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Abstract: As one of the major sediment sources in rivers, bank collapse often occurs in the

Ningxia–Inner Mongolia catchment and, to date, it caused substantial social, economic and

environmental problems in both local areas and downstream locations. To provide a better

understanding of this phenomenon, this study consisted of modifying the existing Bank Stability

and Toe Erosion Model (BSTEM), commonly used to investigate similar phenomena, introducing

new assumptions and demonstrating its applicability by comparing numerical results obtained

against field data recorded at six gauging stations (Qingtongxia, Shizuishan, Bayan Gol, Sanhuhekou,

Zhaojunfen, and Toudaoguai). Furthermore, the impact of multiple factors typical of flood and dry

seasons on the collapse rate was investigated, and insights obtained should be taken into consideration

when completing future projects of river adaptation and river restoration.

Keywords: Ningxia–Inner Mongolia; Yellow River; riverbank collapse; BSTEM model; flood &

dry season; sediment transport

1. Introduction

Riverbank collapse is a phenomenon caused by several natural factors (e.g., intense rainfall,

site topography, properties of the river bed and hydraulic conditions of the river flow) [1] and artificial

factors (e.g., man-made bank undercutting, basal clean-out) [2]. The Yellow River is the China’s

second-longest river and previous studies [3] confirmed that 518.38 km2 of the riverbank along the

Ningxia–Inner Mongolia part of the Yellow River was eroded between 1958 and 2008. This elevated

rate of riverbank erosion is due to continuous variations of flow levels, causing the deposition of

loose riverbed material in alluvial plains, especially after heavier rainfall events typical of climate

change [4,5]. To date, riverbank erosion has caused substantial social (e.g., traffic disruption due to

flooding), economic (e.g., loss of farm land) and environmental problems (e.g., sediment dynamics

and water quality) in both local areas and downstream locations [6,7].

Previous studies were completed to tackle this challenge and to identify what can induce

riverbanks to collapse in catchments in both developing and developed countries. Grabowski [8] found

that the soil texture, the soil structure, the unit weight and water composition [9,10] all play a principal

role on the banks erosion. While non-cohesive banks are eroded through discrete particle entrainment

that can be quantified using the magnitude of the shear stress and the particle size [11,12], cohesive

banks are eroded through entrainment of aggregates [13] and this mechanism is very challenging to

diagnose when considering the electrochemical forces acting between them [14,15]. The detachment
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and erosion phenomena of cohesive material by gravity and/or flowing water are typically controlled

by a variety of physical, electrical and chemical forces, such as cohesion, electrochemical forces,

pore-water pressure and matric suction [15]. These forces within and between aggregates cause

their erosion to be complex. Furthermore, cohesive riverbanks are usually poorly drained due to

their silt and clay composition, and thus may experience excess pore water pressures, one of the

main agents of subaerial erosion. Clayey banks are also susceptible to desiccation cracking and

slaking from wetting–drying cycles [16]. Numerous studies have examined the impact of water

content on the riverbank erosion [17–22] while other studies have investigated the subaerial erosion

due to the weakening and weathering of bank materials [23–25]. Additionally, Yu [26] completed

a series of experimental tests to quantify the influence and the impact of the water infiltration on

bank collapse and consequent sediment deposition. They identified that partial erosion can be due to

fluvial hydraulic forces or gravitational forces. Moreover, total erosion of the bank can be generated

if both forces are combined at their maximum magnitude, with a consequent disintegration of the

bank and the transportation of fallen blocks within the flow, changing the bed elevation. Focusing

on the Ningxia–Inner Mongolia banks, the erosion process has been found to be influenced by three

specific factors: (i) the sand blown by the wind from the desert [27–30]; (ii) the sediment transported

by the river from the upstream catchment [31,32]; and (iii) the material falling from the bank due to

natural collapse [33]. It is fundamental to replicate all these governing processes within numerical

models when assessing stability of the riverbanks. A large amount of literature is available and it

covers all the numerical modeling aspects investigated to date [34–38]. One of the numerical tools

most commonly used is the Bank Stability and Toe Erosion Model (BSTEM), developed by the National

Sedimentation Laboratory in Oxford, Mississippi, USA [39], which has been continually modified

and improved by the authors since its creation to improve its performance. To model the riverbanks’

stability, BSTEM calculates a factor of safety (Fs) for multi-layers combining three equilibrium-method

models: (i) the layers simulated are horizontal; (ii) vertical slices simulate tension crack; and (iii) the

common failure mechanisms are cantilever failures. BSTEM also assumes that all the collapsed material

is totally removed from the bank and does not accumulate on the toe [40]. BSTEM is frequently used to

simulate: (i) the banks’ stability and the consequent sediment loading inside the river [41]; (ii) stream

rehabilitation projects [42]; and (iii) erosion and failure mechanisms [43,44]. Despite several findings

that have resulted in a better understanding of this phenomenon, to the authors’ knowledge there

is a lack of studies which involve the evaluation of BSTEM for long-term streambank erosion and

consequent long-term failure.

Therefore, to fill this gap, this work comprises a collection of field datasets in the Ningxia–Inner

Mongolia area that were implemented on the BSTEM model to obtain a new solution to the mechanisms

of long-term bank erosion. To achieve that, three hypothesis different from those applied on the original

BSTEM model were executed: (i) when the soil collapses from the bank, part of it is washed away by

the water, and the remaining part accumulates on the toe; (ii) the shape of the material that accumulates

on the toe is considered to have a triangle form considering the cross-sectional view and the angle away

from the river bank is the angle of repose of the sediment, which is taken as 30 degrees; and (iii) the

downstream area of a bank is considered the first one to be affected by the collapse process.

The paper is organized as follows. In the next sections the study area, the procedure to collect field

data and the numerical analysis applied to replicate the river bank collapse recorded (Section 2) are

described. Section 3 presents the comparison between numerical and experimental datasets and the

factors that could influence the rate of collapse are discussed. Finally, Section 4 reports the conclusions.

2. Materials and Methods

2.1. Case Study

The Ningxia–Inner Mongolia catchment (Figure 1) is located in the lower part of the upper

Yellow River and has a length of 913.5 km, starting from Qingtongxia (Ningxia Hui autonomous
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region) and ending at Hekouzhen (Inner Mongolia autonomous region). This site includes six gauging

stations (Qingtongxia, Shizuishan, Bayan Gol, Sanhuhekou, Zhaojunfen, and Toudaoguai) and it is

characterized by four desert regions (HedongSandyland, Ulan Buh Desert, Tengger Desert and Hobq

Desert) and two alluvial plains (Yinchuan Plain and Hetao Plain).

The climate of this region can be classified as temperate continental climate, which is characterized

by long cold winters, and warm to hot summers [45]. The annual rainfall (maximum and minimum

peaks commonly reached in summer and winter, respectively) ranges from 100 to 288 mm.

The case study selected is located in Dengkou which is in the Inner Mongolia Province.

The gauging station Bayan Gol is adjacent to it. Being part of the Hetao plain, the Dengkou catchment is

characterized by a low gradient (≈0.17‰) and loose riverbed materials. This site was carefully chosen

based on three specific criteria. Firstly, preliminary monitoring datasets of this site have confirmed

that the riverbank was actively retreating. Secondly, the site was sufficiently close to a gauging station

(about 5 km), hence detailed rainfall readings including time-series, frequencies and water surface

elevations associated with each flow condition flowing next to the bank site were available and could

be collected. Last but not least, the morphology and the soil properties of this area are representative of

the cohesive streambank along all the Ningxia–Inner Mongolia catchment which has been drastically

eroded from 1958 to 2008 [3]. Therefore, it is fundamental to provide a better understanding of this

phenomenon, especially in this zone, to provide mitigation measures and plan actions to reduce the

effects due to erosion of the riverbanks.

 

≈

 

1 
2 

4 
5 

3 

Figure 1. Location of the case study considered for this work. 1, 2, 3, 4 and 5 are the five surveying

cross sections (500 m far from each other) selected for the collection of field-data.

2.2. Field Data

To analyze the complex processes of riverbank collapse affecting Dengkou, it was necessary to

inspect the nature of the bank and the typical flow conditions in the parts of the Yellow river crossing

this area. Five cross sections (1, 2, 3, 4 and 5, Figure 1), spaced 500 m from each other, were identified

along the banks for the acquisition of field datasets. Parameters and methods selected by the authors

for the monitoring and collection of datasets from the field study are displayed in Table 1.
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Table 1. Indexes and methods for in-site measurement.

Bank Shape Soil Composition Mechanical Properties

Parameter monitored

Bank height (m) Median diameter (µm) Critical shear stress (kPa)
Bank gradient (◦) Unit weight (g/cm3) Internal friction angle (◦)

Length of bank toe (m) Moisture content (%) /

Equipment utilized for
the monitoring

Gradometer (±1◦),
Tape (±1 cm)

Scale, Laser particle sizer
(±5 µm)

Direct shear apparatus

Additionally, to measure the magnitude of bank collapse along the area of study, five stakes

were positioned vertically to the flow direction at each section selected for the monitoring (Figure 2).

Five measurements were conducted respectively on 21 May, 13 July, 9 August, 23 September and

30 September in 2011 to quantify the collapse distance. The collapse distances between each section

recorded are displayed in Table 2.

Table 2. Collapse distances (m) recorded in 2011.

Time Scale Section 1 Section 2 Section 3 Section 4 Section 5

21 May–13 July 4.60 4.50 5.80 5.30 5.60
13 July–9 August 3.05 2.80 3.10 3.95 3.60

9 August–23 September 5.25 5.08 6.80 6.20 6.50
23 September–30 September 1.68 1.45 1.10 2.40 1.45

Total 14.58 13.81 16.80 17.85 17.15

 

μ

μ

 
Figure 2. Collapse distance measurement for surveying Section 1.

2.2.1. Hydrologic Data

Monthly average hydrologic datasets (2011, year of site inspection) obtained from the gauging

station Bayan Gol used for this study are showed in Table 3.
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Table 3. Monthly average hydrologic data (2011).

Month Flow (m3/s)
Velocity

(m/s)
Water

Depth (m)
Sediment

Concentration (kg/m3)
Sediment Transport

Rate (kg/s)

1 494.23 0.68 3.09 0.21 102
2 568.11 0.74 3.02 0.22 123
3 495.58 1.06 1.94 1.23 615
4 684.77 1.08 1.34 2.16 1480
5 444.00 0.89 1.03 0.64 283
6 369.60 0.81 0.85 0.59 217
7 368.35 0.87 0.83 0.77 283
8 528.00 1.32 0.94 3.20 1690
9 817.30 1.42 1.40 1.95 1590

10 612.48 1.37 0.99 1.27 779
11 495.90 1.18 0.62 1.17 580
12 592.52 0.95 2.00 2.58 1530

2.2.2. Bank Characteristics of Each Section

Riverbank properties at each section (1, 2, 3, 4 and 5, Figure 1) were obtained through five field

inspections in 2011 (1. 21 May, 2. 13 July, 3. 9 August, 4. 23 September and 5. 30 September),

and details are showed in Table 4. During the characteristic long cold winters in this region, the Yellow

River typically freezes, hence the summer season has been selected as sampling period to avoid the

quantification of additional effects on river bed changes [46,47] which could have made the already

complex comparison between experimental datasets and numerical results even more challenging.

Table 4. Characteristics of the sections selected for this study.

Section
Bank

Height
(m)

Bank
Gradient

(◦)

Toe
Length

(m)

Median
Diameter

(µm)

Wet Unit
Weight
(g/cm3)

Critical
Shear Stress

(kPa)

Internal
Friction

Angle (◦)

1 1.9 82 0.85 33 1.55 7.2 32
2 2.1 77 0.9 35 1.48 7.5 31
3 2.3 81 0.95 32 1.50 7.3 32
4 1.7 84 0.8 37 1.46 7.5 30
5 1.6 86 0.75 30 1.52 7.2 31

2.3. Riverbank Collapse Characterisation

When collecting field data, observations were made to get more insights about the erosion that

typically affects the riverbanks of the Ningxia–Inner Mongolia catchment. Figure 3 shows an example

of the real case study under investigation prior and after the erosion. Observations confirmed that

the bank material is cohesive, the riverbank slope is steep (77–86◦), and the pattern of bank collapse

is considered to be planar, in conformity with previous studies conducted [48,49]. Additionally,

while monitoring the site, it was possible to identify different stages of the continuous collapse process

characterized as follows: (i) the bank toe erosion initiates (Figure 4a); (ii) tension cracks develop

(Figure 4b); (iii) shearing starts and parts of the bank breaks and detaches from the main body

(Figure 4c); (iv) bank failure occurs (Figure 4d). When the soil collapses from the bank, part of it is

washed away by the water and the remaining part accumulates at the bank toe. The new shape of the

bank including the additional material eroded then becomes the initial form of the next bank collapse.
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Figure 3. Example of the existing bank slope (left) and an example of riverbank collapse along Dengkou

reach (right).
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Figure 4. Typical riverbank processes observed at the case study of Ningxia–Inner Mongolia catchment.

2.4. Numerical Modeling

In this study, the BSTEM model, developed by the National Sedimentation Laboratory in Oxford,

MS, USA, was used and modified according to the assumptions presented in the introduction.

2.4.1. BSTEM Method

There are two separate modules in the conventional BSTEM model: (i) the toe erosion module

and (ii) the stability of the bank module [39]. Equation (1) is commonly applied to predict the width of

the bank toe eroded due to the hydraulic conditions impacting on the cohesive riverbank [16,50–52]:

B = κ(τ − τc)
a
∆t (1)

where B is the toe erosion width (m); κ is the erodibility coefficient (m3 N−1 s−1); τ is the average

shear stress (Pa); τc is soil’s critical shear stress (Pa); a is an exponent usually assumed to be unity,

∆t is the time interval (s). κ and τc are functions of the soil properties and they are characterized by

the following relationship, κ = 0.2τ−0.5
c . For non-cohesive soils, τc is typically estimated based on the

median particle diameter of the soil [53]. Rinaldi [54] noted the difficulty to accurately estimate κ but

despite that, other methods provided solutions via a variety of methods to calculate κ and τc. One of
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these methods was developed by Hanson [55] using an in situ jet-test device and his experimental

results are currently used universally. In Equation (1), τ can be calculated using Equation (2):

τ = γwRS (2)

where γw is the weight of water (N/m3); R is the hydraulic radius (m); S is the channel slope.

For the specific scenario of planar failure assumed for this study, the riverbank stability analysis

involved the computation of a safety factor, identified as the ratio between the resisting and the driving

forces applied to the failure zone, which is typically calculated by using Equation (3) [56–59]:

Fs =
SR

SD
(3)

where Fs is the safety factor with respect to bank failure (Fs < 1 indicates the possibility of an eventual

collapse); SR is the shear strength of the soil (kPa); SD is the driving stress (Pa). SR can be calculated

using Equation (4):

SR = c′ + S tan φb + Ψ tan φ′ (4)

where c’ is the effective cohesion (the effective cohesion of the soil is the cohesion of the soil in the

anti-shear process) (Pa); S is the normal stress (Pa); φb is an angle that describes the relationship

between the shear strength and the matric suction (◦); Ψ is the matric suction which contrasts the

pore-water pressure (Pa); φ’ is the effective internal friction angle (◦). SD can be calculated using

Equation (5):

SD = W sin β (5)

where W is the weight of the wet soil per unit area of the failure plane (Nm−2); β is the angle of the

failure plane (◦) [39]. Note that the BSTEM model takes c’ into account to represent the cohesion

effect. Nevertheless, the influence of cohesive materials on erosion would be considered through other

approaches, as well. For example, Dodaro et al. [60,61] modified Shields parameter to predict erosion

phenomena at a cohesive sediment mixture.

2.4.2. BSTEM Method Modified

As defined in Section 2.3, the phenomenon of bank collapse is characterized by four different

stages. Despite multiple factors influencing the rate of the riverbank collapse, as previously mentioned,

continuous collapses are also affected by the intensity of the antecedent collapse magnitude. When the

collapse happens, the riverbank affected typically divides into two sections within a moment-frame:

one part collapsed is naturally washed away by the river and the remaining part usually deposits at the

bank toe. Before the next bank collapse takes place, the additional deposited soil is eroded. Therefore,

it is very important to characterize the continuous changing shape of the riverbank to correctly predict

the effects of the continuous erosion. Although the original BSTEM model provides some insights

into this process and is very helpful for the analysis of the riverbank stability, it should be noted that

BSTEM assumes that the falling part which has collapsed from the riverbank does not accumulate on

the toe and is immediately removed. Hence it does not accurately represent the reality of the entire

erosion process typical on natural rivers. Authors observed multiple shapes and forms during the

erosion process following the collapse of material and have tried to characterize each of them, but the

literature published to date lacks formulae to accurately estimate and quantify the amount of material

deposited. Therefore, to address this gap, three changes were made in the original BSTEM model

as follows.

(i) The quantity of soil falling into the river and carried away by the natural streamflow in the

form of suspended material can be calculated using Equation (6):

M0 = (S∗ − Sv)Hd (6)
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where M0 is the weight of soil carried away per unit length (kg/m); Sv is the sediment concentration

(kg/m3), typically obtained by field monitoring; H is the height of the bank (m); d is the width of the

flow in the proximity of the bank (m). Because there was a main current which was about 20 m away

from the bank, d is assumed as a constant (d = 20). S* is the capacity of the flow to transport suspended

material (kg/m3) and can be calculated using Equation (7) [62]:

S∗ = K
(

U3
L/ghω

)m
(7)

where K and m are parameters that can be obtained from the literature [60]; UL is flow velocity (m/s);

g is gravitational acceleration (m/s2); h is water depth (m); and ω is the velocity of the particles setting

(m/s) which can be calculated by using Equation (8) [62]:

ω = (γs − γw)gD2/25.6γwν (8)

where D is the grain size of the material (m); υ is kinematic viscosity coefficient (m2/s).

(ii) The quantity of deposition soil can be calculated by using Equation (9):

Md = (W0 − M0)x (9)

where Md is the quantity of material deposited (kg); W0 is the quantity of material collapsed

(excluding the part suspended in the flow) (kg); x is a ratio between the material deposited and

the material collapsed.

(iii) The new shape generated by the deposition of material on the bank toe is assumed to be

triangular and the angle away from the riverbank is the angle of repose of sediment. In general,

loose sediment grains in water accumulate with an angle close to the sediment angle of repose [63,64].

In the calculation process, the time step is selected as the hour. This decision is justified by the

fact that since the flow rate, water depth, flow rate and other data are used as a daily average, the 24 h

cycle was considered more appropriate. After the original boundary has passed 24 h, the river bank

stability was tested: if the river bank was still stable, then the next set of water depth and flow rate

conditions was inserted and the river bank toe erosion module continued to run. When the river

bank stability coefficient was less than 1, the collapse occurred and consequently the collapse rate

should have been recorded. For this scenario, the amount of collapse was calculated according to

the shape of the collapse area identified, and the amount of sediment deposited at the foot of the

slope was calculated by using Equations (6)–(9). The shape of the material deposited on the slope was

considered to be triangular, and the angle away from the river bank was the angle of repose of the

sediment, which was taken as 30 degrees. Based on the collapse rate, the new shape of the river bank

was obtained and taken as a new initial condition for the next collapse.

The scheme utilized by the modified BSTEM model can be summarized with the flow chart

displayed in Figure 5.

It is complex to quantify in real time the collapse processes along the entire riverbank of the study

area due to flow conditions under continuous change, but it is possible to provide an approximation of

the riverbank collapse processes by using averaged parameters such as monthly average water depths,

flowrates, sediment concentration and average grain size. In addition, there are also parameters that

require an accurate calibration during the entire calculation process, such as x. τc can be obtained

by using values furnished in the literature [65]. By applying trial and error techniques, x = 0.39

corresponds to the optimal numerical value to replicate the realistic distance of collapse measured for

this case study and discrepancies obtained between numerical and field measurements are listed in

Tables 5–9.
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Figure 5. Flow chart of the established model.

Table 5. Numerical results, field measurements and errors for surveying Section 1 of Figure 1.

Time Scale
Calculating Collapse

Distance (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 4.96 4.60 7.83
14 July–9 August 3.24 3.05 6.23

10 August–23 September 5.55 5.25 5.71
23 September–30 September 1.50 1.68 10.71

Total collapse 15.25 14.58 4.60

Table 6. Numerical results, field measurements and errors for surveying Section 2 of Figure 1.

Time Scale
Calculating Collapse

Distance (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 4.99 4.50 10.89
14 July–9 August 3.01 2.80 7.5

10 August–23 September 5.38 5.08 5.91
23 September–30 September 1.13 1.45 22.06

Total collapse 14.51 13.81 5.07

Table 7. Numerical results, field measurements and errors for surveying Section 3 of Figure 1.

Time Scale
Calculating Collapse

Distance (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 5.46 5.80 5.9
14 July–9 August 3.30 3.10 6.5

10 August–23 September 7.15 6.80 5.1
23 September–30 September 0.94 1.10 14.5

Total collapse 16.85 16.80 0.3
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Table 8. Numerical results, field measurements and errors for surveying Section 4 of Figure 1.

Time Scale
Calculating Collapse

Distance (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 5.75 5.3 8.5
14 July–9 August 3.72 3.95 5.8

10 August–23 September 6.41 6.2 3.4
23 September–30 September 2.73 2.4 13.8

Total collapse 18.61 17.85 4.3

Table 9. Numerical results, field measurements and errors for surveying Section 5 of Figure 1.

Time Scale
Calculating Collapse

Distance (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 5.93 5.6 5.9
14 July–9 August 3.82 3.6 6.1

10 August–23 September 6.24 6.5 4
23 September–30 September 1.75 1.45 20.7

Total collapse 17.74 17.15 3.4

By analyzing the results displayed in Tables 5–9, it is possible to confirm that the error between

numerical and experimental values is between 6% and 20%. There are multiple influencing factors

that can affect this comparison and the shape of the bank toe, always changing under the action of

water flow which provides the higher impact. As water and sand conditions are continuously varying,

the error is considerably higher considering measurements vs numerical results for the smallest time

frame monitored (23 September–30 September). On the other hand, for longer time scales, the total

error is about 5%. Overall, the numerical results are fairly consistent with the data recorded during the

monitoring campaign, considering the significant modifications applied within the numerical model.

3. Results and Discussion

This section provides the further results obtained and their interpretation.

3.1. Collapse Processes Obtained through Numerical Simulations with the Modified BSTEM Model

The riverbank collapses simulated with the modified BSTEM model for the period

21 May–30 September in 2011 are illustrated in Figures 6–10 for surveying river Sections 1–5

respectively. Collapse rates of study sections in different months are listed in Table 10.

 

 

Figure 6. Collapse phases for surveying Section 1.
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Figure 8. Collapse phases for Section 3.

 

 

 
Figure 9. Collapse phases for Section 4.

 

 

 

Figure 10. Collapse phases for Section 5.
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Table 10. Collapse rates of study sections in different months (Unit: m/d).

Month Section 1 Section 2 Section 3 Section 4 Section 5

5 0.095 0.094 0.104 0.091 0.118
6 0.106 0.097 0.094 0.123 0.122
7 0.074 0.098 0.119 0.098 0.123
8 0.109 0.095 0.147 0.150 0.124
9 0.178 0.153 0.155 0.207 0.172

To identify hypothetical relationships between hydraulic conditions and collapse rates, different

indicators recorded were plotted versus the collapse rates estimated, and factors obtained are displayed

in Figure 11.

 

  
(a) (b) 

(c) 

  
(d) (e) 

Figure 11. The relationship between flow conditions and collapse rates, the effects of (a) flowrate;

(b) water depth; (c) velocity; (d) sediment carrying capacity; and (e) bank height.
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Because the flowrate, water depth, velocity and sediment carrying capacity were of similar

magnitudes from June to July, the average collapse rate was used to discuss the effects on collapse

rates by influencing factors previously highlighted, and their impacts can be observed in Figure 11.

The authors have attempted to characterize the continuous collapses influenced by multiple

factors that can be divided into two categories: autologous and external. The autologous factor

considered is the bank height, while external factors include flow rate, water depth, velocity and

sediment carrying capacity. Different factors play dissimilar roles on influencing continuous collapse

processes. For example, when flow rate, velocity and sediment carrying capacity rise, bank toe erosion

can consequently increase due to higher shear stresses. Additionally, when water depth increases,

soil shear strength diminishes due to the soil saturation, however the rise of water depth could also

improve the bank stability due to the water pressure acting on the bank.

Even if bank collapses are continuously affected by these factors, there are still some interesting

regular features observed in this study. For example, in Figure 11a–d, it can be observed that the

collapse rate is positively correlated with the flow rate, water depth, velocity and capacity of carrying

materials. Although the bank heights are all different in altered sections, collapse rates for the locations

considered are higher in the flood season (July to September) than in the dry season (May to June),

due to the increase of flow rates, water depth and velocities. Due to the strength of higher flow rates,

the flow shear stress is typically greater than the soil shear stress, causing continuous erosion of the

bank toe. It should also be noticed then that flow conditions are playing a leading role in the collapse

processes and are the main dynamic factors for the quantity of material deposited.

Another interesting phenomenon which can be noticed within the results is that continuous

collapse rates are bigger in May than in June, except for Section 3 (Figure 11). During this period,

which belongs to the dry season, flow rates, water depth, velocities and sediment carrying capacities

are all smaller (Table 3). This is due to the associated phenomena when water depths reduce, with

a consequent loss in river bank stability and more intense bank collapses. However, for Section 3,

the collapse distance decreases, and the authors believe that this is due to the bank height (2.3 m, the

highest among the sections).

3.2. Non Applicability of the Traditional BSTEM Method

In order to further demonstrate that the original BSTEM model is not applicable for the

representation of continuous long term bank collapses, numerical and experimental results are listed

in Tables 11–15, together with the errors obtained.

Table 11. BSTEM results, field measurements and errors for surveying Section 1.

Time Scale
BSTEM Method

Results (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 7.80 4.60 69.6
14 July–9 August 7.18 3.05 135.4

10 August–23 September 9.98 5.25 89.3
23 September–30 September 2.08 1.68 23.8

Total collapse 27 14.58 85.2

Table 12. BSTEM results, field measurements and errors for surveying Section 2.

Time Scale
BSTEM Method

Results (m)
Monitoring Collapse

Distance(m)
Error (%)

21 May–13 July 7.70 4.50 71.1
14 July–9 August 5.94 2.80 112.1

10 August–23 September 8.48 5.08 67.2
23 September–30 September 1.73 1.45 19.1

Total collapse 23.84 13.81 72.6
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Table 13. BSTEM results, field measurements and errors for surveying Section 3.

Time Scale
BSTEM Method

Results (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 9.63 5.80 66.1
14 July–9 August 6.85 3.10 121.1

10 August–23 September 11.83 6.80 73.9
23 September–30 September 1.36 1.10 24.1

Total collapse 29.68 16.80 76.6

Table 14. BSTEM results, field measurements and errors for surveying Section 4.

Time Scale
BSTEM Method

Results(m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 8.9 5.3 68.1
14 July–9 August 9.13 3.95 131.1

10 August–23 September 11.35 6.2 83.2
23 September–30 September 2.9 2.4 21

Total collapse 32.28 17.85 80.8

Table 15. BSTEM results, field measurements and errors for surveying Section 5.

Time Scale
BSTEM Method

Results (m)
Monitoring Collapse

Distance (m)
Error (%)

21 May–13 July 9.63 5.6 71.9
14 July–9 August 7.85 3.6 118.1

10 August–23 September 12.02 6.5 85
23 September–30 September 1.77 1.45 22

Total collapse 31.27 17.15 82.4

It can be concluded that the errors are all very large for longer monitoring periods. That is due to

the hypothesis implemented within the BSTEM method, commonly used to calculate collapse distance,

considering no soil deposition at the bank toe after the collapse—an unrealistic condition.

3.3. Discussions

Comparing simulation results using the modified BSTEM model with field data collected,

as showed in Tables 5–9, it can be observed that errors range from 0.3% to 5.07%, hence are all

acceptable and it is possible to confirm the reliability and accuracy of the modified BSTEM model to

calculate continuous riverbank collapse.

Furthermore, additional outcomes have to be highlighted to increase the performance of the

numerical model. Firstly, as the initial boundary conditions can have an impact on river bank collapse,

supplementary studies have to be conducted to investigate this phenomenon. Secondly, due to

the lack of advanced experimental measurement techniques, it is very difficult to get the river bed

profile at every time step, and for this study a simplified bank shape was used in the calculations

presented. This may be one more reason for the errors calculated. To solve this problem, sonar and

electromagnetic wave measurement technologies may be adopted in future studies. Thirdly, in natural

rivers, flow conditions such as flow rate and water depth vary continuously. To obtain bank collapse

distances, monthly average flow conditions were used in this study, hence more targeted and accurate

flow conditions should be used in future studies to improve the results. Finally, riverbed erosion and

bank erosion typically occur at the same time and both are influenced by each other. For example,

riverbed erosion influences the bank collapse by increasing the bank height and when the bank collapse

happens, falling soil directly settles along the area where riverbed erosion happened before depositing

at the bank toe.
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As all these aspects are crucial, by implementing them within the numerical model it is predicted

that results will be more accurate.

4. Conclusions

(1) As confirmed by the observations made during the monitoring of the area, a single bank

collapse can be divided into four different stages that can be summarized as: (i) bank toe erosion

initiation; (ii) tension crack development; (iii) shearing initiation; and (iv) bank failure occurrence.

When a single collapse happens, part of the collapsed soil is washed away by the water and the

remaining part accumulates at the bank toe. The new shape of the bank formed after this process along

the river becomes the initial form of the next bank collapse. Bank collapse processes in a longer time

scale are continuous collapses that are made from single bank collapse during short time scales.

(2) Based on the original BSTEM model, a new modified version was implemented, applying

several new assumptions. The original BSTEM assumed that the falling part which had collapsed from

the riverbank did not accumulate on the toe and was immediately removed. This does not accurately

represent the reality of the entire erosion process typical in natural rivers, and comparisons between

experimental and numerical results have shown that, by using the original approach, significant errors

will affect the numerical results, as listed in Tables 11–15.

Furthermore, to address this gap, a modified BSTEM was developed to obtain the quantity of

collapsed sediment accumulating on the toe. Several parameters were introduced, such as sediment

concentration, sediment carrying capacity and sediment setting velocity. The quantity of collapsed

sediment accumulated on the toe could have been obtained using Formulas (6)–(9).

Additionally, another main goal modifying the BSTEM model was to obtain the new shape

generated by the deposition of material on the bank toe. It should be noted that the boundary

conditions play an important role in the calculations of continuous collapse processes for natural

rivers. The new shape generated by the deposition of material on the bank toe was the initial boundary

condition of next collapse process. Based on this, after observing multiple shapes during the erosion

process following the collapse of material, the shape generated by the deposition of material on the

bank toe was assumed to be triangular and the angle away from the riverbank was the angle of repose

of sediment. After a single collapse, the new shape of the riverbank could have been obtained from the

shape of the deposited sediment and the collapsed plain.

(3) Adopting all the previous modifications within the calculation of every single collapse process,

the numerical results obtained using the modified BSTEM are consistent with the monitored datasets

for continuous processes, as listed in Tables 5–9.

(4) The relationship between collapse rates and influencing factors was discussed and influencing

factors were divided into two categories: autologous and external (flow conditions). Different factors

play different roles in continuous collapse processes. For example, the flow rate, velocity and sediment

carrying capacity rise can increase bank toe erosion by increasing flow shear stress. Water depth rise

can reduce soil shear strength by promoting soil saturation, and water depth rise can also increase

river bank stability by providing water pressure. Soil characteristics determine the shear strength of

each material, and bank height plays an important role in the bank stability analysis. For similar flow

conditions, a higher bank with a steeper slope is more unstable. These factors should be considered

together to better characterize the collapse mechanisms.

(5) Aspects such as precisely determining the bank shape and quantifying the more singular flow

conditions are crucial, and by implementing them within the numerical model it is predicted that

results will become more accurate.
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