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ARTICLE

Thermostable virus portal proteins as
reprogrammable adapters for solid-state
nanopore sensors
Benjamin Cressiot 1,2,5, Sandra J. Greive 3, Mehrnaz Mojtabavi4, Alfred A. Antson3 & Meni Wanunu 1,2

Nanopore-based sensors are advancing the sensitivity and selectivity of single-molecule

detection in molecular medicine and biotechnology. Current electrical sensing devices are

based on either membrane protein pores supported in planar lipid bilayers or solid-state (SS)

pores fabricated in thin metallic membranes. While both types of nanosensors have been

used in a variety of applications, each has inherent disadvantages that limit its use. Hybrid

nanopores, consisting of a protein pore supported within a SS membrane, combine the robust

nature of SS membranes with the precise and simple engineering of protein nanopores. We

demonstrate here a novel lipid-free hybrid nanopore comprising a natural DNA pore from a

thermostable virus, electrokinetically inserted into a larger nanopore supported in a silicon

nitride membrane. The hybrid pore is stable and easy to fabricate, and, most importantly,

exhibits low peripheral leakage allowing sensing and discrimination among different types of

biomolecules.

DOI: 10.1038/s41467-018-07116-x OPEN

1Department of Physics, Northeastern University, Boston, MA 02115, USA. 2Department of Chemistry and Chemical Biology, Northeastern University,

Boston, MA 02115, USA. 3York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK. 4Department of

Bioengineering, Northeastern University, Boston, MA 02115, USA. 5Present address: LAMBE, Universite ́ d’Evry Val d’Essonne, Université de Cergy Pontoise,
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T
he advent of single-molecule detection is having an
unparalleled impact on the speed with which structural
and dynamic aspects of molecules can be probed1. In this

regard, nanopores have shown much promise as electrical2–7 and
combined electro-optical sensors8–10 and several nanopore-based
systems are now being adopted as primary tools for DNA11–13

and RNA14 sequencing. Despite recent progress, identification
and quantification of molecular species in solution15–28 requires a
reproducible nanopore platform that affords physical stability and
structural precision. Sophisticated applications, such as electro-
optical sensing, necessitate the pore position be geometrically
defined to allow precise alignment of the optical system. While
synthetic nanopores fabricated in solid-state (SS) membranes
offer physical robustness29–31, pore-to-pore variability often
limits the reproducibility of experiments, necessitating additional
control checks and validation. On the contrary, protein channels
embedded in organic thin membrane, e.g., a lipid bilayer, offer the
highest reproducibility due to the precise folding and repetitive
nature of the constituting multisubunit protein oligomers32,33,
but their supporting membrane is typically less chemically and
physically robust and, further, the pore position is variable due to
in-plane diffusion of the protein channel34. While the use of
amphiphilic polymers and polymerizable lipids have improved
the lifetime, mechanical stability and voltage tolerance of the
biomimetic support membranes for biological nanopores, as
evidenced by the devices produced by Oxford Nanopore Tech-
nologies, SS membranes are likely to afford additional pressure
and temperature resistance. Hybrid nanopore devices, in which
channel-containing proteins are embedded in larger pores made
in a SS matrix, have been proposed as a strategic solution for
combining the benefits, while overcoming the limitations of
existing nanopores35. Although initial experiments based on
inserting pore-containing proteins with lipophilic regions into a
SS pore looked promising35, challenges in inserting such proteins
into a SS pore and in controlling the protein orientation have
remained major obstacles in the applicability of hybrid nanopores
to nanotechnology.

Inspired by natural DNA pores, we designed a novel lipid-free
hybrid nanopore based on the hydrophilic portal protein derived
from the thermostable virus G20c36. In double-stranded DNA
viruses, the portal protein is incorporated into the capsid shell
(Fig. 1a), thereby serving as a natural pore through which DNA is
moved in and out37. The protein contains a tight tunnel con-
striction with a repetitive chemical character, being made up by a
circle of identical tunnel loops, contributed by 12 subunits38. In
previous work, we engineered this protein to reprogram its
physico-chemical properties (GG)33 to create a portal with a
larger minimum aperture of ~2.3 nm defined by the substitution
of two bulky residues at the tip of the tunnel loop with glycines.
Additional features of this portal system include substitution of
an externally facing residue, located around the outside of the
protein, by cysteine (designated C, e.g., CGG or CD/N) which
allows chemical labeling and surface immobilization of the portal
protein, as we have previously demonstrated for the lipid mem-
brane insertion of the portal protein33. In this work, we have
electrostatically engineered a portal protein variant (D/N) by
replacing aspartic acid (D) residues at the internal tunnel surface
with asparagines (N). This altered the charge of the lower part of
the internal tunnel’s surface from negative to positive (Fig. 1b and
Supplementary Figure 1), a change that was crucial for electrical
sensing of net negatively charged biomolecules. Here, we use this
structurally programmable portal protein as a nanoscale adapter
by electrokinetically embedding it snugly inside a larger pore
made in a freestanding silicon nitride (SiN) membrane to form a
lipid-free hybrid nanopore. Using the CD/N portal with engi-
neered internal pore properties (Fig. 1b and Supplementary

Figure 1), we characterized the electrical properties of the hybrid
pore and applied it to electrically detect different biomolecules.
We demonstrate that a folded protein larger than the pore
interior does not enter the hybrid portal. In contrast, biopolymers
including single-stranded DNA (ssDNA), double-stranded DNA
(dsDNA) that contains a single-stranded tail, and a peptide
predicted to have a random coil conformation with a 10-amino
acid α-helix at the C terminus can all be discriminated based on
their distinct signal amplitudes in a way that is commensurate
with their molecular cross-section. Our results indicate that the
hybrid portal is a versatile sensor of various biopolymer types
which may, with further development, find uses in genomic
mapping as well as polypeptide and oligonucleotide sequencing.

Results
Portal is a nanoscale adapter for SS nanopores. Electrokinetic
corking of the G20c portal protein into the SS nanopore occurs
when the force on the protein, induced by applied voltage, is
sufficient to squeeze the portal into the SS pore (Figs. 1c, 2 and
Supplementary Figures 2, 3). We find that stable insertion
required specific geometric parameters for the SS nanopore,
namely, a diameter between 5.4 to 6 nm and a nominal mem-
brane thickness of 30 nm. Given the dimensions of the portal
assembly33 (Fig. 1b), the geometric constraints set by the SS pore
restrict the range of possible orientations of the portal pore in it,
such that the stem is inserted within the SS nanopore constric-
tion, and the wider cap self-orients towards the top of the trans
chamber (Fig. 1d). The larger size of the cap, as compared with
the SS pore diameter, prevents the entire protein from moving
through the SS nanopore. Remarkably, interactions between the
portal protein squeezed into the SS pore and the SS pore surface
contribute to a stable, self-inserting and self-aligning hybrid
(Fig. 1d) that exhibits tolerable peripheral ion leakage, probed
using cyclodextrin as a pore current modulator. Our hybrid pores
exhibit lifetimes of hours (see Supplementary Figure 4), and
similar ion current noise values to a lipid bilayer-supported portal
protein nanopore33 (Fig. 2 and Supplementary Figure 5).

After confirming the base current of stable SS nanopores of the
desired diameter, addition of the portal protein to the trans
chamber resulted in reversible partial blockades of the ionic
current (Fig. 2a, b, Supplementary Figures 2 and 3). We interpret
these short-lived events as portal protein collisions with the SS
nanopore without stable insertion, where the ion current is
partially blocked as the protein approaches the SS pore, prior to
movement away. These short-lived events were usually followed
by long-lived events (Fig. 2b, Supplementary Figures 2, 3), of
comparable current blockade levels, events that were only
observed in SS pores with diameters of 5.4 to 6 nm. We interpret
the long-lived events as stable insertion of a portal protein into
the SS nanopore to form a hybrid nanopore. The average
conductance (mean and s.d.) of these hybrid pores was calculated
(Fig. 2e) to be 1.50 ± 0.48 nS and 1.33 ± 0.42 nS for the CD/N
(from 32 hybrid nanopores) and the CGG (from 15 hybrid
nanopores) variants, respectively. Surprisingly, such hybrid pores
remain stable at both positive and negative voltages (Fig. 2c).
However, applying significant negative bias generally results in
uncorking of the protein from the SS nanopore, and an example
of an ejection at −80 mV is shown in Fig. 2c (red markers). These
data are consistent with the protein insertion and removal being
electrokinetically driven.

Obtaining a sufficient increase in the signal-to-noise ratio is a
major challenge for properly identifying transport events by
nanopore sensing. Power spectral densities of the current noise
for a SS nanopore before, and after, insertion of a portal protein
(Fig. 2d and Supplementary Figure 4) showed that the 1/f noise at
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low frequencies decreased upon formation of the hybrid pore.
This 1/f noise reduction is consistent with a reduced pore
conductance, as well as an indicator of the reduced surface charge
fluctuations that are hallmarks of silicon nitride surfaces39. This,
along with the observation that capacitance-dominated noise at
high frequencies was comparable for both pores, suggests that no
new source of noise was introduced by hybrid pore formation.
We deduced that the observed variation in the open pore current
for different hybrid nanopores (Supplementary Figures 2, 3) was
likely to be caused by differences in SS geometry and the
associated leakage currents around the portal protein. We
attempted to measure the extent of ion leakage from the pore
by measuring β-cyclodextrin interactions with the hybrid pore
for the CGG mutant, a mutant that we previously embedded
into a lipid membrane (Supplementary Figure 6)33. Our
results show that β-cyclodextrin does not translocate the pore,
in contrast to the same experiment conducted on the lipid-
embedded version of the same portal protein. While this
precludes an accurate measurement of the leakage, these
results suggest that corking the protein into a snug SS nanopore
slightly reduces the innermost pore constriction. The reproduci-
ble signals obtained from biomolecules, as well as the steady
baselines of the hybrid, allow current blockades as low as ∼20 pA
to be accurately measured (Supplementary Figure 6). These data
demonstrate that despite a low level of steady peripheral leakage,
these hybrid pores are unique lipid-free protein-based pore
sensors.

Hybrid nanopores as sensors of biomolecules. We then inves-
tigated the sensing capabilities of these hybrid nanopores by
analyzing the transport of a peptide, comprising residues 1–43 of
the human TPX2 protein, as a function of applied voltage (Fig. 3).
The TPX2 peptide is negatively charged at pH 7.5 (pI= 3.7) and
was added to the cis chamber, on the opposite side of the
membrane to which the portal protein was introduced (see inset
to Fig. 3b) to facilitate electrophoretically driven translocation.
Adjusting the applied voltage from +30 to + 60 mV resulted in
an increased baseline ion current through the hybrid pore, as well
as the frequency of observed current blockades (Fig. 3a). Two
kinds of current blockades associated with two different events
were detected: bumping events, characterized by brief, low-level
current blockades, arising from diffusion of the peptide close to
the hybrid pore entrance; and translocation events, characterized
by larger current blockades of longer duration. These two types of
events are typically seen during translocation of DNA40–42 and
proteins43–45 through protein channels. The inter-event time
distribution is well fit by a single exponential equation (Supple-
mentary Figure 7). The entry frequency (Fig. 3b) of the peptide
into the hybrid pore is described by Van’t Hoff Arrhenius
relationship44,46 f= f0 exp(V/V0), consistent with both translo-
cation of DNA40–42, proteins43,47 and peptides46,48–51 through
either α-hemolysin or aerolysin; and a significant entropic barrier
for peptide entry into the pore. The dwell time distributions were
well fit by a double-exponential equation (Supplementary Fig-
ure 7b), which are typically due to two types of processes,
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Fig. 1 Design of a bio-inspired lipid-free hybrid nanopore. a Cartoon of the DNA packaging machine of a dsDNA virus. Viral genomic DNA (red) is

translocated into the preformed virus capsid by the packaging ATPase (yellow) through the portal protein (aqua) embedded in viral capsid (gray). b Left,

electrostatic properties of the tunnel in wild-type and mutant portal proteins. Slice through the middle of molecular surface colored according to charge
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containing an electrolyte solution of 20mM Tris pH 7.5, 0.5M NaCl. The protein electrokinetically inserts into the SS pore during application of a positive

voltage. d Cartoon image of the hybrid pore, in which application of voltage results in ion current through the pore (blue arrows), as well as leakage current

that is peripheral to the pore (red arrows)
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normally associated with short bumping and longer translocation
events16. We found that the average frequency for both types of
events increases exponentially (Fig. 3b), while the average dwell
time for the long events decreased exponentially with the applied
voltage (Fig. 3c). Based on prior work that employed the α-
hemolysin and aerolysin nanopores,43,45 we conclude that the
long events represent transport of the peptide through the hybrid
pore to the trans chamber.

In order to further demonstrate the sensing capabilities of this
hybrid pore, we investigated the transport of other biopolymers:
dsDNA that contains a ssDNA tail, ssDNA, a folded protein as
well as the TPX2 peptide (Fig. 4 and Supplementary Figures 7-
10). Since all of these polymers are negatively charged at pH 7.5,
electrophoresis allows molecular capture into the base of the
portal protein following their introduction to the cis chamber (the
opposite side of the SS membrane to portal insertion). After
addition of each biopolymer: 36.0 μM insulin (Fig. 4a and
Supplementary Figure 8), 7.7 μM hairpin-polydT50 (Fig. 4b and
Supplementary Figure 9), 10.3 μM TPX2 peptide (Figs. 3, 4c),
6.9 μM 60bp-polydT30 (Supplementary Figure 10) and 16.6 μM
ssDNA polydA20dC20dA20 (Fig. 4d and Supplementary Figure 11),
reversible partial blockades of the ionic current are observed at
+60 mV. Similar short-lived bumping events as well as longer
events were observed for each biopolymer, as described above for
the TPX2 peptide (Fig. 3). These types of blockades were also
observed at several different voltages for DNA molecules
(Supplementary Figures 9–11), with voltage-dependent changes

in event frequency and duration for ssDNA polydA20dC20dA20

consistent with translocation occurring (Supplementary Fig-
ure 11), as noted for the peptide above (Fig. 3). Conversely, the
folded, globular molecule of insulin with a smallest dimension of
~3 nm (Protein Data Bank (PDB) code: 1zeh)52,53 is too large for
the ~2 nm constriction of the hybrid pore and therefore does not
translocate. It is however possible that insulin explores the cavity
at the portal tunnel’s entrance (∼5 nm) without being transported
to the trans chamber, producing structured events that are long-
lived and have a low current blockade level. Such events have
been previously observed for nanoreactors, where biomolecules
are captured or tethered within ClyA and FraC nanopores20,54.

Lastly, we compare the event characteristics for different
biopolymers at the same applied voltage of +60 mV by overlaying
their scatter plots of ΔI vs. dwell time, as shown in Fig. 4e.
Crucially, the level of current blockade, ΔI, appeared to be
biopolymer dependent. We found current blockades (mean and s.
d.) for the dsDNA (Fig. 4e) of ΔI= 34.6 ± 4.2 pA (5883 events),
while in contrast, we found ΔI= 18.1 ± 3.2 pA (18,812 events) for
ssDNA. This is nearly 2 times less than for the partially dsDNA,
and is consistent with values found for dsDNA and ssDNA in SS
nanopores55, where the difference in conductance was found to
be ~2.75-fold. For the peptide, we found ΔI= 30.1 ± 5.5 pA (3368
events). Since we showed that the peptide is transported through
the pore (Fig. 3) and is predicted to contain an α-helix of ∼1.4 nm
in diameter, as seen in the structure of the TPX2 peptide bound to
its partner kinase, Aurora A (PDB: 1ol5), the data are compatible
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with translocation through the narrowest constriction of the
hybrid pore (∼2 nm diameter). The ΔI value found for the
peptide is consistent with the α-helical region being the main
cause of the blockade, and with its diameter being intermediate
between that of dsDNA and ssDNA. These data suggest that the
predicted α-helix is present in the isolated peptide under these
experimental conditions. While transport of structured biopoly-
mers has been reported for nucleic acids56,57, only a single report
to our knowledge presents transport of an α-helical peptide
through a protein nanopore45.

Discussion
Hybrid nanopores, supported by SS membranes, could offer
superior properties to both the planar lipid bilayer-based pores
(that are sensitive to temperature, osmotic pressure and applied
electric field strength and suffer from uncontrollable positional
parameters) and SS nanopores (that are prone to edge erosion
and are difficult to reproducibly fabricate with diameters <5 nm).
However, despite having been the subject of industrial and aca-
demic research, development of a device that can be easily fab-
ricated has proven difficult. For example, producing a hybrid pore
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based on DNA origami or α-hemolysin, a membrane protein,
noted substantial leakage current58,59 or relatively short hybrid
pore lifetime and required complex protein modifications35. In
contrast, the hybrid nanopore described here is based on a
soluble, stable and relatively hydrophilic viral portal protein,
whose chemical properties, including those inside tunnel, can be
easily tuned. This work demonstrates that the lipid-free hybrid
nanopore comprising the G20c portal protein inserted into a thin
SS SiN membrane is easy to assemble, with the portal protein
readily electrokinetically inserting into the SS pores and typically
remaining stable for hours of experimental time. We plainly
demonstrate the utility of this hybrid pore as a nanosensor, by
observing characteristic readout for dsDNA and ssDNA, as well
as a peptide and a globular protein.

The stability and tunability of the hybrid nanopore that com-
bines the advantages of both protein and SS nanopores
encourages further work to introduce specific sensing properties
for this hybrid pore and produce robust and geometrically con-
trolled devices amenable to sophisticated high-throughput array-
based or coupled multi-system (e.g., optical, flow or pressure)
applications in nanotechnology.

Methods
Protein engineering and purification. Mutant portal proteins CGG33 and CD/N
(Supplementary Figure 1) were expressed in Escherichia coli Shuffle cells at 30 °C
overnight after induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG) at 0.8 OD600. The cells were lysed by sonication on ice in 50 mM Tris pH 8,
1M NaCl, 10 mM imidazole, 100 mM AEBSF, 10 mgmL−1 lysozyme and 2mM
dithiothreitol (DTT). After clarification by centrifugation at 15,000 rpm for 15 min,
the protein was purified from the lysate by Immobilized Metal Affinity Chroma-
tography (IMAC; 5 mL HiTrap FF Crude, GE Healthcare) and eluted over a gra-
dient of 10–500 mM imidazole over 10 column volumes. Fractions containing the
protein were subjected to a buffer exchange step over a desalting column (HiPrep
26/10; GE Healthcare) to improve 3C cleavage of the histidine affinity tag (50 mM
Tris pH 8, 0.5 M NaCl, 50 mMK Glutamate, 1 mM DTT) prior to buffer exchange
back into low imidazole buffer before the second IMAC step and purification to
homogeneity in 20 mM Tris pH 8, 1M NaCl, 1 mM DTT, before freezing in liquid
nitrogen and storage at −80 °C. Protein was exchanged into 20 mM Tris pH 7.5,
0.5 M NaCl buffer (Zeba Spin Columns, Thermofisher) for use in hybrid nanopore
formation. CD/N mutant proteins were characterized for stability and assembly
state by nano differential scanning fluorimetry (nanoDSF) and negative stained
transmission electron microscopy (TEM; Supplementary Figure 1). Human TPX21-
43 peptide was produced in E. coli as a his-tagged GB1 fusion (Marko Hyvonen,
University of Cambridge). Expression was induced in BL21 pLysS cells at 0.8 OD600

with 0.5 mM IPTG for 4 h at 37 °C. The fusion protein was purified by IMAC in
standard nickel affinity chromatography buffers at pH 7.5 containing 1 mM DTT
and eluted over a 10–500 mM imidazole gradient, after which peak fractions were
pooled, prior to buffer exchange (desalting column, GE Healthcare) into 3C
cleavage buffer 50 mM Tris pH 7.5, 0.5 M NaCl, 10 mM imidazole and 1 mM DTT.
After cleavage, a second IMAC step removed the his-tagged GB1 fragment and the
unbound fraction containing the TPX2 peptide (GPGSMLSYSY-
DAPSDFINFSSLDDEGDTQNIDWFEEKANLENLKGGGCQ) was concentrated
by centrifugal ultrafiltration using a 3 kDa cutoff filter (Amicon) and further
purified over a S75 10/300 size exclusion column (GE Healthcare) in 20 mM Tris
pH 7.5, 0.5 M NaCl and 1 mM DTT prior to concentration as before, freezing in
liquid nitrogen and storage at −80 °C.

Experimental set-up. Nanopores were fabricated in 30 nm thick SiN membranes
using previously reported methods60,61. The pore diameters ranged between 5.4
and 6 nm in order to properly orient the portal protein. Nanopores were cleaned
with hot piranha (3:1 H2SO4/ H2O2), followed by hot deionized water before each
experiment. After being dried under vacuum, nanopore chips were assembled in a
custom cell equipped with Ag/AgCl electrodes, and quick-curing silicone elastomer
was applied between the chip and the cell to seal the device and thereby reduce the
noise by minimizing the chip capacitance. We introduced 0.5 M NaCl, 20 mM Tris,
pH 7.5, as an electrolyte solution onto both sides of the chip. Portal protein was
always added to the trans chamber and the biopolymers to the cis chamber. All
experiments were carried out at ambient temperature. Human insulin was pur-
chased from Alfa Aesar (Thermofisher), and dsDNA hairpin (5′-GCTGTCT
GTTGCTCTCTCGCAACAGACAGC T50-3′), ssDNA (5′-dA20dC20dA20-3′), 60
bp-polydT30 ((5′-TCAGGGTTTTTTTACT)4 T30-3’) and its complementary
strand ((3′-AGTAAAAAAACCCTGA-5′)4) were synthesized by Integrated DNA
Technology.

Electrical detection and data acquisition. The ionic current through SS nano-
pores and portal hybrid protein was measured using an Axopatch 200B amplifier
(Molecular Devices). Data were filtered at 10 kHz and acquired at 250 kHz using a
National Instruments DAQ card and custom LabVIEW software. Data were pro-
cessed and events were detected using Pythion software (https://github.com/
rhenley/Pyth-Ion/). The values for the open pore current (I0) and the standard
deviation of the noise (σ) were extracted from the analysis. The threshold (Th)
applied in Pythion to separate events from the noise is given by Th= I0–4σ. The
average duration of blockades was deduced from the distribution of blockade
duration, τt. The two blockade time distributions of independent events are
adjusted with a double-exponential function, y= A1exp(t/τ1)+ A2exp(t/τ2). All
statistical analyses were performed using Igor Pro software (WaveMetrics Inc.).
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