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Abstract 

 

Shoot and root growth is facilitated by stem cells in the apical meristems (SAM and 

RAM). Recent reports have demonstrated a close link between nitrogen nutrition, nitric 

oxide (NO) and reactive oxygen species (ROS) in the regulation of SAM and RAM 

functions in response to nitrogen availability.  

 

The shoot and root apical meristem (SAM and RAM) contains a group of proliferating 

stem cells, which play an important role in organogenesis. Several hormones and 

other signaling molecules fulfil important functions in SAM and RAM regulation. A 

recent study has demonstrated that SAM activity responds to soil nitrate availability 

through the expression of WUSCHEL (WUS), which is a key regulator of stem cell 

homeostasis [1]. Nitrate sensing pathways regulate cytokinin precursors, which 

function as long-range signals to modulate WUS expression and control of SAM 

homeostasis. However, nitrate-dependent signaling is likely to be more complex than 

can be explained solely in terms of cytokinin signaling. Given the demonstrated roles 

of nitric oxide (NO) and ROS in stem cell functions [2], these crucial redox signals may 

fulfil key roles in the regulation of SAM activity responses to soil nitrate availability.  

NO and ROS play central roles in plant and animal stem cell homeostasis. For 

example, NO donors accelerate the differentiation of mouse and human embryonic 

stem cells [3]. Moreover, NO and nitrate reductase (NR) activity influence root stem cell 

niche homeostasis [4]. The observation that nia1nia2 mutants, which are NO as well as 

NR-deficient, have small root meristems with abnormal cell divisions supports the 

notion of a role for nitrate dependent NO pathway in the regulation of stem cell 

functions. Moreover, the levels of WUS related homeobox 5 (WOX5) transcripts are 

decreased in the nia1nia2 mutants [4]. 

Extensive crosstalk exists between NO, ROS and the signaling pathways associated 

with  phytohormones such as auxin, ethylene and cytokinin. Together with these 

hormones, ROS and NO participate in the control of organ development [1,4,5]. 

Several mutants that have low levels of NO such as nia1nia2, noa1 show increases in 

auxin levels [4]. Similarly, NO treatment induces auxin accumulation [4]. 

http://www.plantphysiol.org/content/166/4/1972.long#def-13
http://www.plantphysiol.org/content/166/4/1972.long#def-13
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Mitochondrial metabolism and signaling play a central role in the control of meristem 

activity. While the molecular mechanisms that regulate mitochondrial processes and 

associated signaling in the RAM remain poorly understood, two genes, RETARDED 

ROOT GROWTH (RRG) and PROHIBITIN3 (PHB3), have been shown to regulate 

both mitochondrial functions and stem cell activity. RRG encodes a mitochondria-

localized protein that is required for cell division in the RAM [6]. Loss of PHB3 functions 

not only impairs mitochondrial functions, but also slows cell division rates in the 

meristem. Mutants defective in PHB3 show a constitutive ethylene response, 

suggesting that PHB3 plays a role in ethylene signaling [7]. Recently, Kong et al. [8] 

demonstrated that prohibitin proteins maintain the root stem cell niche (SCN). Loss of 

prohibitin functions compromised the mitotically-active quiescent center (QC) cells and 

the suppressed surrounding actively-dividing stem cells. This regulation was achieved 

through the ROS-responsive transcription factors ERF115, ERF114, and ERF109 

(Figure 1).  

PHB3 is not only essential for maintenance of the SCN via the inhibition of cell 

proliferation in the QC and activation of cell division in the proximal meristem (PM) (Fig 

1), but it is also required for NO production during hydrogen peroxide (H2O2)-mediated 

stress responses [9]. Redox homeostasis is important in SCN maintenance. Phb3 

mutants accumulate more ROS and show increased expression of 

AOX1a, AOX1c, NDA1, NDB2, NDB3 and NDB4, which are involved in mitochondrial 

redox homeostasis. These findings suggest that PHB plays a role in the control of 

mitochondrial ROS production and signaling.  Greatly increased ROS accumulation 

can cause root meristem defects [8]. For example, Arabidopsis thaliana mutants that 

accumulate high levels of glutathione disulfide (GSSG) and low levels of reduced 

glutathione (GSH) are defective in root meristem functions [10]. Low nitrate availability 

can increase ROS accumulation via reduced levels of antioxidants/NO [11]. NO can 

influence cellular redox homeostasis by regulation of glutathione synthesis and hence, 

ROS removal and also by increased expression of the mitochondrial alternative 

oxidase (AOX), which limits ROS production in mitochondria. 

A recent study [1] reports that stem cell homeostasis was modified under conditions 

of high nitrate nutrition. However, this treatment would also favour NO production via 

increased NR activity and the generation of the intermediate nitrite [12]. Hence, the 

increased NO production under high nitrate may influence stem cell regulation. 

Moreover, the possibility of increased NO production under low nitrogen nutrition 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-division
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/meristem
https://www.sciencedirect.com/topics/neuroscience/glutathione
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cannot be excluded. In addition to NR, the mitochondrial electron transport chain can 

utilize nitrite as a substrate to produce NO via complexes III and IV [12]. Cellular, nitrite 

levels depend on NR activity and the concentration of nitrate. Hence, even 

mitochondrial NO production depends on nitrate availability.  

The daughter stem cells in animal proliferation systems have a larger population of 

mitochondria [13]. It is therefore, possible that NO production is increased in actively 

proliferating mitochondria via the mitochondrial reduction of nitrite to NO [12]. Several 

mechanisms of stem cell regulation via NO signaling might contribute to the findings 

described by Landrein et al. [1]. Firstly, NO mediates cytokinin-triggered activation of 

the cell cycle gene, CYCD3, which induces cell proliferation and meristem 

maintenance [14]. Hence, nitrate could modulate stem cell maintenance via NO 

production. Secondly, H2O2 promotes stem cell differentiation [15] and NO is likely to 

play a role in this process. For example, nitrate or cytokinin-induced NO can contribute 

to shoot stem cell differentiation via H2O2 production. NO can also increase H2O2 

production via the induction of superoxide dismutase, which converts superoxide (O2- 

) into H2O2. Thirdly, low NO production under low nitrate availability might enhance O2- 

production [12] leading to increased WUS expression to maintain stem cell 

homeostasis.  

Nitrate-derived NO production may therefore, have multifaceted roles in stem cell 

homeostasis. Although, Landrein et al. [1] provided an excellent model for nitrate-

mediated regulation of stem cell homeostasis, we consider that the close link between 

nitrogen nutrition and NO dictates an integrated view of the role for NO signaling in the 

regulation of stem cell activity in response to nitrogen availability. Further 

investigations of the roles of NO in the SCN are required in order to gain deeper 

insights into how this signaling molecule regulates stem cell homeostasis. 

In the natural environment, N exists in various forms e.g. nitrate, ammonium, or a 

combination of both. However, the relative composition of these N forms and their 

relative concentrations depends on many factors, including soil properties and 

management, such as the rotation of crops and presence of other plant types e.g. 

legumes. Moreover, soil N levels often fluctuate due to factors such as microbial nitrate 

reduction, denitrification and ammonium oxidation. We consider that the close link 

between nitrogen nutrition and NO production implicates this signaling molecule in the 
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nitrate-dependent regulation of stem cell activity. Defining the precise roles of NO in 

meristem organisation will provide further insights into stem cell homeostasis and its 

regulation. The study by Landrein et al. [1] laid the foundation of a new concept linking 

primary processes and metabolism to stem cell functions. Defining the precise roles 

of NO in this process will increase our understanding of the relationships between 

nutrient availability and the whole plant signaling that regulates growth and 

organogenesis. 
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Figure legend:  
Figure 1. A model showing the multilevel regulatory role of nitrate, NO and ROS in 
stem cell homeostasis in SAM and RAM. High nitrate can induce cytokinin precursors 
to activate SAM that leads to increased meristem size and triggers organogenesis. 
Nitrate is a substrate for NO production via nitrate reductase (NR). Hence, NO (orange 
dots) produced by NR can play a vital role in stem cell homeostasis in both shoot and 
root apical meristem via modulation of cytokinins and ROS production. (A) Under high 
nitrate nutrition, NO production is induced in roots [12] via high NR activity and 
accumulation of the intermediate, nitrite. Nitrate, cytokinin-induced NO or NO-induced 
cytokinins can activate precursors (shown by yellow dots) in the vascular region. NO-
induced cytokinin may play a role in enhancing SAM activity. Coordinated activation 
of the WUS-CLV system modulates stem cell homeostasis in the SAM. Cytokinin 
precursors signals in the SAM regulates WUS expression. In turn, WUS activates 
CLV3, which binds to CLV1 and inhibits WUS expression. Redox regulation of stem 
cell homeostasis [15] is also mediated by regulated ROS production. (B) NO mediates 
cytokinin functions in cell proliferation and meristem maintenance [14] via CYCD3 cell 
cycle gene expression. (C) In the RAM, both high and low nitrate nutrition differentially 
regulate ROS production. Low nitrate can induce ROS that can inactivate prohibitin 
(PHB3) to activate ERFs (ERF109, 114, 115), which allows cell proliferation and 
differentiation [8]. But the NO produced under high nitrate can reduce ROS via 
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induction of glutathione and AOX (antioxidant) levels to keep ROS to minimum. The 
reduced ROS can activate PHB3 to inhibit ERFs (ERF115) for stem cell niche 
maintenance at QC and induce ERF109 and 114 to induce cell proliferation at 
elongation and differentiation zone of RAM. PHB3 plays an important role in the 
maintenance of stem cell niche by inhibiting the cell proliferation at the QC of RAM 
and simultaneously stimulating cell division at proximal meristem. (D) NO also 
interacts with auxin to modulate the expression of WOX5 to maintain stem cell niche 
homeostasis [4]. 
----- = black dashed lines indicates a mechanism in action, ----- = orange dashed lines 
indicates a mechanism in question with a possible cause, ? =orange question mark 
indicates a molecule might have a role in the mechanism, L1 = layer 1, L2= layer 2, 
L3= layer 3 of the SAM, Cyt= cytokinin,        = inhibitory action, VB= vascular bundle 
and QC= quiescent centre, orange dots= NO, yellow dots = cytokinin /cytokinin 
precursors, pink dots = auxins 
 
 




	S:\Research Support Office\Admin support\Open Access\Accepted papers\WANY ET AL TIPS 1309.docx
	Nitrate, NO and ROS signaling in stem cell homeostasis
	Aakanksha Wany1, Christine H Foyer2*, Kapuganti Jagadis Gupta1*
	1. Landrein, B. et al. (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc. Natl. Acad. Sci. U. S. A. 115, 1382-1387
	2. Foyer, C.H., et al. (2018) Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic Biol Med. DOI: 10.1016/j.freeradbiomed. 2018.03.047)
	3. Mujoo, K., et al. (2008) Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proc. Natl. Acad. Sci. U. S. A.  105, 18924–18929
	7. Christians, M.J. and Larsen, P.B. (2007) Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. J. Exp. Bot. ...
	8. Kong, X. et al. (2018) PHB3 maintains root stem cell niche identity through ROS responsive AP2/ERF transcription factors in Arabidopsis. Cell Rep. 22, 1350-1363
	9. Wang, Y. et al. (2010) The Arabidopsis prohibitin gene PHB3 functions in nitric oxide-mediated responses and in hydrogen peroxide-induced nitric oxide accumulation. Plant Cell. 22, 249–59
	10. Innocenti, G. et al. (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225, 1597-602
	11. Shin, R. et al. (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350-7
	12. Planchet, E. et al. (2005) Nitric oxide emission from  tobacco leaves and cell suspensions: rate-limiting factors and evidence for the involvement of mitochondrial electron transport The Plant Journal 41, 732–743
	14. Shen, Q. et al. (2013) Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. Mol. Plant 6, 1214-25
	15. Zeng, J. et al. (2017) Redox regulation of plant stem cell fate. EMBO J. 36, 2844-2855

	S:\Research Support Office\Admin support\Open Access\Accepted papers\fig1.pptx

