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On input-to-state-stability and integral input-to-state-stability for

parabolic boundary control systems

Birgit Jacob1 Robert Nabiullin1 Jonathan Partington2 Felix Schwenninger3

Abstract— This work contributes to the recently intensified
study of input-to-state stability for infinite-dimensional systems.
The focus is laid on the relation between input-to-state stability
and integral input-to-state stability for linear systems with a
possibly unbounded control operator. The main result is that
for parabolic diagonal systems both notions coincide, even in
the setting of inputs in L

∞, and a simple criterion is derived.

I. INTRODUCTION

The concept of input-to-state stability, introduced by

E. Sontag in 1989 [1], is a well-studied stability notion of

control systems with respect to external inputs. For a survey

on input-to-state stability for finite-dimensional systems we

refer the reader to [2]. A variant of classic input-to-state

stability is the notion of integral input-to-state stability, see

e.g., [3]. We note that for linear, finite-dimensional systems

input-to-state stability and integral input-to-state stability are

equivalent and hence, the interest in different types of input-

to-state stability lies in the study of nonlinear systems then.

For infinite-dimensional systems, input-to-state stability

and integral input-to-state stability have been less studied, but

more intensively in the recent past, see [4], [5], [6], [7], [8],

[9], [10], [11], [12]. See also [13] for a study on the failure

of equivalences in infinite-dimensions, which are known to

hold true for finite-dimensional systems. In contrast to finite

dimensions, even the case of linear systems is still not fully

understood. This contribution aims to shed more light on

the latter situation. In most of the references mentioned

above, general nonlinear systems are studied, however, in

such a way that the special case of linear equations is only

covered when bounded control operators are considered.

Concerning applications, this is a major restriction, see e.g.

[14]. Moreover, if the system is linear and the control

operator is bounded, then is easy to see that input-to-state

stability and integral input-to-state stability are equivalent.

Therefore, the focus of this paper is to allow for unbounded

control operators and to address the question how these

stability concepts are related. For linear, infinite-dimensional

systems, the notion of admissibility, [15], [16], has proved to

be very useful for the study of unbounded control operators.

It is known that input-to-state stability is equivalent to

admissibility (together with exponential stability). We will
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show that integral input-to-state stability in fact implies zero-

class admissibility [17], [18], which is slightly stronger than

admissibility.

In this paper we study systems Σ(A,B) of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (1)

where A generates a C0-semigroup on a Hilbert space X and

B is a linear, unbounded operator defined on the input space

U . This class of systems covers in particular linear partial

differential equations with boundary control. Furthermore,

will restrict our study to input-to-state stability and integral

input-to-state stability with respect to L∞. We remark that

the corresponding questions for Lp, p ∈ [1,∞), are less

interesting as the notions coincide then, see e.g. [19].

By the relation to admissibility, input-to-state stability

follows from integral input-to-state stability. We prove that

integral input-to-state stability moreover implies zero-class

admissibility, Proposition 2.9.

We then consider parabolic diagonal systems, that is, we

assume that A possesses a Riesz basis of eigenvectors with

eigenvalues lying in a sector in the open left half-plane and

that the input space U is one-dimensional. Our main result

states that, for such systems, integral input-to-state stability

is equivalent to input-to-state stability and equivalent to the

fact that B is a linear bounded operator from U to the

extrapolation space X−1, see Theorem 3.1.

Finally, we illustrate the obtained results by an example of

a heat equation with boundary control.

II. DEFINITIONS

We study systems Σ(A,B) of the form in (1) where B
is a linear and bounded operator from a Hilbert space U
to the extrapolation space X−1. Note that B is possibly

unbounded from U to X . Here X−1 is the completion of

X with respect to the norm ‖x‖X−1
= ‖(β − A)−1x‖X

for some β in the resolvent set ρ(A) of A. The semigroup

(T (t))t≥0 extends uniquely to a C0-semigroup (T−1(t))t≥0

on X−1 whose generator A−1 is an extension of A, see

e.g. [20]. Thus we may consider Equation (1) on the Hilbert

space X−1. For u ∈ L1
loc(0,∞;U) the mild solution of (1)

is given by the variation of parameters formula

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s)ds, t ≥ 0. (2)

The notion of admissibility of the system Σ(A,B) guarantees

that the state x(t) lies in X .



Definition 2.1: System Σ(A,B) is called admissible if

∀t > 0, u ∈ L∞(0, t;U) :

∫ t

0

T−1(s)Bu(s) ds ∈ X. (3)

It follows that if Σ(A,B) is admissible, then all mild

solutions (2) are in X and by the Closed Graph Theorem

there exists a constant c(t) (take the infimum over all possible

constants) such that
∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(t)‖u‖L∞(0,t;U).

If (3) holds for t = ∞, then Σ(A,B) is called infinite-time

admissible.

If the semigroup (T (t))t≥0 is exponentially stable, that is,

there exist constants M,ω > 0 such that

‖T (t)‖ ≤ Me−ωt, t ≥ 0, (4)

then c = supt≥0 c(t) < ∞, and it is easy to see that infinite-

time admissibility is equivalent to admissibility. Beside clas-

sic admissibility, we are also interested in the following

refinement.

Definition 2.2: We call the system Σ(A,B) zero-class

admissible if the system is admissible and limt→0 c(t) = 0.

Remark 2.3: If Σ(A,B) is zero-class admissible, then for

every x0 ∈ X and every u ∈ L∞(0,∞;U) the mild solution

of (1), given by (2), satisfies x ∈ C([0,∞);X). This is

proved similarly to Proposition 2.3 in [15], see [19].

We will need the following well-known function classes from

Lyapunov theory.

K = {µ : R+
0 → R

+
0 | µ(0) = 0, µ continuous,

strictly increasing},
K∞ = {θ ∈ K | lim

x→∞
θ(x) = ∞},

L = {γ : R+
0 → R

+
0 | γ continuous,

strictly decreasing, lim
t→∞

γ(t) = 0},
KL = {β : (R+

0 )
2 → R

+
0 | β(·, t) ∈ K ∀t ∧ β(s, ·) ∈ L ∀s}.

Definition 2.4: 1) A system Σ(A,B) is called input-

to-state stable if the mild solution x(t) lies in X for

every t ≥ 0 and there exist functions β ∈ KL and

µ ∈ K∞ such that

‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖∞) (5)

for every t ≥ 0, x0 ∈ X and u ∈ L∞(0,∞;U).
2) A system Σ(A,B) is called integral input-to-state

stable if the mild solution x(t) lies in X for every

t ≥ 0 and there exist functions β ∈ KL, θ ∈ K∞ and

µ ∈ K such that

‖x(t)‖ ≤ β(‖x0‖, t) + θ

(
∫ t

0

µ(‖u(s)‖)ds
)

(6)

for every t ≥ 0, x0 ∈ X and u ∈ L∞(0,∞;U).
It follows immediately that A generates an exponentially

stable C0-semigroup if the system Σ(A,B) is (integral)

input-to-state stable. The following results are easily seen

from the definition of admissibility and input-to-state stabil-

ity. Proofs and related results can be found in [11, Thm. 4,

Thm. 6 and Prop. 7] and [19].

Proposition 2.5: Suppose B is a bounded operator from U
to X and A generates an exponentially stable C0-semigroup.

Then the system Σ(A,B) is input-to-state stable, integral

input-to-state stable, infinite-time admissible and zero-class

admissible.

Remark 2.6: Let Σ(A,B) as in Proposition 2.5. Then the

system Σ(A,B) is input-to-state stable with the following

choices for the functions β and µ

β(s, t) := Me−ωts and µ(s) :=
M

ω
‖B‖s,

and integral input-to-state stable with

β(s, t) := Me−ωts, µ(s) := s, and θ(s) := sM‖B‖.

Here the constants M and ω are given by (4).

For unbounded B, we still have the following result.

Proposition 2.7: Suppose A generates an exponentially

stable C0-semigroup. Then the following statements are

equivalent.

1) System Σ(A,B) is input-to-state stable,

2) System Σ(A,B) is infinite-time admissible,

3) System Σ(A,B) is admissible.

Remark 2.8: If one of the equivalent conditions of Propo-

sition 2.7 hold, then the system Σ(A,B) is input-to-state

stable with the following choices for the functions β and µ

β(s, t) := Me−ωts and µ(s) := cs,

where M and ω are given by (4) and c = supt≥0 c(t).
Proposition 2.9: If the system Σ(A,B) is integral input-

to-state stable, then Σ(A,B) is zero-class admissible.

Proof: There exist θ ∈ K∞ and µ ∈ K such that

1

‖u‖∞

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

[
∫ t

0

µ
[

‖u(s)‖U

‖u‖∞

]

ds

]

(7)

for all t > 0, u ∈ L∞(0, t;U), u 6= 0. Since the function µ
is monotonically increasing and ‖u(s)‖U ≤ ‖u‖∞ a.e., the

right-hand side of (7) is bounded above by θ(tµ(1)) which

converges to zero as t ց 0.

By the above results, it is clear that integral input-to-state

stability implies input-to-state stability.

The relations of the different stability notions discussed

above are illustrated in the diagram depicted in Figure 1.

III. DIAGONAL SYSTEMS

In this section we assume that U = C and that the operator

A possesses a Riesz basis of eigenvectors (en)n∈N with

eigenvalues (λn)n∈N lying in a sector in the open left half-

plane C−. More precisely, let (en)n∈N be a Riesz basis of

X , that is, a basis such that, for some constants c1, c2 > 0
we have

c1
∑

k

|ak|2 ≤
∥

∥

∥

∥

∥

∑

k

akek

∥

∥

∥

∥

∥

2

≤ c2
∑

k

|ak|2



ISS

iISS

zero class

admissible

??

Fig. 1. Relation between the different stability notions for a system
Σ(A,B) (where we assume that the semigroup is exponentially stable).
ISS refers to input-to-state stability, iISS to integral input-to-state stability,
“zero-class” to zero-class admissibility and “admissible” to admissibility.

for all sequences (ak) in ℓ2. Thus without loss of generality

we can assume that X = ℓ2 and that (en)n∈N is the canonical

basis of ℓ2. We further assume that the sequence (λn)n∈N lies

in C with supn Re(λn) < 0 and that there exists a constant

k > 0 such that |Imλn| ≤ k|Reλn|, n ∈ N. Then the linear

operator A : D(A) ⊂ ℓ2 → ℓ2 is given by

Aen = λnen, n ∈ N,

and D(A) = {(xn) ∈ ℓ2 | ∑ |xnλn|2 < ∞}. A generates

an analytic, exponentially stable C0-semigroup (T (t))t≥0 on

ℓ2, which is given by T (t)en = etλnen. The extrapolation

space (ℓ2)−1 is given by

(ℓ2)−1 =

{

x = (xn)n∈N |
∑

n

|xn|2
|λn|2

< ∞
}

,

‖x‖X−1
= ‖A−1x‖ℓ2 .

Thus any linear bounded operator B from C to (ℓ2)−1 can

be identified with a sequence (bn)n∈N in C satisfying

∑

n∈N

|bn|2
|λn|2

< ∞.

Thanks to the sectoriality condition for (λn)n∈N this is

equivalent to
∑

n∈N

|bn|2
|Reλn|2

< ∞.

The following result shows that, under these assumptions,

the system Σ(A,B) is integral input-to-state stable. Thus

for this class of systems all stability notions introduced in

the previous section are equivalent to B ∈ (ℓ2)−1, that is, to
∑

n
|bn|

2

|λn|2
< ∞.

Theorem 3.1: Let U = C, and assume that the operator

A possesses a Riesz basis of X consisting of eigenvectors

(en)n∈N with eigenvalues (λn)n∈N lying in a sector in the

open left half-plane C− and B ∈ L(U,X−1). Then the

system Σ(A,B) is integral input-to-state stable, and hence

also input-to-state stable and zero-class admissible.

Lemma 3.2: Let Σ(A,B) be as in Theorem 3.1. Then

there exists M > 0 and µ ∈ K∞ such that

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

2

≤ M +

∫ t

0

µ(|u(s)|) ds, (8)

for all t > 0 and all u ∈ L1(0, t) with
∫ t

0
µ(|u(s)|) ds < ∞.

Proof: We may assume that X = ℓ2 with the canonical

basis (en)n∈N. Let f : (0,∞) → [0,∞) be defined by

f(s) =
∑

n∈N

|bn|2
|Reλn|

eReλns.

Then it is easy to see that f is smooth, strictly decreasing,

belongs to L1(0,∞), and satisfies limsց0 f(s) = ∞ and

lims→∞ f(s) = 0.

We remark that boundedness of (Reλn)n∈N implies bound-

edness of (λn)n∈N. Thus if the sequence (Reλn)n∈N is

bounded or bn = 0 for all but finitely many n ∈ N, then B is

a bounded operator from C to ℓ2 and therefore Σ(A,B) is

integral input-to-state stable by Proposition 2.5. Moreover,

the series defining the function f is absolutely convergent

and

|bn|2
|Reλn|

eReλns +
|bm|2

|Reλm|e
Reλms =

|bn|2 + |bm|2
|Reλn|

eReλns

if Reλn = Reλm. Thus without loss of generality we may

assume that Reλn < Reλm for m < n, bn 6= 0 for n ∈ N

and B is unbounded. By Remark 178 in [21] there is a strictly

increasing unbounded sequence (hn)n∈N of positive numbers

such that the series

∑

n∈N

hn|bn|2
|Reλn|2

converges. We define the smooth, strictly decreasing function

g : (0,∞) → [0,∞) by

g(s) =
∑

n∈N

hn|bn|2
|Reλn|

eReλns,

for s > 0. Clearly, g ∈ L1(0,∞). The function η : [0,∞) →
(0,∞), η(s) = g′(s)/f ′(s), is strictly decreasing, see [19].

In particular the following limit exists

a := lim
s→∞

g′(s)

f ′(s)
≥ 0.

We define the smooth function Φ: [0,∞) → [0,∞) by

Φ(0) = 0 and Φ(f(s)) = g(s) − af(s). Φ is a Young

function, that is, Φ′(0) = 0, lims→∞ Φ′(s) = ∞ and Φ
is strictly increasing and strictly convex, see [19].

Define Φ∗ : [0,∞) → [0,∞) by

Φ∗(s) =

∫ s

0

(Φ′)−1(t) dt

and µ : [0,∞) → [0,∞) by µ(s) := Φ∗(s2). The function

Φ∗ is continuous, strictly increasing and unbounded. Thus

µ ∈ K∞.



Let u ∈ L1(0, t) such that
∫ t

0
µ(|u(s)|) ds < ∞. We have

that
∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

2

=
∑

n∈N

|bn|2
∣

∣

∣

∣

∫ t

0

eλnsu(s) ds

∣

∣

∣

∣

2

≤
∑

n∈N

|bn|2
(
∫ t

0

eReλns|u(s)| ds
)2

=
∑

n∈N

|bn|2
(Reλn)2

(
∫ t

0

|Reλn|eReλns|u(s)| ds
)2

≤
∑

n∈N

|bn|2
(Reλn)2

(
∫ t

0

|Reλn|eReλns|u(s)|2 ds
)

(
∫ t

0

|Reλn|eReλns ds

)

≤
∑

n∈N

|bn|2
(Reλn)2

(
∫ t

0

|Reλn|eReλns|u(s)|2 ds
)

=

∫ t

0

∑

n∈N

|bn|2
|Reλn|

eReλns|u(s)|2 ds

=

∫ t

0

f(s)|u(s)|2 ds,

where we have used Cauchy-Schwarz with respect to the

measure given by |Reλn|eReλns ds. By Young’s inequality

(see e.g. [22, Page 264]), we can further conclude that

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

2

≤
∫ t

0

f(s)|u(s)|2 ds

≤
∫ t

0

(

∫ f(s)

0

Φ′(r) dr +

∫ |u(s)|2

0

(Φ′)−1(r) dr

)

ds

=

∫ t

0

Φ(f(s)) ds+

∫ t

0

µ(|u(s)|) ds.

This shows (8) with M := ‖g − af‖L1(0,∞).

Remark 3.3: Lemma 3.2 shows that Σ(A,B) is uniformly

bounded energy bounded state (UBEBS), a weakened form

of integral input-to-state stability introduced in [23].

Proof-sketch of Theorem 3.1: By Lemma 3.2, the following

choice for θ : [0,∞) → [0,∞) seems to be a suitable

candidate to show (6).

θ(α)2 = sup

{

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

2

: u ∈ L∞(0,∞),

t ≥ 0,

∫ t

0

µ(|u(s)|) ds ≤ α

}

.

In fact, θ(α) < ∞ for all α ≥ 0 and θ is non-decreasing. It is

easy to see that there exists a continuous, strictly increasing

function θ̃ such that θ ≤ θ̃ pointwise. Then the definition of

θ yields that
∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ̃

(
∫ t

0

µ(|u(s)|) ds
)

for all t ≥ 0, u ∈ L∞(0,∞). To conclude that Σ(A,B) is

integral input-to-state stable, we need that limtց0 θ̃(t) = 0.

ISS

iISS

zero class

admissible

Fig. 2. Relations between the different stability notions for parabolic
diagonal system (assuming that the semigroup is exponentially stable).

As it is not clear whether limtց0 θ(t) = 0, the choice of µ
and θ has to be revisited. In fact, the issue can be resolved

by a slight adaption in the choice of µ and incorporating the

theory of Orlicz spaces. We refer to [19] for details. �

The relations of the different stability notions for parabolic

diagonal systems are summarized in the diagram shown in

Figure 2.

IV. AN EXAMPLE

Let us consider the following boundary control system

given by the one-dimensional heat equation on the spatial

domain [0, 1] with Neumann boundary control at the point

1,

∂

∂t
x(ξ, t) =

∂2

∂ξ2
x(ξ, t), ξ ∈ (0, 1), t > 0,

∂

∂ξ
x(0, t) = 0,

∂

∂ξ
x(1, t) = u(t), t > 0,

x(ξ, 0) = x0(ξ),

see e.g., [24, Example 3.6]. It can be shown that this system

can be written in the form Σ(A,B) in (1). Here X =
L2(0, 1) and

Af =
∂2

∂ξ2
f, f ∈ D(A),

D(A) =

{

f ∈ L2(0, 1) : f,
∂

∂ξ
f are absolutely continuous,

∂2

∂ξ2
f ∈ L2(0, 1),

∂

∂ξ
f(0) =

∂

∂ξ
f(1) = 0

}

.

Moreover, with λn = −π2n2,

Aen = λnen, n ∈ N,

where the functions e0 = 1 and en =
√
2 cos(nπ·), n ≥ 1,

form an orthonormal basis of X . With respect to this basis,

the operator B = b can be identified with (bn)n∈N for bn =
1, n ∈ N. Therefore,

∑

n∈N

|bn|2
|λn|2

< ∞,



which shows that b ∈ X−1. By Theorem 3.1, we conclude

that the system is integral input-to-state stable.

A choice of functions β, µ, θ satisfying (6) is given by

β(s, t) := e−π2ts, µ(s) := sp, and θ(s) := c · s 1

p ,

for p ≥ 4
3 and some constant c = c(p) > 0. This follows

from the fact that Σ(A,B) is even Lp-admissible for p ≥
4
3 , see [24, Example 3.6]. However, we remark that there

exists examples of parabolic diagonal systems satisfying the

assumptions of Theorem 3.1, but such that they are not Lp-

admissible for any p < ∞.

V. CONCLUSIONS AND OUTLOOK

In this paper we have studied the relation between input-

to-state stability and integral input-to-state stability for linear

infinite-dimensional systems with an unbounded control op-

erator and inputs in L∞. We have shown that for parabolic

diagonal systems and scalar input, both notions coincide and

are equivalent to admissibility.

Among possible directions for future research are the

investigation of the non-analytic case and the relation of zero-

class admissibility, input-to-state stability and admissibility

with respect to Orlicz spaces. Some of these topics are

addressed in the [19].
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