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Abstract Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics

from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that

span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the

Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a

quaternary structural switch that allosterically couples and synchronizes initial ligand binding with

channel opening. Within the transport-activated state, the channel remains open even though the

pump cycles through three distinct conformations. Collectively, our data provide a dynamic

mechanism for the assembly and operation of the AcrAB-TolC pump.

DOI: 10.7554/eLife.24905.001

Introduction
Antibiotic resistance of pathogenic bacteria is a growing clinical problem, exacerbated by insufficient

development of new antibiotics. Drug efflux pumps play important roles in intrinsic or acquired drug

resistance to a wide variety of currently available antimicrobial agents (Pu et al., 2016). In Gram-neg-

ative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope

(Du et al., 2015a). The components of these assemblies include an outer membrane protein, a

plasma membrane-spanning protein and a periplasmic protein that connects the two trans-mem-

brane components (Du et al., 2015b). AcrAB-TolC is a RND-based tripartite efflux pump, comprised

of the outer membrane protein TolC, the periplasmic membrane fusion protein AcrA, and the inner

membrane transporter AcrB, which cycles through three different conformational states during the

drug transport process: access (L), binding (T) and extrusion (O) (Du et al., 2015a). A small peptide,

AcrZ, has been identified that modifies the activity of AcrB (Hobbs et al., 2012). Previous electron

microscopy studies of the AcrAB-TolC pump have revealed the overall shape of the pump and the

relative arrangement of its components (Daury et al., 2016; Du et al., 2014; Jeong et al., 2016).

Due to the limited resolution, these studies were unable to identify the detailed interaction interfa-

ces between the components. Moreover, the mechanism of pump assembly and channel opening is

presently unclear (Müller and Pos, 2015; Zgurskaya et al., 2015) and requires detailed structural

information of the pump in the different conformational states that accompany drug translocation. In
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this study, we report the near-atomic resolution cryoEM structures of the AcrAB-TolC pump cap-

tured in both resting and drug transport states. The data reveal the detailed tertiary and quaternary

structural changes associated with the transition from apo to ligand-bound states. The quality of the

cryoEM maps enable unambiguous modeling of all components and identification of the conforma-

tional asymmetry in AcrB in the presence of antibiotic that underpins the molecular mechanism of

drug translocation. Our study provides a structural framework for understanding the mechanism

underlying drug efflux.

Results

CryoEM structure determination
Preparation of the intact AcrAB-TolC for structural studies has been a challenge. Previously, the

fully-assembled pump was stabilized by tandem fusion and cross-linking of its components using the

‘GraFix’ method (Du et al., 2014). The fusion was co-expressed with AcrZ, a hydrophobic helical

peptide that affects AcrB efflux activity for a subset of antibiotics (Hobbs et al., 2012) and interacts

with AcrB in the transmembrane portion (Du et al., 2014). To pursue a higher resolution structure,

we improved the purification procedure. The ratio of detergent to total membrane protein was opti-

mized to extract AcrAB-TolC from the cellular membrane, and the detergent was exchanged with

amphipol A8-35 (Baker et al., 2015; Liao et al., 2013; Popot, 2010; Tribet et al., 1996;

Zoonens and Popot, 2014). Ligands were used in an effort to favor conformational uniformity and/

or to capture structures corresponding to different ligand transport states. The purified pump was

imaged in the presence of pyranopyridine inhibitor MBX3132 (Sjuts et al., 2016) (Figure 1—figure

supplement 1A and B; Supplementary file 1) or substrate puromycin, as described in Materials and

methods.

We also have developed a new procedure to stabilize the full pump using disulphide-linkages

that were chosen from the proximity of residues S273 in the b-barrel domain of AcrA and S258 in

the b-hairpin motif of the DN subdomain of AcrB seen in the cryo-EM structure of the full pump. We

introduced single cysteine-substitutions in the individual AcrA and AcrB components (AcrA-S273C

and AcrB-S258C) without flexible engineered linkers. Consistent with the model based on the fusion

constructs, we observed disulfide bond formation between the two free components. Moreover, the

disulfide bond-stabilized AcrAB can recruit TolC (and three additional AcrAs, which are not expected

to be cysteine-crosslinked) to form a stable tripartite complex in vivo (Figure 1—figure supplement

2A). This complex was prepared without co-expression of AcrZ. The full pump assembly, stabilized

through the disulfide-bond linked AcrAB, was imaged in the absence of ligand (Figure 1—figure

supplement 2, B and C).

The cryo-EM structures of the apo pump and

the pump/ligand complexes reveal different con-

formational states of the full pump. These struc-

tures have been solved at different

subnanometer and near atomic resolutions

(Supplementary file 1). The maps of the full

pump at 3.6 Å resolution can be readily seg-

mented into a TolC trimer, a periplasmic AcrA

hexamer, and an AcrB trimer (Video 1). The cor-

responding domains and subdomains of the four

protein components derived from the cryoEM

maps are delineated in Figure 1—figure supple-

ment 3. We will describe each structure further

below.

The apo structure of the pump
adopts a closed channel
The reconstruction of the apo pump at 6.5 Å res-

olution (Supplementary file 1; Figure 1—figure

supplement 4) revealed TolC to be in the closed

Video 1. Structure of AcrABZ-TolC multidrug efflux

pump with inhibitor MBX3132 bound. Individual protein

subunits of the density map are highlighted and their

corresponding models are then shown.

DOI: 10.7554/eLife.24905.002
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conformational state (Figure 1), like that seen in the crystal structure of the isolated protein

(Koronakis et al., 2000). The periplasmic component of the pump, AcrA, forms a hexamer through

the trimerization of two conformationally distinct protomers (Figure 1A). We refer to the two distinct

subunits as ‘protomer-I’ and ‘protomer-II’. In both AcrA protomers, a short helix-turn-helix (HTH)

motif interacts in a tip-to-tip manner with the HTH motif of the TolC coiled-coils at their periplasmic

ends (Figure 1A, right panel). Because each subunit of TolC has an internal structural repeat, the tri-

mer has 6 HTH motifs, which interact with the 6 HTH motifs of the AcrA hexamer in a quasi-equiva-

lent manner: AcrA protomer-I and the adjacent protomer-II interdigitate with the intra- and inter-

protomer grooves of TolC, respectively. The two distinct conformations of the HTH motif loops of

AcrA protomers I and II structurally conform to the slightly different contact surfaces of TolC

(Figure 1A, right panel). This interaction is consistent with functional (Lee et al., 2012; Song et al.,

2014; Xu et al., 2010) and structural data (Daury et al., 2016; Kim et al., 2015), but differs in detail

Figure 1. The structure of disulfide-bond stabilized AcrAB-TolC pump with closed channel at 6.5 Å resolution. (A)

CryoEM map of the pump with closed-state TolC, visualized in side view along the membrane plane (left). The four

components within one asymmetric unit of the C3 symmetric assembly are color-coded: TolC (red), AcrA (orange

and green) and AcrB (blue). (middle) A sliced view of the pump shows the closed channel. (right) Ribbon

representation of the pump with closed-state TolC with the same color code as in left panel. The black arrow

indicates the closed site in TolC. (B) Comparison of reference- free 2D averages (left) and slice view of 3-D maps at

the arrow (right) of the apo pump with closed TolC (top), pump in presence of puromycin (middle) and pump with

MBX3132 (bottom).

DOI: 10.7554/eLife.24905.003

The following figure supplements are available for figure 1:

Figure supplement 1. CryoEM structure of the AcrABZ-TolC pump with MBX3132 bound.

DOI: 10.7554/eLife.24905.004

Figure supplement 2. Analysis of the disulfide-bond stabilized AcrAB-TolC pump.

DOI: 10.7554/eLife.24905.005

Figure supplement 3. The domains and subdomains of the components of AcrABZ-TolC pump.

DOI: 10.7554/eLife.24905.006

Figure supplement 4. Resolution estimation of the apo AcrAB-TolC pump with closed TolC.

DOI: 10.7554/eLife.24905.007

Figure supplement 5. Conformational difference between two AcrA protomers and their interaction with closed-

state TolC in the apo-state.

DOI: 10.7554/eLife.24905.008
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from that proposed for the open state of the pump reported earlier (Jeong et al., 2016), as we will

describe further below. A gap is present at the interfaces between adjacent AcrA dimer pairs, so

that the AcrA helical hairpin, lipoyl and b-barrel domains do not pack tightly to seal the channel

from the periplasm (Figure 1—figure supplement 5). This gap must be closed in the transport pro-

cess to prevent leakage of substrates into the periplasm. AcrB adopts a symmetric state (LLL) in the

pump assembly, as seen in the crystal structure of apo AcrB (Murakami et al., 2002).

The transport state of the full pump with opened channel
The crystallographic studies of AcrB in complex with natural substrates reveal asymmetric structures,

which suggest consecutive steps of a transport cycle (Murakami et al., 2006; Seeger et al., 2006).

We explored how the full pump accommodates AcrB in this functional state in the presence of puro-

mycin, which is a validated transport substrate (Hobbs et al., 2012).

We targeted the AcrB protomers using a focused classification procedure (Bai et al., 2015) (See

Materials and methods) and could identify a subset of the full pump assembly (30.2% of the entire

dataset) containing exactly one protomer whose density matches the extrusion state (O) of AcrB, as

shown in Figure 3—figure supplement 1. A 5.9 Å density map of the full pump assembly without

any imposed symmetry was reconstructed from this particle subset (Figure 2A; Figure 2—figure

supplement 2). The correlation analysis of the map region corresponding to the AcrBZ components

Figure 2. 5.9 Å resolution cryoEM asymmetric structure of the AcrABZ-TolC pump in the presence of puromycin.

(A) Structure of asymmetric AcrABZ-TolC pump visualized in side view; subunits are color-coded accordingly: TolC

(red and pink), AcrA (orange and green), AcrB (blue) and AcrZ (purple). (B) Model variation of the C-alpha trace

between the three subunits of AcrB within the full pump colored in gradient from blue to red with increasing

variation.

DOI: 10.7554/eLife.24905.009

The following figure supplements are available for figure 2:

Figure supplement 1. Workflow of masked classification of C3-symmetry imposed map of AcrABZ-TolC pump in

the presence of puromycin with residual signal subtraction.

DOI: 10.7554/eLife.24905.010

Figure supplement 2. CryoEM analysis of asymmetric AcrABZ-TolC pump in presence of puromycin reconstructed

from a subset of particle images after focus classification.

DOI: 10.7554/eLife.24905.011

Figure supplement 3. Crystal structure of AcrBZ complex with puromycin bound (PDB ID 5NC5).

DOI: 10.7554/eLife.24905.012
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shows that the three AcrB protomers in L, O and T states are in a fixed spatial relationship with

respect to each other in this full pump assembly (Figure 2B). This spatial disposition fits very well to

the crystal structures of numerous other drug-bound AcrB structures (Eicher et al., 2012;

Murakami et al., 2006; Nakashima et al., 2011). Though the AcrB subunit densities match well with

those in the crystal structure, no puromycin density is detected in the cryoEM map. A similar situa-

tion occurs for some crystal structures of the asymmetric state, where drug is present in the buffer

but discernable electron density for the drug is absent from the ligand binding pockets

(Seeger et al., 2006). The crystal structure of AcrBZ in the presence of puromycin at 3.2 Å (Fig-

ure 2—figure supplement 3; Supplementary file 3) shows that the AcrB subunits adopt three dis-

tinct conformational states (Figure 2—figure supplement 3B) as seen in our cryoEM structure in the

presence of this drug. Poorly defined density for puromycin is found in the binding pocket of the T

protomer (Figure 2—figure supplement 3C). In the case of the cryoEM map, the lack of density can

be rationalized as either a resolution limit in the C1 map or the drug being bound only transiently

and flexibly.

TolC adopts a fully opened state via tip-to-tip interactions with AcrA in the pump assembly and

AcrAs pack tightly to form a sealed channel, which is similar to that seen in the complex of the

pump with the potent inhibitor MBX3132, to which we now turn.

The structure of pump in complex with inhibitor MBX3132 reveals the
interaction interfaces between pump components at atomic resolution
The inhibitor MBX3132 likely binds AcrB tightly, since it is active in the nanomolar concentration

range (Sjuts et al., 2016), and the compound was used to lock the pump in a more homogeneous

conformation. The 3D map for the pump/MBX3132 complex was initially generated without any

imposed symmetry and exhibited an apparent 3-fold symmetric pattern (Figure 1—figure supple-

ment 1C). Thus, refinements were performed with 3-fold symmetry, which produced the final 3D

reconstruction at ~3.6 Å resolution. This dataset was further subjected to focused 3D classification

(Bai et al., 2015) of a targeted region of AcrB to reveal its structural variations in response to the

presence of the inhibitor. We found that 73% of the particles within the dataset have their three

Figure 3. 3.6 Å resolution cryoEM structure of the AcrABZ-TolC pump with inhibitor MBX3132 bound AcrB in the

TTT state. (A) Three-fold symmetry imposed density map (left) and model (right) of the AcrABZ-TolC complex.

(middle) A sliced view of pump. The five protein components within one asymmetry unit of the pump are color-

coded. TolC (red), AcrA (orange and green), AcrB (blue) and AcrZ (purple). (B) Density of the MBX3132 seen in the

hydrophobic trap of each AcrB subunit. The location of the trap is indicated by the star in the model in the right

panel of (A).

DOI: 10.7554/eLife.24905.013

The following figure supplements are available for figure 3:

Figure supplement 1. Workflow of focused classification with residual signal subtraction for the AcrABZ-TolC/

MBX3132 pump reconstructed with C3 symmetry imposition.

DOI: 10.7554/eLife.24905.014

Figure supplement 2. Validation of AcrABZ-TolC/MBX3132 density map and model.

DOI: 10.7554/eLife.24905.015
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AcrB subunits in the same (TTT) conformation (Materials and method and Figure 3—figure supple-

ment 1A–E). Subsets of particles show AcrB conformations in LLL (1.4%), LLT (6.2%) and LTT (18.6%)

states, respectively, while none of the subunits was identified in an ‘O’ state. Therefore, this inhibi-

tor-bound pump conformation primarily represents a T-saturated state of the AcrB. The C3 symme-

try imposed reconstruction using the subset of particles with TTT state (24,597 particles) also

achieved 3.6 Å resolution (Figure 3A, Figure 3—figure supplement 1F and G). We observed clear

density for the inhibitor in a ’hydrophobic trap’ site adjacent to the drug binding of the AcrB trimer

in both the asymmetric and symmetry imposed maps (Figure 3B). Side chains can be readily

assigned and modeled in the protruding densities along the peptide backbone (Figure 3—figure

supplement 2). This cryo-EM structure of pump/MBX3132 enables us to visualize the interaction

interfaces between the pump components at atomic resolution.

Comparing the structure of TolC in the crystal or in the apo pump with that in the inhibitor-bound

pump assembly reveals that TolC adopts a fully opened state through an iris-like dilation of the peri-

plasmic end. This dilation is presumably necessary to maintain TolC-AcrA connectivity and to permit

drug molecules to pass through the pump (Koronakis et al., 2000). Little conformational change is

shown in the TolC TM region and the adjacent a-helical portion. However, the structures start to

deviate at the equatorial domain, where the superhelical trajectories of coiled-coil helices change

Figure 4. Interactions between TolC and AcrA in the AcrABZ-TolC pump with inhibitor MBX3132 bound. (A)

Segments of the 3.6 Å resolution cryoEM density map of the pump with fitted model showing the tip-to-tip

interaction between a TolC protomer (red) and two a-helical hairpins of AcrA (orange and green). (B) Detail of the

tip-to-tip interface of TolC and AcrA. Residue pairs of complementary mutations (Kim et al., 2015) identified at

this interface are shown (Xu et al., 2011).

DOI: 10.7554/eLife.24905.016

The following figure supplements are available for figure 4:

Figure supplement 1. Residue interactions in the closed and open states of TolC.

DOI: 10.7554/eLife.24905.017

Figure supplement 2. Pairs of co-evolved residues at the TolC-AcrA interface.

DOI: 10.7554/eLife.24905.018

Figure supplement 3. The conformational flexibility at the tips of a-helical hairpin domains of AcrA, displayed as

Ca traces.

DOI: 10.7554/eLife.24905.019
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with the iris-like dilation (Figure 4A and B; Figure 4—figure supplement 1A and B). In the ‘closed

state’ conformation, seen in the apo pump, the constriction is maintained by an inter-protomer

hydrogen-bonding network, involving R367 in one subunit and T152, D153 and Y362 in the adjacent

subunit (Andersen et al., 2002; Augustus et al., 2004; Bavro et al., 2008)(Figure 4—figure sup-

plement 1A). This network of interactions is broken in the TolC of pump/MBX3132 complex (Fig-

ure 4—figure supplement 1B) and the pump/puromycin complex. Accordingly, we refer to TolC in

the pump-ligand complexes as being in an ‘open state’ conformation.

We observe tip-to-tip interactions of the AcrA and TolC HTH motifs (Figure 4), which is similar to

that proposed for the open state of the pump reported earlier (Jeong et al., 2016). These interac-

tions account for the importance of the conserved Val-Gly-Leu/Thr element of TolC (Jeong et al.,

2016; Song et al., 2014). At the AcrA protomer-I/TolC interface, contacts involve the backbone of

G365 in the conserved VGL motif of TolC with the backbone of K140 and side chain of S139 in AcrA

(Jeong et al., 2016). The N145 and T366 of TolC directly contact AcrA L132 in the pump, consistent

with the results of in vivo site-specific cross-linking experiments (Xu et al., 2011) (Figure 4B). Our

cryoEM structure shows the presence of residue pairs at the interface between AcrA and TolC (Fig-

ure 4—figure supplement 2) that were predicted to have co-evolved in the homologous proteins in

a different efflux pump MdtNOP (Harley and Saier, 2000; Ovchinnikov et al., 2014). 3D classifica-

tion identified a small subset of particles, in which TolC rotates by 60 degrees with respect to AcrA,

but the alternative interface still retains the key contacts described above. As observed in the apo

state, there are two distinct conformations of the HTH motif loops of AcrA protomers I and II that

structurally conform to the slightly different contact surfaces of TolC (Figure 4). The flexibility of the

HTH is consistent with observations from crystal structures (Figure 4—figure supplement 3)

(Mikolosko et al., 2006).

In the six protomers of AcrA, the lipoyl and b-barrel domains form a stack of two continuous

rings. The lipoyl domains have no interaction with either AcrB or TolC, and the b-barrel domains

contact only the docking domain of AcrB (Figure 5). The membrane-proximal (MP) domain of AcrA

interacts with both the docking domain and the top of the pore domain of AcrB. Each AcrB proto-

mer makes two non-equivalent interactions with AcrA (Ntreh et al., 2016); i.e. each pair of AcrA

protomers makes two conformationally distinct interfaces with AcrB, as was found with the interac-

tion between AcrA and TolC (Figures 4 and 5). AcrA protomer-I makes extensive interactions with

AcrB. The b-barrel domain of AcrA protomer-I docks on the DN and DC subdomains of AcrB, while

Figure 5. Interactions between AcrA and AcrB in the AcrABZ-TolC pump with inhibitor MBX3132 bound. (A) A pair

of AcrA protomers interacts with one AcrB protomer. Subdomains of the AcrB are labeled with different colors. (B)

Cartoon schematic of the domains/subdomains shown in (A). (C) Interaction between AcrA protomer-I and AcrB.

(D) Interaction between AcrA protomer-II and AcrB. There are 120 and 180 degrees rotations in (C) and (D) relative

to (A), respectively.

DOI: 10.7554/eLife.24905.020
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its MP domain interacts with the PC1 subdomain,

the linker region between PC2 and DC, and an

extended loop of the DN subdomain from an

adjacent AcrB protomer (Figure 5A and C). The

spatial orientation of a b-hairpin motif, in the DN

subdomain of AcrB, differs between the cryoEM

and crystal structures. This conformational differ-

ence facilitates the interactions between AcrB

and the b-barrel domain of AcrA protomer-II and

a short a-helix of the DC subdomain from the

adjacent AcrB protomer (Figure 5A and D). This

contact resembles the interactions observed

between the metal transporter subunits CusB and

CusA, which are homologs of AcrA and AcrB,

respectively (Su et al., 2011). This b-hairpin motif

in the DN subdomain of AcrB has been shown to

be important for the proper assembly of a func-

tioning pump (Weeks et al., 2014). The linking

region between AcrB subdomains PN2 and DN

contacts the end of a b-sheet in the MP domain

of AcrA protomer-II (Figure 5A and D).

Figure 6. Comparison of AcrA-TolC interactions in puromycin-bound and apo state. (A) Structure of AcrAB-TolC/

puromycin pump visualized in side view. (B) Top view (top panel) and side views (middle and bottom panels) of

AcrA-TolC interface in puromycin-bound state. (C). Structure of apo AcrAB-TolC pump visualized in side view. (D)

Top view (top panel) and side views (middle and bottom panels) of AcrA-TolC interface in apo state. Subunits are

color-coded accordingly: TolC (red), AcrA (orange and green) and AcrB (blue).

DOI: 10.7554/eLife.24905.021

Video 2. Morph animation between the disulfide-

engineered pump-derived model and the derived

model of the pump in the presence of puromycin.

Intermediate states are interpolated between the two

resolved states.

DOI: 10.7554/eLife.24905.022

Wang et al. eLife 2017;6:e24905. DOI: 10.7554/eLife.24905 8 of 19

Research article Biophysics and Structural Biology



Overlaying the model of the apo pump with the pumps in the presence of ligands reveals pro-

found conformational changes at the AcrA-TolC, AcrA-AcrA and AcrA-AcrB interfaces (Figure 6;

Video 2). The quasi six-fold symmetry of the interface between AcrA helical hairpin and open-state

TolC reduces to three-fold symmetry in the apo-form. The rearrangements of AcrA repack the b-bar-

rel and membrane proximal domains in a different orientation on the surface of the AcrB and seal

the gaps to the periplasm. Conformational changes in the periplasmic headpiece of AcrB instigate

repacking of all four of the AcrA domains, and this causes the reorganization of the coiled-coiled

domain of AcrA, which is the key step to organize the HTH motifs and open the TolC channel. Thus,

the pump is a highly allosteric system in which conformational changes associated with ligand bind-

ing by the apo state of AcrB are communicated over a long distance to TolC through the repacking

of protein-protein interfaces (Fischer and Kandt, 2013; Zgurskaya and Nikaido, 1999).

Discussion
In this study, we have captured structures of the full pump assembly with a closed channel in the

apo-state and with an opened channel in the presence of inhibitor or antibiotic. We propose that

the apo-form of the pump with a closed TolC represents a resting state (Figure 1), while the pump

assemblies with opened TolC in the presence of transportable ligands represent transport states, in

which the AcrB trimer adopts asymmetric LLT, LTT or LTO conformations. The three pump compo-

nents undergo significant conformational changes when the assembly switches from the resting-state

to the transport-states. In the transport-states, ligand binding is associated with large conformational

changes in AcrB for both PN1/PC2 and PN2/PC1 structural modules that form the drug-binding

pocket (Eicher et al., 2014) (Figure 3B). However, the interfaces between TolC and AcrA, and

between AcrA and AcrB do not change significantly in the different transport states (LTO, LTT, LLT).

Figure 7. Schematic cartoon of the transport mechanism. (A) The resting state of the apo pump with TolC in

closed-state and the AcrB trimer in LLL conformation. (B) The apo pump switches to a transport-state in the

presence of transport substrate (s), opening the TolC channel (right arrow). In the transport-state, AcrB cycles

through three, structurally distinct states (L, T and O), two of which are shown in the left panel (T and O). Cycling is

obligatory for unidirectional transport, driven by coupling with transmembrane proton conduction through the TM

domain (red arrow). In the absence of substrate, the pump reverts to the resting state and closes the TolC channel

(left arrow). The views are cross-sections through the cell envelope, with only two protomers shown for each of the

pump components. The inset cartoons on the left in (A) and the right in (B) show views down the molecular axis of

the AcrB trimer, indicating the states with the configuration inferred from the cryoEM reconstructions. The model

predicts a contraction along the long axis of the pump with the switch from apo- to transport-states.

DOI: 10.7554/eLife.24905.023
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We propose that ligand binding in the apo state instigates quaternary structural changes in AcrB

that are communicated to AcrA, which in turn repacks to trigger tertiary structural changes in TolC

that open the channel from a sealed resting state. The repacking to AcrA is critical to seal the gaps

in the pump, which would otherwise allow substrate to leak into the periplasm. Thus, the long-dis-

tance allosteric coupling between AcrB and TolC, mediated through AcrA, ensures that TolC channel

opening is synchronized with closing the assembly to the periplasm. When substrate is absent, the

pump assembly returns to its resting state. The above conformational changes are accompanied by

a contraction of the pump along the long axis in its transport state by nearly 10 Å (Figure 7). We

anticipate that the transition from the resting state to the transport states will entail a local compres-

sion of the periplasm to accommodate the axial contraction of the pump, and local curvature of the

outer membrane and inner membrane near the portal of AcrB. These changes may have impact on

the energetics and kinetics of the transport process.

RND-type tripartite multidrug efflux pumps in Gram-negative bacteria are one of the major con-

tributors to multidrug resistance. Efflux pump inhibitors could be used as adjunct therapies to

increase the potency of existing antibiotics and counter the emergence of multidrug resistant bacte-

ria. Efforts have been focused on the development of inhibitors for the transporter components.

Due to the capacity of the transporters to recognize a broad range of substrates, such compounds

are particularly difficult to identify (Opperman and Nguyen, 2015). In the presence of inhibitor

MBX3132, the AcrB trimer is predominantly trapped in the symmetric TTT conformation (Figure 2—

figure supplement 1E), possibly because the inhibitor has high affinity to AcrB and cannot be trans-

ported. Thus, the cryoEM structure suggests that inhibitors like MBX3132 could effectively inhibit

AcrAB-TolC efflux through saturated binding and blocking all sites and prevent AcrB from cycling

through different states. It may be possible to block drug translocation by targeting the assembly or

conformational switching of the tripartite pumps themselves. In this regard, the interaction interfaces

between components, which are well resolved in our cryoEM structure, may be important drug-tar-

geting sites to inhibit the assembly of this and other tripartite pumps.

Materials and methods

Construction of vectors for overexpression of disulfide-bond stabilized
AcrAB–TolC complex
The cysteine-substitutions were introduced for residues AcrA_S273 and AcrB_S258 into the individ-

ual components by site-directed mutagenesis using plasmid pAcBH as a template and primers

AcrAS273C_F: 5’- GAT CAG ACC ACT GGG TGT ATC ACC CTA CGC GCT ATC ttc-3’/AcrAS273C_R:

5’-GAA GAT AGC GCG TAG GGT GAT ACA CCC AGT GGT CTG ATC-3’, AcrBS258C_F: 5’-GTG

AAT CAG GAT GGT TGT CGC GTG CTG CTG CGT GAC-3’ /AcrBS258C_R: 5’-GTC ACG CAG CAG

CAC GCG ACA ACC ATC CTG ATT CAC-3’, resulting in the construct pAcBH-AcrAS273CAcrBS258C.

The tolC gene was amplified using primers TolCinf_F: 5’-AAG GAG ATA TAC ATA TGA AGA AAT

TGC TCC CCA TTC TTA TCG GCC-3’ and TolC1392inf_R: 5’-TTG AGA TCT GCC ATA TGT CAA

TCA GCA ATA GCA TTC TGT TCC GGC GT-3’. The PCR product was then inserted into the NdeI

site of pRSFDuet-1 using the In-Fusion cloning method (Clontech), generating the construct

pRSFDuet-1-tolC1392.

Protein preparation
The components of AcrABZ-TolC pump were co-expressed and the cellular membrane was prepared

as described previously (Du et al., 2014). The purification procedure was optimized to improve the

homogeneity and stability of the protein complex. 3.5 g of cellular membrane was re-suspended in

50 ml lysis buffer (20 mM Tris pH 8.0, 400 mM NaCl) and was solubilized with 1.5% DDM. The

AcrABZ–TolC complex purified by nickel affinity chromatography was loaded onto a Superose 6 col-

umn equilibrated with GF buffer (20 mM Tris pH 8.0, 400 mM NaCl, 0.03% DDM). Fractions contain-

ing purified AcrABZ–TolC complex were pooled and concentrated to 0.1 mg ml�1 using a Vivaspin

column (MWCO: 100 kDa). Amphipol A8-35 (100 mg ml�1) was mixed with the protein solution with

a mass ratio of amphipol A8-35 to protein of 4:1. The mixture was incubated at 4˚C for 3 hr. Polysty-

rene beads (Bio-Beads SM-2) were then added to the protein/DDM/amphipol A8-35 mixture with a

mass ratio of Bio-Beads SM2 to detergent of 10:1. The mixture was gently rotated at 4˚C overnight
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to remove DDM. The detergent-exchanged AcrABZ–TolC complex was concentrated to 2 mg ml�1

using a Vivaspin column (MWCO: 100 kDa). Puromycin (100 mM) or pyranopyridine inhibitor

MBX3132 (50 mM) was added to the protein sample at a final concentration of 1 mM or 0.4 mM,

respectively, and the mixture was incubated on ice for 1 hr before embedding in vitreous ice.

The disulfide-bond stabilized AcrAB–TolC complex was overexpressed and purified as follows:

Genes encoding AcrA and AcrB were deleted from the chromosome of Escherichia coli strain C43

(DE3). The resulting C43 (DE3) DacrAB strain was transformed with plasmids pAcBH-AcrAS273-

CAcrBS258C and pRSFDuet-1-tolC1392. The culture was grown in 2xYT medium with 100 mg ml�1

carbenicillin and 50 mg ml�1 kanamycin at 37˚C until the culture reached an absorbance, at 600 nm,

of 0.5 and was then induced by the addition of 0.1 mM isopropyl 1-thio-b-D-galactopyranoside

(IPTG) at 25˚C overnight. Cells were harvested by centrifugation, and pellets from 10 L culture were

re-suspended in 150 ml of lysis buffer (400 mM sodium chloride, 20 mM Tris-HCl, pH: 8.0) with 1 tab-

let per 50 ml EDTA free protease inhibitor cocktail tablets, 5 U ml�1 DNase I and 5 mg ml�1 lyso-

zyme, and the mixture was stirred at 4˚C for 1 hr to digest the cell wall. The cells were lysed by eight

passages through a high-pressure homogenizer (EmulsiFlex) at 15,000 psi. Cell debris was pelleted

by centrifugation at 9000 g for 30 min. Cellular membrane was pelleted by ultracentrifugation at

125,755 g for 3 hr. 3.5 gram of membrane pellets were re-suspended in 50 ml of lysis buffer with

protease inhibitors and were solubilized by adding 1.5% DDM and stirring at 4˚C for 3 hr. Debris

was pelleted by ultracentrifugation at 125,755 g for 30 min. Imidazole was added to the membrane

solution to a final concentration of 15 mM. Histidine-tagged AcrAB-TolC complex was purified by

nickel affinity chromatography using a HiTrap 1 ml chelating column (GE Healthcare Life Sciences)

equilibrated with GF buffer (400 mM sodium chloride, 20 mM Tris-HCl, pH 8.0, 0.03% DDM) contain-

ing 20 mM imidazole. The column was washed with 50 mM imidazole added to GF buffer. Purified

AcrAB-TolC complex was eluted with 500 mM imidazole in GF buffer, concentrated and loaded

onto a Superose 6 column equilibrated with GF buffer. Fractions 11–15 containing purified AcrAB-

TolC complex were pooled and concentrated to 1 ml using a Vivaspin concentrator (MWCO 100

kDa). Amphipol A8-35 (100 mg/ml) was added to a final concentration of 10 mg/ml and the final vol-

ume was adjusted to 2 ml using lysis buffer. The mixture was incubated on ice for 3 hr. 250 mg of

Polystyrene beads (Bio-Beads SM2) was then added to the protein/DDM/Amphipols A8-35 mixture

and rotated at 4˚C overnight to remove DDM. The mixture was loaded onto a mini chromatography

column to remove the Polystyrene beads (Bio-Beads SM2). The detergent-exchanged AcrAB–TolC

complex was concentrated to 2 mg ml�1 using a Vivaspin column (MWCO: 100 kDa) before embed-

ding in vitreous ice.

Crystallization of AcrBZ–DARPin
The AcrBZ–DARPin complex has been found to yield well diffracting crystals in the presence of anti-

biotics. The complex was purified as described previously (Du et al., 2014). The protein was diluted

to 10 mg ml �1 using sample buffer (10 mM HEPES pH: 7.5, 50 mM sodium chloride, 0.03% DDM)

and was incubated with 1 mM of puromycin for 3 hr at 4˚C before crystallization trials. The crystals

of AcrBZ–DARPin complex were grown at 20˚C using the hanging-droplet vapor diffusion method

by mixing 4 ml of protein with 2 ml of reservoir solution (80 mM Bis-Tris, pH 6.0, 50 mM sodium cit-

rate, 120 mM KCl, 10% PEG 4000, 0.5% N,N-dimethyldodecylamine N-oxide). 200 ml of oil (mixture

of 40% silicon oil and 60% paraffin oil) was applied over 1 ml reservoir solution to control the rate of

vapor diffusion. Crystals appeared 24 hr after setting up the crystallization trials and reached maxi-

mal size in 1 week. The crystals were transferred briefly into reservoir solution supplemented with

25% v/v glycerol as cryo-protectant before flash freezing in liquid nitrogen.

Crystallographic data collection and structure refinement
The AcrBZ–DARPin complex in the presence of puromycin crystallized in space group P212121. Data

sets were collected using beamline I24 at the Diamond Light Source. The diffraction data were proc-

essed using iMosflm (Battye et al., 2011) and scaled using SCALA (Evans, 2006). As the crystals are

sensitive to radiation damage, diffraction data of contiguous 15-degree wedges were collected from

multiple crystals and merged to obtain a full dataset. Structures were solved by molecular replace-

ment using Phaser with AcrB–DARPin complex (PDB accession: 4DX5) as a search model and refined

using PHENIX and REFMAC5 (Murshudov et al., 1999). Coot was used for modeling (Emsley et al.,
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2010). Maps calculated from molecular replacement using the AcrB-DARPin complex revealed clear

electron density for AcrZ. Data collection and refinement parameters are presented in

Supplementary file 3. Structures are shown in Figure 2—figure supplement 3.

Electron cryo-microscopy
For the AcrABZ-TolC/Puromycin sample, a 2.0 ml aliquot at 2 mg/ml was applied onto holey carbon

film supported by a 200-mesh R2/1 Quantifoil grid (Quantifoil) that had been previously washed and

glow discharged. The grid was blotted and rapidly frozen in liquid ethane using a Vitrobot IV (FEI)

with constant temperature and humidity. The grid was stored in liquid nitrogen before imaging.

Images of frozen-hydrated AcrABZ-TolC/puromycin particles were acquired on a FEI Tecnai G2

Polara electron microscope (FEI) operated at 300 kV using a K2 Summit direct electron detector

camera (Gatan).

For the samples AcrABZ-TolC/MBX3132 and apo AcrAB-TolC, a 3 ml aliquot at a concentration of

2 mg ml�1 was applied onto glow-discharged holey carbon grid (Quantifoil Au R1.2/1.3, 300 mesh).

The grid was blotted and flash frozen in liquid ethane using a Vitrobot IV (FEI) with constant temper-

ature and humidity. The grid was stored in liquid nitrogen before imaging. Zero-energy-loss images

of frozen-hydrated AcrABZ-TolC/MBX3132 or apo AcrAB-TolC particles were recorded automatically

on an FEI Titan Krios electron microscope at 300 kV, using a slit width of 20 eV on a GIF Quantum

energy filter and a Gatan K2-Summit direct electron detector.

The data collection parameters for all three specimens are summarized in Supplementary file 1.

Image processing and 3D reconstruction
For the AcrABZ-TolC/puromycin pump, dose-fractionated super-resolution raw image stacks were

binned 2 � 2 by Fourier cropping resulting in a pixel size of 1.62 Å for further image processing.

Each image stack was subjected to motion correction using dosefgpu_driftcorr (Li et al., 2013), and

a sum of sub-frames 1–29 in each image stack was used for further image processing. The signal in

the motion-corrected images extends beyond 4 Å. Defocus and astigmatism were determined for

each micrograph by CTFFIND3 (Mindell and Grigorieff, 2003). Each image was binned 2 � 2 to

enhance image contrast for particle picking. 99,385 particles were boxed out manually from 6456

micrographs using e2boxer.py. An initial map was generated with 3-fold symmetry imposition from

2-D reference-free averages using EMAN2 (Tang et al., 2007). The initial reference map was low

pass filtered to 60 Å resolution and was used as a starting point for the RELION-1.4 refinement

(Scheres, 2012). The first round of refinement resulted in a sub-nanometer resolution map. After

this step, several rounds of iterative 3D classification and 3D auto-refinement were run to extract a

self-consistent subset of the particle data. 67,436 particles were selected after 3D classification and

further refined with averages from sub-frames 2–16 to achieve 3.9 Å resolution based on the gold

standard criterion (Henderson et al., 2012). The final refinement was done using oversampling by a

factor of two on the whole dataset. A soft mask in RELION post-processing was applied before com-

puting the FSCs. The final resolution was estimated by 0.143 cutoff of FSCt. Local resolution varia-

tions were estimated with ResMap using the two independent maps (Kucukelbir et al., 2014).

For AcrABZ-TolC/MBX3132, the software MotionCorr (Li et al., 2013) was used for whole-frame

motion correction, Ctffind4 (Rohou and Grigorieff, 2015) for estimation of the contrast transfer

function parameters, and RELION-1.4 package for all other image processing steps. For apo AcrAB-

TolC, the software MotionCor2 (Zheng et al., 2016) was used for whole-frame motion correction

and dose weighting, Gctf (Zhang, 2016) for estimation of the contrast transfer function parameters,

and RELION-2.0/beta package for all other image processing steps. A particle subset was manually

selected to calculate reference-free 2D class averages, which was then used as templates for auto-

mated particle picking of the entire data set. The templates were lowpass filtered to 20 Å to limit

model bias. Then initial runs of 2D and 3D classifications were used to remove the heterogeneous

particles, as well as the false positive particles from the auto-picking. We selected good particles for

further analysis based on the quality and high resolution in the 2D and 3D classification.

For the AcrABZ-TolC/MBX3132 pump, 65,256 particles were picked automatically from a total of

1150 micrographs. After initial 2D and 3D classifications, a homogenous subset of 33,587 particles

was selected for a first 3D auto-refinement, generating a reconstruction with a resolution of 6.67 Å.

After per-particle motion correction and radiation-damage weighting, the polished particles were
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submitted to a second round of 3D auto-refinement by applying a soft mask around the TolC, AcrA

and the periplasmic headpiece of AcrB (Scheres, 2016). These polished particles gave a reconstruc-

tion with a resolution of 3.6 Å based on the Gold-standard FSC 0.143. In the case of apo AcrAB-

TolC pump, 95,410 particles were picked automatically from a total of 2292 micrographs. After initial

2D classification and two rounds of 3D classifications, 13,544 homogeneous particles were selected

for 3D auto-refinement, which generated a map with a resolution of 6.5 Å based on the Gold-stan-

dard FSC 0.143. 3D classification also identified a small subset of particles, in which TolC is rotated

by 60 degrees with respect to AcrA.

All 3D classifications and refinements were started from a 50–60 Å low-pass filtered initial model,

the first of which was made from our previous 16 Å resolution map. The density map was sharpened

by applying a negative B-factor estimated by automated procedures (Rosenthal and Henderson,

2003). Local resolution variations were estimated using ResMap and visualized with Chimera

(Pettersen et al., 2004).

Symmetry release and focused classification
The density map generated from RELION was used to assess the structural asymmetry of the pump

by performing focused classification. A soft mask of the targeted region of this map was generated

using relion_mask_create with a soft edge extension of 5 pixels (Figure 2—figure supplement 1A;

Figure 3—figure supplement 1A). We used this masked volume to set to zero the density of the

targeted region from the 3D map of the whole pump, and generated a modified map (Figure 2—

figure supplement 1B; Figure 3—figure supplement 1B). This altered density map was rotated by

120 and 240 degrees about the molecular three-fold axis. The three resulting 3D density maps rep-

resent the entire pump with the deletion of each of the three-targeted regions (i.e. each of the three

subunits of AcrB) (Figure 2—figure supplement 1C; Figure 3—figure supplement 1C). Next, each

of these three altered density maps was projected in 2D in the corresponding orientations of each of

the raw particle images and subtracted from the original image (Figure 2—figure supplement 1C;

Figure 3—figure supplement 1C). Altogether, the particle images (33,337 for the pump with

MBX3132 and 67,436 for the pump in presence of puromycin) used in the final reconstruction gener-

ated three times that many subtracted particle images. Each of the three subtracted projections

from an individual particle image (Figure 2—figure supplement 1C; Figure 3—figure supplement

1C) was assigned appropriate Euler angles so that they are all in the same orientation in the 3D map

to permit 3D classification (Figure 2—figure supplement 1D; Figure 3—figure supplement 1D).

The soft mask generated in the beginning of this process (Figure 2—figure supplement 1A; Fig-

ure 3—figure supplement 1A) was used for the 3D classifications to remove density outside the

mask. We ran rounds of 3D classifications using the particle alignment parameters of the symmetry-

imposed map of the pump. Each round was iterated 25 times and classified into several subsets (Fig-

ure 2—figure supplement 1D; Figure 3—figure supplement 1D). Focused classification of pump

with MBX3132 result in two populations different in the binding site of MBX3132 according to crystal

structure (Figure 3—figure supplement 1D). Subsets of original and unmodified particle images

with different putative ligand binding sites were selected for 3D refinement with no imposed sym-

metry. We carried out the similar approach on the data of the pump in presence of puromycin. After

3 rounds of 3D classification, we identified two significant conformations. Both class 1 and 2 have a

conformation in the pore domain that is closed towards the periplasm. In contrast, the pore domain

in class four shows an opened conformation facing the periplasm. We selected the original and

unmodified pump particle images that assign only one member from class 1 and 2 for another round

of 3D refinement without symmetry constraint (Figure 2—figure supplement 1E).

Model docking and optimization
The crystal structures of trimeric AcrBZ (PDB code: 4C48) and trimeric TolC (PDB code: 1EK9) were

docked into the cryoEM map by using Chimera. Both the TolC and AcrBZ models were adjusted

manually to optimize the local fit to density using Coot. Individual domains of AcrA from the crystal

structure (PDB code: 2F1M) including b-barrel domain, lipoyl domain and a-helical hairpin domain

were fitted to the density map using Chimera (Pettersen et al., 2004). A homology model of the

MP domain of AcrA was built based on the structure of MexA (PDB code: 2V4D) and fit to the den-

sity. Four conformationally different structures of the a-helical hairpin domain (Chain A-D in the
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crystal structure) (Figure 4—figure supplement 3) were evaluated for their fit into the density map

of our two protomers. The a-helical hairpin structures from chains A and D fit best into the density

map for AcrA protomer-I and for protomer-II in the pump assembly, respectively. The model for the

complete pump was optimized using Phenix real-space refinement (Wang et al., 2014) with three-

fold symmetry imposed (Supplementary file 2). The model of the whole pump complex was vali-

dated by computing a FSC with the density map. It is 4.1 Å at 0.5 FSC (Figure 3—figure supple-

ment 2A). MolProbity (Chen et al., 2010) statistics were computed to ensure proper

stereochemistry (Supplementary file 2).

The 5.9 Å resolution map calculated from the particle subset in class 1 and 2 without symmetry

restraint was fit with the symmetric model based on the 3.9 Å density map. We found that TolC and

AcrA did not show conformational change. We noticed during the modeling process of TolC alone

that the TolC and AcrA interface is polymorphic, with a slight majority of TolC rotated 60 degrees

with respect to the dominant configuration seen in the inhibitor bound pump structure, as shown in

Figure 3.

However, the region for the AcrB in the new map revealed significant mismatch to the symmetric

model. A better fit was obtained using the asymmetric AcrBZ crystal structure. Model optimization

was then done with Phenix real-space refine (Wang et al., 2014) using stronger secondary-structure

restraints parameters to maintain proper stereochemistry where weak density exists. Moreover,

atomic displacement parameters (B-factors) were computed to determine the level of resolvability

throughout the map, which correlated well with Resmap results. The Coot adjustments and Phenix

model optimization were iterated one additional round to ensure that the model was a good repre-

sentation of the map.

For the modeling of the apo state AcrAB-TolC pump, resolved to 6.5 Å resolution, a similar

method to modeling of the asymmetric maps was utilized. Crystal structures were rigid-body fit into

the density map and model optimization was then carried out with Phenix real-space refine. Again,

due to the weaker resolution stronger stereochemical and secondary structure restraints were used

to ensure that a-helices and b-sheets did not deviate far from their expected geometry. Manual

adjustments were kept to a minimum to reduce human bias in the modeling procedure, with Coot

only being used to fix obvious errors such as C-beta deviations. A final check of MolProbity and

cross-correlation was done to ensure model quality.

Accession numbers
Accession codes: cryoEM maps and models of AcrABZ-TolC have been deposited in EMDB under

accession code EMD-8636 (apo form), EMD-8640 (puromycin), EMD-3636 (MBX3132 inhibitor), and

in the Protein Data Bank under accession code 5V5S(apo form), 5V78 (puromycin), and 5NG5

(MBX3132). The crystal structure of AcrBZ has been deposited to Protein Data Bank under accession

code 5NC5.
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