS) is essential to ensure safe and

efficient battery operations [1]. One key functionality of the

BMS is to estimate battery internal states that are not directly

measurable, such as the battery internal temperature and state

of charge (SOC) which are two major factors affecting the

battery performance.

In practice, only the surface temperature is directly mea-

surable for commercially used EV batteries. Yet, it is the

battery internal temperature that directly affects the battery

performance, and a large temperature difference may occur

between battery internal and surface temperatures (e.g., some-

times greater than 10◦C [2]), especially in high power demand

applications. Realtime estimation of the battery internal tem-

perature is thus of great importance for BMS. Firstly, high

internal temperature is a real threat to battery safe operation

[1]. Excessive temperature can greatly accelerate the battery

ageing process, and even cause fire or explosion of the battery

pack in severe cases [3]. The battery internal temperature can

reach to a critical temperature a lot quicker than the surface

temperature, thus the surface temperature measurement alone

is not sufficient to ensure safe battery operation. Secondly, the

battery electrical properties, such as usable capacity, internal

resistance and power delivery ability all depend on the battery

internal temperature. Therefore, it can help develop a more

accurate battery electrical model by estimating the battery

internal temperature. Finally, the estimation of the battery

internal temperature can serve as an indicator in designing

proper battery thermal management strategies.

Over the years, various battery thermal models of different

accuracy and complexity levels have been proposed, such

as complex distributed electrochemical thermal models for

thermal simulation [4], [5] and simplified lump-parameter

thermal models for realtime applications [6], [7]. Based on the

developed models, different model-based estimation methods,

such as Kalman filter method, have been proposed for realtime

estimation of the battery internal temperature [8], [9].

Battery SOC is another key indicator for EV and HEV

batteries. Battery SOC indicates the charge left in the battery

available for further service, and it is like the fuel gauge in

an ICE car, thus inaccurate SOC estimation may cause the car

to strand halfway. Besides, battery SOC can also be used to

prevent over-charging and over-discharging operations. There

are various SOC estimation methods available in the literature

[10]–[14].
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Despite extensive researches have been carried out, to our

knowledge, few papers have dealt with the simultaneous

realtime estimation of both the battery internal temperature

and SOC, though these two states are closely coupled. Further,

for model based battery internal state estimation methods,

a battery model needs to be built first. Yet, few papers

have considered the interactions between the battery internal

thermal and electrical behaviours, except for those complex

three dimensional electrochemical models [15], [16]. However,

these first-principle electrochemical models are not suitable for

realtime EV applications. On the other hand, many papers on

battery SOC estimation did consider the effect of the ambient

temperature on battery electrical performance [17]–[19], but

only the battery surface temperature is used.

In our previous work [20], the estimation of the battery

internal temperature is addressed based on a novel simplified

battery thermoelectric model, based on which SOC is then

estimated. While the proposed model in [20] has a good model

accuracy, but when it is used for the SOC estimation, the

results are still poor in some cases. Further, in [20], only heat

generation from the series internal resistance is considered,

and the model is only applicable for natural heat convection

condition at room temperature. The effect of forced heat

dissipation methods, which are commonly used in the battery

thermal management system, on the battery thermal behaviour

is not studied.

The main contributions of this paper are summarized as

follows. Firstly, methods for estimating the heat generation rate

inside the battery, a key element for building a suitable bat-

tery thermal model are investigated and compared. Secondly,

time-varying parameters in the thermal model under different

heat dissipation conditions are taken into consideration to

achieve higher modelling accuracy. Thirdly, a more realistic

and detailed battery electrical model that considers both the

battery relaxation effect and hysteresis effect is adopted. The

battery electrical model is identified under different SOC and

temperature levels. With the above introduced techniques, the

effect of battery internal temperature and SOC on the battery

electrical behaviours is thus captured in detail, offering a

comprehensive and better description of the battery thermal

and electrical behaviours. Fourthly, to improve the model

accuracy, the simulation error minimization method is adopted

for training the battery model, and a hybrid optimization

method that combines a meta-heuristic algorithm (i.e., the

teaching learning based optimization (TLBO) method) and

the least square approach is adopted for model parameter

optimization. Finally, a joint extended Kalman filter method is

applied to estimate the internal model states and time-varying

model parameters simultaneously.

The rest of this paper is organized as follows. Section II

presents a simplified battery thermoelectric model, including

an electrical submodel and a thermal submodel. The test

data collected under different heat dissipation scenarios are

discussed in Section III. The simulation error minimization

model training method and the hybrid parameter optimization

method are given in section IV, along with the identified

model parameters and modelling results. Considering the time-

varying nature of the model parameters, joint EKF method

is applied to estimate the battery internal states and the

time-varying model parameters simultaneously in Section V.

The experimental results are presented and analysed. Finally,

Section VI concludes this paper.

II. BATTERY THERMOELECTRIC MODEL

A. Battery electric circuit model

Different kinds of battery models have been developed so far

[21]. For the LiFePO4 battery used in this paper, to achieve

accurate modelling and state estimation, two key challenges

must be addressed, i.e., the hysteresis effect and the long

relaxation process. In this paper, we adopt a second-order

electric circuit model coupled with the hysteresis effect as

shown in Fig 1,
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Fig. 1. Battery electric circuit model

where OCV is the battery open circuit voltage (OCV),

v, i are the battery terminal voltage and current, respectively.

Ri represents the battery internal resistance. R1C1 is used

to capture the battery short-term relaxation dynamics, while

R2C2 for capturing the long-term relaxation process. The

over-potentials across these two RC networks are v1, v2,

respectively. Battery OCV is the battery terminal voltage when

the battery internal equilibrium is reached in the absence of

load. Battery OCV depends on the battery SOC, temperature

and previous charging/discharging history, which is referred

to as the hysteresis effect and is captured by Vh. However,

according to [22], battery OCV changes slowly with temper-

ature, e.g., less than 10mV as temperature changes from -10

to 50◦C. Therefore, the temperature effect on battery OCV is

not considered here, and

OCV = f(soc) (1)

Battery SOC can be calculated as follows,

soc(k) = soc(k − 1) + i(k − 1) ∗ Ts/3600/Cn (2)

where Ts is the sampling time in seconds, and Cn is the battery

nominal capacity in Ampere hour (Ah).

Following the dynamics of a RC network, we have

vl(k) = al ∗ vl(k − 1) + bl ∗ i(k − 1) (3)

where al = exp(−Ts/Rl/Cl), bl = Rl ∗ (1− al), l = 1, 2.

The same battery hysteresis dynamic model proposed in

[13] is adopted here, as follows,

Vh(k) =e−γ∗|i(k−1)| ∗ Vh(k − 1)+

(1− e−γ∗|i(k−1)|) ∗ sign(i(k − 1)) ∗Mh

=ck−1 ∗ Vh(k − 1) + dk−1 ∗Mh

(4)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TIE.2016.2610398

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

where Mh is the maximum hysteresis value, and γ adjusts the

changing rate of Vh.

Combing Eq (1 - 4), the battery electrical submodel can be

described as

xe(k) = Ae(k − 1) ∗ xe(k − 1) +Be(k − 1) (5)

where

xe(k) = [soc(k), v1(k), v2(k), Vh(k)]
T

and Ae = diag([1, a1, a2, ck−1]), Be(k − 1) = [i(k − 1) ∗
Ts/3600/Cn, b1 ∗ i(k − 1), b2 ∗ i(k − 1), dk−1 ∗Mh]

T

According to Fig 1, battery terminal voltage, v(k) can be

calculated as,

v = OCV + Vh +Ri ∗ i+ v1 + v2 (6)

B. Battery thermal submodel

A battery thermal model consists of two parts: thermal

generation and thermal transfer within and outside the battery.

Althought the heat generation inside the battery is a complex

electrochemical process, to build a simplified battery thermal

model, three different heat generation calculation methods are

widely adopted [6]–[9], [23], i.e.,

Q1 = Ri ∗ i
2

Q2 = i ∗ (v −OCV )

Q3 = i ∗ (v −OCV ) + i ∗ Tin ∗
dOCV

dTin

(7)

while Q1 only considers the heat generation over the battery

internal resistance Ri; Q2 considers the heat generation caused

by the over-potentials such as v1, v2, Vh; Q3 further takes into

consideration of the heat generation due to entropy change

within the battery [9].

Assume that the battery shell temperature and internal

temperature are both uniform, and heat generation is uniformly

distributed within the battery. Heat conduction is assumed to

be the only heat transfer form between the battery internal and

shell, and between the battery shell and the ambience.

The resulting simplified battery thermal submodel is given

as follows,

Cq1 ∗
dTin

dt
= Qj − k1 ∗ (Tin − Tsh), j ∈ {1, 2, 3}

Cq2 ∗
dTsh

dt
= k1 ∗ (Tin − Tsh)− k2 ∗ (Tsh − Tamb)

(8)

where Tin and Tsh are battery internal and shell temperature,

respectively; Tamb is the ambient temperature; Cq1, Cq2 are

the battery internal and shell thermal capacity, respectively; Qj

is the heat generation rate; k1 and k2 are the heat conduction

coefficients between the battery internal and the shell, and

between the battery shell and the ambience, respectively.

Eq (8) can be discretized and reformulated as

xt(k) = At(k − 1) ∗ xt(k − 1) +Bt(k − 1) (9)

where

xt(k) = [Tin(k), Tsh(k)]
T

At =

[

1− Ts ∗ k1/Cq1 Ts ∗ k1/Cq1

Ts ∗ k1/Cq2 1− Ts ∗ (k1 + k2)/Cq2

]

Bt(k − 1) = [Ts/Cq1 ∗Qj(k − 1), Ts/Cq2 ∗ k2 ∗ Tamb]
T

C. Coupled thermoelectric model

By combining Eq (5) and (9), the simplified thermoelectric

model is given as follows,

x(k) = A(k − 1) ∗ x(k − 1) +B(k − 1)

v(k) = f(soc(k)) + Vh(k) + v1(k) + v2(k) +Ri ∗ i(k)
(10)

where

x(k) = [xe(k);xt(k)]

A(k − 1) = blkdiag(Ae(k − 1), At(k − 1))

B(k − 1) = [Be(k − 1);Bt(k − 1)]

Note that Tsh is a model state as well as a model output,

since it is directly measurable.

III. TEST DATA

The test system includes a charger, an electric load and the

temperature is controlled by a thermal cabinet, as shown in

Fig 2. The Li-ion battery used in this paper is a prismatic

LiFePO4-Graphite battery purchased from the open market.

The battery structure includes the outside shell, i.e., the battery

can made of Aluminium, and the internal layers which can

be further divided into three identical sub-cells connected in

parallel. Two thermocouples are attached to the battery shell

surface, and another thermocouple is inserted into the center

area between sub-cell 1 and sub-cell 2.

Fig. 2. The battery test system configuration

The battery usable capacity and internal temperature are

firstly characterized experimentally at room temperature before

and after inserting the thermocouple in order to study whether

the inserted thermocouple affects battery performance. The

results are shown in Table I, where TC stands for the inserted

thermocouple, and 1C and 2C capacity stand for battery usable

capacity at 10A and 20A discharging currents. As it can be

seen, the effect of the inserted thermocouple on the battery

usable capacity (i.e., energy density) and internal resistance

(i.e., power density) is negligible. Note that Ri stands for

the series internal resistance which does not vary with SOC.

Battery usable capacity usually drops when the load current

increases. However, according to Table I, the battery usable
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capacity increases slightly when the load current varies from

10A to 20A, which is caused by the higher heat generation

rate and thus higher battery temperature when the 20A current

is applied.

TABLE I
BATTERY CAPACITY AND INTERNAL RESISTANCE TEST

1C Capacity (Ah) 2C Capacity (Ah) Ri (mΩ)

Before TC 10.460 10.511 13.5

After TC 10.425 10.433 13.5

Then the battery electrical properties are characterized using

the standard hybrid pulse power characterization (HPPC) test

as shown in Fig 3 under five different ambient temperatures

(i.e., [0, 10, 23, 39, 52]◦C).
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Fig. 3. HPPC discharging test under 23 ◦C: terminal current and voltage
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Fig. 4. HPPC discharging test under 23 ◦C: one zoomed segment

Besides, two fast discharging tests are run on the battery

under 27◦C ambient temperature, as shown in Fig 5 without

forced wind convection and in Fig 6 with forced wind con-

vection, respectively, as a comparison.
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Fig. 5. Battery fast discharging test data without forced wind convection

IV. MODEL IDENTIFICATION

A. Electric submodel identification

Under laboratory test conditions, battery terminal current

and voltage can be accurately measured. Then battery SOC

can be calculated by current integration method as in Eq (2).
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Fig. 6. Battery fast discharging test data with forced wind convection

The same method to determine the battery OCV and hys-

teresis proposed in [24] is used here. We take the battery

voltage after one hour relaxation as the battery charging and

discharging OCV, as shown in Fig 7. Their mean value is

taken as the battery OCV, and half of the difference between

the charging OCV and the discharging OCV is taken as the

hysteresis.
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Fig. 7. Battery charging and discharging OCV at 23 ◦C

The other parameters of the electric circuit model are iden-

tified by fitting the test data. Note that each test data segment

(as shown in Fig 4) is used to identify one set of model

parameters at that specific SOC and temperature level. The

simulation error minimization method is used in this paper for

training the battery electric submodel [25]. To obtain a better

model accuracy and stronger consistency, simulation error

minimization based model parameter identification methods

are preferred over conventional identification methods which

minimize the one-step-ahead prediction error in application

contexts (e.g., predictive control) where model accuracy is

required over a wide horizon [26].

According to Eq (3), the over-potentials across the two RC
networks can be calculated as,

vl(k) = ak−1
l vl(1) + bl ∗

k−1
∑

j=1

ak−1−j
l ∗ i(j), l = 1, 2

and Vh(k) can be calculated using Eq (4) as follows,

Vh(k) =
k−1
∏

j=1

cj ∗ Vh(1) +Mh ∗
k−1
∑

m=1

dm

k−1
∏

j=m+1

cj
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Then according to Eq (6), the simulation error is formulated

as follows,

e(k) = v(k)− f(soc(k))−Vh(k)− v1(k)− v2(k)−Ri ∗ i(k)

and the cost function is

MSE =
1

N

N
∑

k=1

e2(k) (11)

where N is the length of the test data.

Note that the parameters in the above model include nonlin-

ear ones, e.g., al, γ and linear ones, e.g., bl,Mh, Ri, and the

gradient or Hessian information that are needed for parameter

optimization are difficult to calculate. Therefore the hybrid

parameter optimization method proposed in [24] is adopted

in this paper. The nonlinear parameters are optimized by

the TLBO method and linear parameters by the least square

method. The least square method is nested in the TLBO

procedure to reduce the parameter dimension and improve the

convergence speed. The details about the hybrid optimization

method can be found in [24].

The identified model parameters are shown in Fig 8 to

Fig 10. The results reveal that 1) Ri mainly depends on

the battery internal temperature (only slight increases at low

SOC); 2) R1, R2 depend on both the battery SOC and internal

temperature; 3) at low SOC level, R1, R2 show a noticeable

increase in value; 4) the time constant of the R1C1 network,

τ1 = R1 ∗ C1, depends on the battery SOC. It is clear that,

as the temperature increases, the battery internal resistances

Ri and R1, R2 decrease. The noticeable increase of R1, R2 at

very low SOC levels (as shown in Fig 9) can be verified by

the noticeable voltage drop at low SOC levels (as shown in

Fig 3). We can also infer that these varying battery electric

parameters will in turn affect the heat generation rate inside

the battery based on Eq (7). In summary, the temperature has

significant effects on parameters in the battery electric model,

which has to be considered in order to improve the modelling

and state estimation accuracy.

Mh, γ and τ2 = R2 ∗C2 are kept constant. Mh = 0.02; γ =
1.5e− 4; τ2 = 600.
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Fig. 8. The electric circuit model parameter identification at different
SOC and temperature levels: R1

Then, part of the electric circuit model identification results

are shown in Fig 11. The root mean square error (RMSE)

at 80% SOC and 10% SOC are about 3 mV and 10 mV,

respectively. At a lower SOC level, the battery shows stronger

non-linearity, thus higher modelling error occurs.
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SOC and temperature levels: R2.
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B. Thermal submodel identification

The test data shown in Fig 5 (without forced wind con-

vection) is used for thermal model identification. The heat

generation results using the three different calculation methods

in Eq (7) are compared in Fig 12. The dOCV/dTin values

given in [9] is used here. As can be seen, while Q1 is

noticeably smaller than Q2 and Q3, the difference between

Q2 and Q3 is not big (mostly less than 10%). Since the

temperature effect on the battery OCV is not considered in

this paper, Q2 is adopted as the heat generation inside the

battery.
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Fig. 13. Thermal modelling results with constant k2.
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Fig. 14. Thermal modelling results with time-varying k2.

Based on the measured Tin, Tsh, and the calculated Q2, Eq

(9) can be identified using the least square method.

Note that while we assume that battery thermal properties

Cq1, k1, Cq2 are kept constant (according to [27], battery

specific heat capacity is independent of SOC and increases

slightly with temperature; battery cross-plane thermal conduc-

tivity is independent of temperature but depends on SOC.),

k2 certainly depends on the heat dissipation condition, such

as cooling wind speed and temperature. According to [23],

k2 also increases with this temperature gradient Tsh − Tamb.

To take this effect into consideration, two cases are compared

TABLE II
BATTERY THERMAL SUBMODEL IDENTIFICATION RESULTS

Modelling
Results

Tin max
error

Tin RMSE Tsh max
error

Tsh

RMSE

constant k2 1.51 0.695 2.31 0.714

varying k2 0.90 0.469 1.02 0.467

here: 1) constant k2; 2) time-varying k2, i.e., k2 = k2,1+k2,2∗
(Tsh − Tamb).
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Fig. 15. Kalman filter results assuming constant electrical submodel
parameters: Tin, Tsh
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Fig. 16. Kalman filter results assuming constant electrical submodel
parameters: SOC

The thermal modelling results are shown in Fig 13 for

constant k2 and Fig 14 for time-varying k2, respectively. The

modelling results are summarized in Table II. As shown, when

the time-varying nature of k2 is taken into consideration, the

model accuracy is improved noticeably.

Finally, the identified battery thermal model parameters are

Cq1 = 288.77, Cq2 = 30.8,

k1 = 1.7312, k2,1 = 0.3205, k2,2 = 0.0028
(12)

V. KALMAN FILTER

After the battery model is identified, it can be used for

battery internal states estimation. Note that in Eq (10), battery

behaviour is described using a state-space equation. Therefore,

the popular EKF method can be used for the states estimation.

As discussed above, k2 depends on the heat dissipation

condition. To deal with this, one approach would be to

characterize k2 off-line under different operation conditions

and tabulate the results. The tabular can then be used for
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realtime applications. However, to build such a table requires

many running tests which is time consuming. In this paper,

an joint EKF is adopted to simultaneously estimate both the

model states (x in Eq (10)) and time-varying model parameter

(k2) in realtime [13], [24].

Take k2 as another model state, and the augmented model

state equations become,

xa(k) = Aa(k − 1) ∗ x(k − 1) +Ba(k − 1) (13)

where

xa(k) = [x(k); k2(k)]

Aa(k − 1) = blkdiag(A(k − 1), 1)

Ba(k − 1) = [B(k − 1); 0]

Then k2 can be estimated along with other model states.

A detailed implementation procedure of the joint EKF

method can be found in [13], [24].

The battery fast discharging test data with forced wind con-

vection shown in Fig 6 are used for validation of the proposed

internal states estimation method. In order to demonstrate

that it is important to consider the couplings between battery

thermal and electrical behaviours, two different scenarios

are considered and compared, one assuming constant battery

model parameters and the other considering the interactions.

The system states, i.e., xa in Eq (13) which includes both

electrical states (i.e., battery SOC, over-potentials across RC

networks, and hysteresis voltage), and thermal states (i.e., in-

ternal temperature and surface temperature), and time-varying

model parameter (i.e., heat dissipation level k2), are estimated

in both cases.

A. KF results based on the electrical submodel with con-

stant parameters

The values of the constant parameters in the model are given

as follows

τ1 = 15s; R1 = 8mΩ; R2 = 6mΩ (14)

which are approximated with the corresponding mean values.

The Kalman filter estimation results are shown in Fig 15

and Fig 16. It is clear that the estimated battery internal

temperature matches well with the measurements during the

whole testing period. The maximum error and RMSE of Tin

estimation are only about 1.48◦C and 0.44◦C, respectively.

The SOC estimation RMSE is 2.88%.

Since the battery shell temperature is directly measurable,

the estimated Tsh results match the measurements perfectly.

The model voltage output is shown in Fig 17, where

two short segments with slight bias error can be observed

at both the starting and ending stages (around 100s and

900s, respectively). We believe the bias errors are caused

by the discrepancy between the adopted constant battery

model parameters in Eq (14) and the time-varying true model

parameters shown in Fig 8 to Fig 10.

Fig. 17. Kalman filter results assuming constant electrical submodel
parameters: battery terminal voltage

B. KF results considering the Tin and SOC effect on

model parameters

The Kalman filter results considering Tin and SOC effects

are shown in Fig 18 to Fig 20. As it is shown, the internal

temperature estimation results in Fig 18 are quite similar

to Fig 15. The reason is that in these two scenarios the

thermal submodels used are the same. The maximum error and

RMSE of Tin estimation are only about 1.2◦C and 0.47◦C,

respectively. These estimation results are comparable with

existing results [8], [23], [28], where the RMSE errors lie

between 0.5 and 2◦C.

The battery SOC estimation results are shown in Fig 19.

As can be seen, the estimated battery SOC converges to the

correct value quickly. The SOC estimation RMSE value is

2.31%, about 20% improvement compared with that in Fig

16. It is evident that the SOC estimation accuracy in Fig 19

is higher than Fig 16 during the whole test period.
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Fig. 18. Kalman filter considering Tin and SOC effect on the model
parameters: Tin, Tsh.

The estimation results of the time-varying model parameter

k2 are shown in Fig 20. The initial value of k2 is set to be 0.3.

As can be seen, the estimated k2 quickly increased to a much

higher value (i.e., 1.3). After the discharging test ended, k2
converged to a stable value (i.e., 1.2). Comparing this result

with Eq (12), we can conclude that the forced wind convection

increased k2 noticeably from less than 0.4 to 1.2.

During this test, the electrical submodel parameters change

with the battery Tin and SOC, and the results are shown in Fig

21. As can be seen, the value of R1 started from about 4mΩ
and increased to over 15mΩ, while the value of R2 increased

from 4mΩ to about 7mΩ. Consequently, the over-potentials

v1 and v2 changed dramatically as the discharging test went
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on. If this effect is not captured, the modelling accuracy will

be significantly reduced.
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Fig. 19. Kalman filter considering Tin and SOC effect on the model
parameters: SOC.
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Fig. 20. Kalman filter considering Tin and SOC effect on the model
parameters: k2.

Note that the battery internal resistance R1, R2 normally

will drop as the battery internal temperature increases. How-

ever, in this fast discharging test, the battery SOC dropped too

fast and became the dominant factor to increase the internal

resistance. If the battery is heated up at the same SOC, the

decrease of R1, R2 becomes more noticeable.
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Fig. 21. Kalman filter results considering Tin and SOC effect on the
model parameters: electrical submodel parameters R1, R2 and over-
potentials v1, v2, Vh.

The battery terminal voltage fitting results are shown in Fig

22. As can be seen, the model outputs match very well with

the measurements, except for a few error spikes.

Generally speaking, the state estimation performance of

EKF depends not only on the model accuracy, but also on the

choice of EKF parameters. According to the above analysis

and experimental results, we conclude that a better model can

significantly improve the state estimation accuracy. This has

been achieved through capturing the effect of SOC and Tin on

the battery behaviours using the coupled thermoelectric model.

It should be noted that some other remedies to improve the

internal state estimation accuracy have also been proposed,

such as Dual-Kalman Filter method, RLS + EKF, etc. These

approaches however can only be more effective with a more

Fig. 22. Kalman filter results considering Tin and SOC effect on the
model parameters: battery terminal voltage.

accurate model as we have proposed in this paper. It is

also worth noting that due to the higher model accuracy by

considering the interactions between the battery thermal and

electrical behaviours, the EKF parameter tuning used in this

study is much easier. To compare these different approaches

is beyond the scope of this paper, and it can be a future work.

VI. CONCLUSIONS

A novel method is proposed in this paper to estimate battery

internal temperature and SOC simultaneously. A simplified

thermoelectric model is built, including an electrical submodel

and a thermal submodel. For the thermal submodel, different

methods for calculating the heat generation inside the battery

are compared; for the electrical submodel, the effect of bat-

tery internal temperature and SOC on the battery electrical

behaviours is characterized and captured. The time-varying

thermal submodel parameter is also taken into consideration,

and a joint EKF is applied to estimate the model states and

time-varying model parameter simultaneously. The proposed

estimation method is based only on the online measurable

signals, e.g., battery voltage, current and shell temperature,

and thus can be implemented in realtime. Test data are

collected using a LiFePO4 battery. The modelling and internal

temperature and SOC estimation results has confirmed the

efficacy of the proposed method.

Future work to further improve the model accuracy may

consider the following three aspects: 1) variations of thermal

and electric behaviours between cells within a battery pack;

2) battery ageing and usable capacity reduction with cycling

usage; 3) the temperature effect on battery OCV.
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