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Thermally induced metallic phase in a gapped quantum spin liquid: Monte Carlo study of the
Kitaev model with parity projection
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Thermalization is a probabilistic process. As such, it is generally expected that when we increase the
temperature of a system, its classical behavior dominates its quantum coherences. By employing the Gibbs
state of a translationally invariant quantum spin liquid—Kitaev’s honeycomb lattice model—we demonstrate
that an insulating phase at T = 0 becomes metallic purely by increasing temperature. In particular, we compute
the finite-temperature distribution of energies and show that it diverges logarithmically, as we move to small
energies. The corresponding wave functions become critical like at Anderson transitions. These characteristics
are obtained within an exact Monte Carlo method that simulates the finite-temperature behavior of the Kitaev
model. In particular, we take into account the projection onto the physical parity sectors, required for identifying
the topological degeneracy of the model. Our work opens the possibility to detect thermal metal behavior in spin
liquid experiments.
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I. INTRODUCTION

Spin liquids are commonly understood as systems in which
quantum fluctuations prevent magnetic ordering down to the
lowest temperatures, giving rise to a long-range entangled
quantum phase [1,2]. An archetypical example of a spin
liquid is Kitaev’s honeycomb lattice model (HLM) [3]. It
can support Abelian anyonic phases as well as phases with
non-Abelian anyons. Its physics is very rich, and at the same
time the model is analytically and numerically tractable. This
tractability allowed a rigorous investigation of its dynamical
correlations [4,5] and thermodynamic properties [6–8]. The
HLM is experimentally relevant too [9]. It has been recently
related to various materials such as A2IrO3 (A = Na, Li)
[10,11] or α-RuCl3 [12–15], where the heat capacity and ther-
mal conductivities have been measured [16,17]. Excitingly, a
recent experimental observation [18] of a quantized thermal
Hall effect in the magnetic-field-induced [19–21] spin liquid
state of α-RuCl3 opens the possibility of an experimental in-
vestigation of exotic phenomena related to anyonic excitations
in a magnetic material.

In the non-Abelian coupling regime the spectrum of the
HLM is given in terms of fermions and vortices that bind
Majorana zero modes [3]. While these bound Majoranas
have zero energy when the vortices are well separated, they
energetically split when they are brought into close proximity
due to vortex-vortex couplings. Interestingly, these couplings
alternate in sign depending on the distance between the
vortices [22]. It has been demonstrated that ensembles of

two-dimensional lattices of Majorana zero modes paired with
random sign couplings give rise to a so-called thermal metal
phase [23–26]. This phase, which we will refer to as metal-
lic, is characterized by electrically neutral energy currents
traversing its bulk [27]. A priori, the HLM is a translationally
invariant spin lattice model. Nevertheless, due to its extensive
number of conserved plaquette operators, so-called fluxes, it
is equivalent to a sum of inhomogeneous Hamiltonians of
Majorana modes that describe different sectors of the model
[3]. When the temperature is higher than the typical flux gap,
it is natural to expect a significant contribution from Majorana
Hamiltonians with a random sign of couplings from the ran-
dom flux configurations. Here we address the natural question,
can the HLM support metallic behavior with extended states
purely by increasing its temperature? We can answer this
question affirmatively via our Monte Carlo method, which is
not only able to reproduce the thermodynamic properties of
the model [7,8,28] but also recovers the subtler topological
properties by an explicit projection onto the physical parity
sectors.

Insulating and metallic behaviors are manifestations of
macroscopic quantum effects. Typically, during the transition
from an insulator to a metal a redistribution of the energy
eigenvalues and delocalization of eigenstates occur via a
change in external parameters. Here we demonstrate that in-
creasing the temperature of the translationally invariant HLM
leads to a behavior similar to a thermal metal, even if it has
an insulating gap at zero temperatures. The metallic behavior
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arises from Majorana fermions moving in a disordered
medium of fluxes effectively created by the finite temperature.

To discriminate the characteristics of the thermal metal
emerging in the non-Abelian phase we compare it to the
thermal behavior of the Abelian toric code phase. We begin
by studying the average fermionic energy gap. The average
fermion gap in the non-Abelian phase vanishes at high tem-
perature, whereas it does not in the Abelian phase. Probing
deeper, we further show that in the non-Abelian phase the
distribution of fermionic energy levels diverges logarithmi-
cally at low energy and that the wave functions of these
low-energy states acquire a fractal character. These behaviors
of the non-Abelian phase are similar to those of systems at
the critical point of an Anderson transition between a metal
and an insulator [29]. Our study shows that energy transport
mediated by nonlocalized states, as in metallic systems, can
be thermally activated in a spin liquid.

II. KITAEV’S HONEYCOMB LATTICE MODEL
AT FINITE TEMPERATURES

Kitaev’s honeycomb lattice model comprises spin-1/2 par-
ticles arranged on the vertices of a honeycomb lattice. The
spins interact via the Hamiltonian

H = −
∑

(i,j ):α

Jασ i
ασ j

α + K
∑

(i,j,k)

σ i
ασ

j

β σ k
γ , (1)

where α, β, γ = x, y, z and σα are the Pauli matrices. The
two-spin interaction terms are anisotropic bond-dependent
Ising couplings. The three-spin terms break time-reversal
invariance, with the triplets (i, j, k) being consecutive indices
around a plaquette. Close to the ground state these three-body
terms are the lowest-order perturbations arising from coupling
the spins to a magnetic field [3]. These terms do not break the
integrability of the model, so their effect can easily be studied.

The Hamiltonian (1) has an extensive number of conserved
quantities, which makes it exactly solvable. It is solved by
rewriting it in terms of a Z2 gauge field associated with the
links of the lattice, described by operators ûij , and Majorana
fermions living on the vertices [3]. The gauge field operators
commute with the Hamiltonian, so we can consider fixed
static choices of gauge u = {uij = ±1}. In a given sector u,
the Hamiltonian is

Hu = i

4

2L2∑
j,k=1

Ajk cj ck, (2)

where L is the linear size of the system (the number of
hexagonal plaquettes) and cj is a Majorana fermion living
on site j . The couplings are given by Ajk = 2Jjkujk if (j, k)
is a nearest-neighbor pair and Aj,k = 2K

∑
l ujl ukl if (j, k)

is a next-nearest-neighbor pair; otherwise, Aj,k = 0. As a
quadratic fermionic Hamiltonian, Hu can be efficiently diago-
nalized. (Viewed in this way, Hu describes a spinless p-wave
superconductor.) The Wilson loops of the gauge field for con-
figuration u, obtained by multiplying the values of uij around
a hexagonal lattice plaquette, correspond to a quenched con-
figuration of vortex defects in the superconductor. However,
it is important to remember that in the original spin language
these vortices will arise as quasiparticle excitations of Eq. (1).

In the strongly dimerized limit where Jx, Jy � Jz, a perturba-
tive expansion shows that the model behaves as the toric code
(Abelian phase) [3], whereas for Jx ≈ Jy ≈ Jz and K �= 0, it
supports Ising anyons (non-Abelian phase).

To contrast different thermal behaviors, we concentrate
on the two distinct gapped phases of the model. First, we
consider the Abelian (toric code) phase associated with the
strongly dimerized limit, Jx, Jy � Jz and K = 0 [3]. Second,
we consider the non-Abelian (Ising anyon) phase, where Jx ≈
Jy ≈ Jz and K �= 0. The particle types of the toric code are
vacuum 1, the anyons e and m, and the fermion ε = e × m.
In the Ising anyon regime, the quasiparticle types are vacuum
1, the fermion ψ , and the Ising anyon σ . These anyons satisfy
the non-Abelian fusion rule σ × σ = 1 + ψ . Namely, if two σ

are brought together, they combine to either give vacuum 1 or
a fermion, ψ . In the non-Abelian regime of the HLM, vortices
essentially behave as Ising anyons [30]. In our Abelian case,
vortices on alternating rows of plaquettes are identified with e

or m toric code anyons [3].

A. Fermion parity projection

In order to access all topologically distinct gauge field con-
figurations we must consider the most general cases, where
every gauge operator ûij can be fixed independently to its
eigenvalues uij = ±1. However, if we allow these completely
general gauge configurations we must follow the Kitaev
fermionization [3]. This approach has the complication that
the fermionic Hamiltonian equation (2) lives in an extended
Hilbert space. Given an eigenstate |�u〉 of some Hu, it is
necessary to apply a projection operator P in order to get
an eigenstate of H , Eq. (1). This projector is made of two
parts: P = SP0 [31]. The part S acts purely on the gauge
degrees of freedom uij in such a way that it does not mix
topologically distinct gauge configurations. However, P0 acts
on the fermions; in each sector u it is given by

P0 = 1

2

⎡
⎣1 + det(Q)

⎛
⎝∏

(i,j )

uij

⎞
⎠F

⎤
⎦.

The product over pairs (i, j ) runs over every lattice link
and must be consistent with the chosen orientations of the
links [31]. The orthogonal matrix Q is the matrix that brings
Hu into Majorana normal form (see Sec. 3 of Kitaev [3]).
The operator F counts the parity of the occupancies of the
diagonal fermions fp and f

†
p , given by

F =
∏
p

(1 − 2f †
pfp ).

The eigenvalues of F are +1 (when an even number of modes
are excited) and −1 (when the number is odd). The operator
P0 therefore projects into a particular parity of the diagonal
fermions, fixed by the configuration u.

Note that previous studies of the HLM at nonzero tempera-
ture employed alternative fermionization approaches [7,8,28].
These have the advantage that the states obtained in that way
do not need to be projected. However, these fermionizations
correspond to only considering certain restricted sets of gauge
configurations. Under these restrictions it is not possible to
properly probe the topological degeneracy of the ground state.
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FIG. 1. Thermodynamic quantities in the (left) Abelian and (right) non-Abelian regimes. In the top panel we plot the entropy S (red
circles) and the specific heat C/N (purple rhombuses). The distinctive two-peak structure of C/N is clearly visible, with the lower-temperature
peak associated with the activation of the vortex excitations and the higher-temperature peak associated with the activation of the fermionic
excitations. At low temperatures S identifies the different topological degeneracies of the ground states, which is fourfold in the Abelian case
(S = 2 ln 2) and threefold in the non-Abelian case (S = ln 3). We attribute slight numerical differences between our data and the theoretical
values to the finite-size gapping of the topological ground-state subspace (see Sec. B2), combined with the fact we are trying to estimate an
O(1) quantity. At higher temperatures the entropic signature of topological order is lost due to the proliferation of vortices. The bottom panel
plots vortex density ρV (green rhombuses), internal energy per particle U/N (orange squares), and average fermion parity 〈F〉 (blue circles).
The vortex density ρV is zero at low temperature and increases to 1/2 when the first peak of C/N occurs, while the internal energy becomes
nonzero at the second peak. The average fermion parity 〈F〉 shows distinctly different behaviors in the Abelian and non-Abelian regimes for
intermediate temperatures between the two peaks. Data are shown for an L = 10 system size, with couplings Jx = Jz = 0.25, Jz = 1, K = 0
in the Abelian case and Jx = Jy = Jz = 1, K = 0.1 in the non-Abelian case. (Statistical uncertainties of all quantities have error bars that are
smaller than the marker sizes.)

By implementing the projection, we can study the finite-
temperature behavior of the fermion parity and probe the
contribution of the topological ground-state degeneracy to the
low-temperature thermal entropy, as seen in the following.

B. Finite-temperature expectation values

The finite-temperature physics of Hamiltonian (1) can be
numerically studied by randomly sampling different gauge
configurations u, in each case diagonalizing the fermionic
Hamiltonian Hu fully. This is possible since the partition
function at temperature T = 1/β can be written

Z (β ) = tr(e−βH ) =
∑

u

Z ′(β; u),

where Z ′(β; u) ≡ tr′(P e−βHu ), with tr′ being over only
the fermionic degrees of freedom. The projected fermionic
partition functions Z ′(β; u) can be calculated exactly using
a recursive approach that iterates once over all the fermion
modes while keeping track of the total fermion parity [32].
The weighting of each u in the thermal state is thus given by
pβ (u) = Z ′(β; u)/Z (β ), and finite-temperature expectation
values for observable O can be estimated by approximating

〈O(β )〉 =
∑

u

pβ (u)
tr′(P e−βHuOu)

Z ′(β; u)

≡
∑

u

pβ (u) 〈Ou(β )〉′,

using Monte Carlo methods. For all quantities of interest the
projected fermionic expectation values 〈Ou(β )〉′ can again be

computed exactly, using a recursive approach [32]. The heat
capacity of the full model can be computed as

C = β2 Varu(〈Hu〉′) + Meanu[β2〈 (Hu − 〈Hu〉′)2 〉′],
where Varu and Meanu are calculated with respect to the prob-
ability distribution pβ (u). Numerically, these variances Varu
are estimated along with their uncertainties using bootstrap
resampling [33]. At infinite temperature the state consists of
N decoupled spin-1/2 particles, which has thermal entropy
S = N ln(2). The thermal entropy can then be obtained by
computing

S(T ) = N ln(2) −
∫ ∞

T

dT ′ C(T ′)
T ′ .

C. Numerical results

To analyze the thermal behavior of the HLM we calculate
the specific heat, i.e., the heat capacity per spin C/N , thermal
entropy S, vortex density ρV , internal energy per spin U/N

(U = 〈H 〉), and average fermion parity 〈F〉 of the model.
These are plotted as functions of temperature for both the toric
code and Ising coupling regimes in Fig. 1.

First, we see that the splitting of the spins into gauge and
fermionic degrees of freedom is not only a mathematical trick
for solving Kitaev’s honeycomb lattice model. The model
exhibits a physical fractionalization of its spins into gauge
vortices and fermions. We observe the distinctive two-peak
structure of the specific heat, indicating the fractionalization
of the spins, seen in previous studies [7]. For both the toric
code and Ising regime, the low-T peak is associated with
a change in the vortex density, in which it rises from its
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ground-state value ρV = 0 towards a completely disordered
vortex configuration ρV = 1/2. The higher-temperature peak
is linked to a large change in internal energy U , corresponding
to an unfreezing of the fermionic modes. These peaks are well
separated by several orders of magnitude of T in the toric code
limit, whereas they are closer and blur together to a certain
extent in the Ising regime. Nevertheless, the specific heats in
both regimes exhibit similar qualitative behavior.

Second, in Fig. 1 (top panel) we plot the behavior of the
thermal entropy S, obtained by integrating the heat capacity
down from infinite temperature. At small temperatures the
thermal entropy is able to identify the topological degeneracy
of the ground state. Specifically, the Boltzmann formula gives
S = ln(�) , where � is the number of microstates (with the
Boltzmann constant set equal to 1). As T → 0, � gives the
degeneracy of the ground state whose correct value can only
be obtained by employing the projection onto physical states.
Hence, the thermal entropy is in excellent agreement with the
topological degeneracies expected for the toric code anyons
S = 2 ln 2 and for the Ising anyons S = ln 3. However, for
larger temperatures, when the vortices start to proliferate,
the entropic signatures of topological order are washed out
[34,35].

In contrast to the thermal entropy, the fermionic parity
〈F〉 shows interesting differences between the two regimes at
higher temperatures and, in fact, hints at even more complex
differences between the two. We begin by describing the
behavior we would expect 〈F〉 to have based purely on the
anyon models. The T → 0 state always has no vortices. In
the toric code case this already rules out the possibility of
odd-fermion-parity states because of the fusion rules. States
containing two fermionic quasiparticles would be allowed;
however, these have very high energy. In the Ising regime
odd-fermion-parity states that do not contain any vortices are
allowed by the fusion rules (they correspond to states with
anyonic flux around both handles of the torus). However,
since they contain a fermion, they have higher energy, so
these states do not occur at low temperature. Hence, at low
T we expect to find 〈F〉 = 1 in both regimes. In contrast, at
high temperatures we would expect different values of 〈F〉 in
the two cases. As T → ∞, the vortices become completely
disordered, ρV = 1/2. In the toric code case half of these
configurations will contain odd numbers of e (and m) anyons,
and half will contain even numbers. From the fusion rules
these correspond to odd and even fermion parities, respec-
tively, and averaging over them gives 〈F〉 = 0. However, in
the Ising theory the only way to generate a state with total
odd fermion parity is to add nontrivial anyon flux around both
torus handles. This is one of four flux configurations, so we
would instead expect to find 〈F〉 = 3/4(+1) + 1/4(−1) = 0.5.
Figure 1 (bottom panel) plots the fermion parity as a function
of temperature. We see that at low temperature both regimes
agree with the predictions of the anyon models. At high
temperature, however, only the toric code case agrees with our
predictions. The fermion parity also becomes zero in the Ising
case at high temperatures. This is the first indication that the
thermal proliferation of Ising vortices has driven a transition
out of the topologically ordered phase (described by the anyon
model) to a new kind of phase. We will demonstrate in the
following that this phase is a thermal metal.

III. THERMAL METAL BEHAVIOR

Of central interest to us is the behavior of a two-
dimensional Majorana lattice with random sign couplings.
Such random configurations are renormalization fixed points.
Indeed, if block renormalization is employed, the resulting
model is again a Majorana lattice with a random sign of
couplings [29]. These signs can be interpreted as a Z2 gauge
field that gives rise to Majorana binding vortices. It has been
shown that a Majorana lattice with Z2 field couplings can
be faithfully modeled by the same system with homogeneous
couplings, superposed by an independent lattice of Majoranas
at the position of the vortices created by the random signs
[36]. As the vortices are farther apart than the original lattice
spacing, they interact more weakly. So this vortex lattice con-
tributes states with energies below the band gap of the original
lattice model. Moreover, the sign of the vortex couplings
is random due to the random position of the vortices. This
picture holds recursively, providing subgap states all the way
to zero energy. As a result we expect the randomization of the
coupling signs to give rise to a gapless phase. Moreover, as
randomness persists with renormalization, this critical phase
should be described by an Anderson transition with wave
functions exhibiting multifractality [29]. The divergence of
the number of fermionic states with close to zero energy and
the critical multifractal behavior of the wave functions are the
defining characteristics of a thermal metal phase.

A two-dimensional Majorana lattice with random sign cou-
plings has been numerically shown to support thermal metal
phases [26,37]. However, the vortices must be introduced by
hand as they are not part of the thermal state of the system.
Similarly, thermal metal behavior has been seen in topolog-
ical superconductors at temperatures above the Kosterlitz-
Thouless transition point, where vortices that bind Majorana
zero modes proliferate [38]. In this case vortices would occur
naturally in the superconductor. Nevertheless, when modeling
the superconductor with a mean-field approach, vortices must
again be added artificially. Hence, in both these cases ensem-
bles of different realizations of the system have to be used to
study the thermal metal phase.

In the HLM case, in contrast, the vortices naturally occur
as finite-temperature excitations, as shown in Fig. 1. To intu-
itively understand why such a thermal metal phase can emerge
in this situation, consider the system at T = 0 in the presence
of various patterns of vortices. When vortex quasiparticles of
the non-Abelian regime are brought into proximity, they cou-
ple with a sign that depends on their relative position [36]. As
temperature increases, in the HLM the average vortex density
increases to the point that the vortex-vortex couplings become
important. Moreover, the random distances between vortices
mean the pairing energies between the vortex bound states are
positive or negative at random. Thus, we also expect a thermal
metal phase to arise in the HLM at finite temperature.

A. Fermionic gap

Thermal metals conduct heat through their fermionic de-
grees of freedom. This metallic conduction property requires
a vanishing fermion gap. The behaviors of the average fermion
gap 〈�〉 in the Abelian and non-Abelian regimes are shown in
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FIG. 2. Average fermion gap for the (left) Abelian and (right)
non-Abelian cases, with the specific heat profile superimposed. The
fermions in the Abelian limit are gapped at all temperatures, whereas
in the non-Abelian case they become gapless when vortices start
proliferating. The large system size limits of the fermion gap for
T → 0 and T → ∞ (obtained in Appendix B) are indicated with
markers on the axes. Data are shown for an L = 10 system size with
couplings set to Jx = Jz = 0.25, Jz = 1, K = 0 in the Abelian case
and Jx = Jy = Jz = 1, K = 0.1 in the non-Abelian case. (Error bars
for all quantities are smaller than the marker sizes.)

Fig. 2. In these plots the fermionic gap is averaged over the
vortex sectors that are thermally excited for a given temper-
ature T . We see that the Abelian regime remains gapped at
all temperatures. However, in the non-Abelian case the aver-
age fermionic gap vanishes above the temperature at which
vortices begin to proliferate. In Appendix B we address the
finite-size scaling of the fermion gap in the zero-temperature
and infinite-temperature limits. We give evidence that in the
non-Abelian phase the infinite-temperature limit 〈�〉 tends to
zero as L → ∞.

A vanishing fermion gap is a necessary condition for a
thermal metal. However, since the non-Abelian vortices bind
Majorana modes at zero energy, the vanishing of the gap
is not sufficient. It cannot distinguish between a metallic
phase (which has fermionic energy levels occurring contin-
uously down to zero energy) and an insulating phase with
additional zero-energy localized states associated with the
vortices (isolated subgap fermionic states at zero energy).
Further, a thermal metal phase is expected to display its own
distinct behaviors in both the distribution of energy levels at
low energy and the spatial properties of the wave functions
[23,25]. In the following we probe both of these properties in
detail.

B. Density of states

The fermionic distribution of energies (DOE) is given by
ρ(E) = 〈∑

n δ(E − εn) 〉, where εn are the fermionic ener-
gies in a single vortex sector and the average is taken over
the vortex sectors visited at temperature T [39]. In a thermal
metal, ρ(E) diverges logarithmically with decreasing energy
at low energies [25,40]. To clearly see this feature of ρ(E)
we find it necessary to go to systems larger than those that
are accessible when using the algorithm that properly samples
from the thermal state, e.g., our L = 10 data. For system
size L = 20 data are obtained by randomly sampling over
vortex sectors, matching the average vortex density to the
value obtained from smaller system sizes (see Sec. A 2). The

FIG. 3. Distribution of fermion energies ρ(E) for low E in the
non-Abelian case. Computed for system sizes L = 10 and 20 at fixed
temperature T ≈ 0.4. At low energies ρ(E) diverges logarithmically
with decreasing E. This is indicated by the black dashed line, which
is a fit to the L = 20 data. For the smallest values of E oscillations
are visible. Inset: The oscillations are collapsed onto curves of the
form of Eq. (3). The system couplings are set to Jx = Jy = Jz = 1,
K = 0.1.

logarithmic divergence is extracted by a fit to L = 20 and
is in agreement with the behavior of L = 10, as shown in
Fig. 3. For the very lowest energies, ρ(E) additionally exhibits
characteristic oscillations predicted by random matrix theory
[40,41]. In this limit the DOE is given by

ρ(E) = α

(
1 + sin(2πEαL2)

2πEαL2

)
. (3)

The parameter α can be obtained by numerically solving
the consistency equation ρ(1/αL2 ) = α, and α is expected to
diverge logarithmically with L [25]. The first few oscillation
periods of the random matrix theory are shown in Fig. 3
(inset). Hence, the energy distribution is in agreement with
the thermal metal phase.

C. Weak multifractality of wave functions

Beyond the energy eigenvalues, the wave functions of
thermal metals exhibit weak multifractality, which means they
are spatially extended in a particular way [42]. This behavior
is shared with systems that exhibit Anderson localization,
where weak multifractality occurs at the critical point between
insulating and conducting phases [29]. Whether states are lo-
calized or extended can be studied via the inverse participation
ratios of the fermionic eigenfunctions ψn(r) [29], given by

Iq =
∫

d2r |ψn(r)|2q ∼ 1

Lτ (q )
. (4)

The exponent is often written τ (q ) = (q − 1)Dq , where Dq

is called the fractal dimension. For pure metallic states Dq is
equal to the spatial dimension, Dq = 2, and for entirely lo-
calized states Dq = 0. However, weak multifractality implies
Dq becomes dependent on q and behaves as Dq = 2 − γ q

[42]. Figure 4 shows the exponent τ (q ) plotted as a func-
tion of q for the lowest-lying fermionic state, averaged over
vortex sectors at temperature T ≈ 0.4. Fitting to the data, we
obtain the fractal dimension Dq = 1.7(8) − 0.12(3)q. Hence,
the eigenstates also exhibit the critical Anderson behavior
expected from a thermal metal phase.
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q = 2

q = 3

q = 4
q = 5
q = 6

FIG. 4. Weak multifractality of the fermionic wave functions in
the non-Abelian case at high temperatures. Left: Inverse participation
ratios Iq of the lowest-lying fermionic eigenmode as a function of
system size L (on a log scale). Iq are averaged over the thermal
distribution of vortices at T ≈ 0.4. Right: Exponents τ (q ) [defined
in Eq. (4)] as a function of q demonstrating multifractal critical
behavior, in between the metallic τ (q ) = 2(q − 1) and the insulating
τ (q ) = 0 behaviors. (Error bars are smaller than the marker sizes.)

IV. CONCLUSIONS

We have analyzed the thermal behavior of the Abelian and
non-Abelian quantum spin liquid phases of the Kitaev honey-
comb model. Using Monte Carlo simulations, we have studied
the thermal distributions of vortices, finding thermodynamic
behaviors that agree with past studies [7,8]. Importantly, we
find that the HLM at T > 0 enters a thermal metal phase,
with logarithmic divergent distribution of energies and wave
functions that exhibit multifractality.

Compared to the study of thermal metals in the disordered
integer quantum Hall effect [26] that required fine tuning to
zero chemical potential, the metallic phase obtained here is
stable against changes in the coupling constants that do not
move the system out of its non-Abelian phase. Compared to
the p-wave superconductor [38], the metallic phase appears
without having to introduce vortices by hand; once in the non-
Abelian phase, the only necessary knob is the temperature.
Also, no ensemble averaging is necessary to get different
patterns of vortices; throughout, we have needed to deal
with only the Gibbs state of a single translationally invariant
Hamiltonian. We believe this distinction is important and
could eventually contribute to the experimental observation
of a thermal metallic phase, e.g., in magnetic field-tuned
α-RuCl3 above the temperature window which has recently
shown signatures of a quantized thermal Hall effect [18].

Our work paves the way for a number of future investiga-
tions: It will be important to analyze how the signatures of the
thermal metal become manifest in experimental observables,
e.g., the temperature or system size scaling of the thermal
conductivity or the frequency dependence of the low-energy
Raman response [43,44]. A challenging question will be to
investigate whether the metallic phase survives the addi-
tion of integrability-breaking terms that render static fluxes
dynamical or the coupling to acoustic phonons inevitably
present in real materials. Finally, beyond the quantum spin liq-
uid context we expect that temperature-induced localization-
delocalization transitions could also emerge in certain lattice

gauge theories [45–47] recently discussed in the context of
nonergodic phases.
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APPENDIX A: MONTE CARLO PROCEDURES

In this appendix we give more precise descriptions of the
Monte Carlo procedures employed in the main text.

1. Sampling gauge configurations

The expressions given in Sec. II B can be approximated
using Monte Carlo sampling. The aim is to choose M ∼
50 000 gauge configurations such that the probability of any
u being chosen is Z ′(β; u)/Z (β ). We achieve this with a
Markov chain. Beginning with the uniform ui,j = +1 gauge
configuration (which is in the no-vortex sector), at each step
a new gauge configuration uprop is proposed. The proposal
will be described in detail below. Each step the current ucurr

is replaced by the proposed uprop with probability

min

[
1,

Z ′(β; uprop)

Z (β )

/Z ′(β; ucurr )

Z (β )
= Z ′(β; uprop)

Z ′(β; ucurr )

]
.

After a large number of attempted replacements (∼L2) we add
the current gauge configuration to the sample; this timescale
we refer to as a sweep. This continues until we have collected
enough configurations. Each Markov step is relatively slow as
computing the acceptance probability requires rediagonaliz-
ing the fermionic Hamiltonian. We additionally use parallel
tempering to help speed up the convergence of statistical
estimates [48]. Autocorrelation effects in the Markov chain
are quantified by estimating the integrated autocorrelation
time, and this is then included in the quoted statistical
uncertainties [49].

The proposed change ucurr → uprop is generated by select-
ing two random plaquettes and drawing a string of gauge
flips between them [Fig. 5(a)]. This might select the same
plaquette twice, in which case the string is empty. The string
is combined with a randomly selected topologically nontrivial
loop of gauge flips, as shown in Figs. 5(a)–5(d). This choice
of proposal effectively ignores the trivial gauge loops but
otherwise samples over all vortex sectors and all nontrivially
different gauge configurations.

2. Sampling of vortex sectors

A faster sampling procedure is to sample from random
vortex patterns with fixed densities. This allows us to reach
system sizes much larger than those accessible when sampling
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(a) (b)

(c) (d)

FIG. 5. Markov step proposal. (a) Two plaquettes are selected
at random, and an arbitrary rectangular path of flipped links is
drawn between them. With equal probabilities, this gauge string is
combined with (a) nothing, (b) a nontrivial loop wrapping the lattice
top to bottom, (c) a nontrivial loop wrapping the lattice left to right,
or (d) both of these nontrivial loops.

over gauge configurations. By matching these fixed densities
to the known thermal density of vortices (for example, the
profile of ρV obtained from the full simulation of small system
sizes, e.g., Fig. 1) this captures most of the thermal physics
in a more efficient way. For high temperatures this has been
shown to work well [7,28]. However, we do not expect this
approximation to perfectly capture the physics around the first
peak in specific heat. Since the vortices are interacting [22],
the thermal patterns of vortices at lower densities are expected
to be quite different from purely random patterns. Hence, we
cannot use this approach to probe the onset of the thermal
metal phase.

APPENDIX B: FINITE-SIZE SCALING
OF THE FERMION GAP

It is simple to sample from the zero-temperature and
infinite-temperature gauge configurations. In this appendix we
study the fermion gap in these limits and address their scaling
with system size. As an additional check on our Monte Carlo
results we compare the temperature extremes of our Monte
Carlo data to these limiting cases.

1. Low temperature

The ground state of the model lives in the no-vortex sector
[3]. This ground state has a topological degeneracy on a
torus, which corresponds to the four different choices of pe-
riodic/antiperiodic boundary conditions for the fermions [50].
Due to the projection procedure we employ, however, some
of these topological sectors may have odd fermion parity and
so higher ground-state energy. We take the zero-temperature
gauge configuration to be an equal-weight mixture of the
even-parity topological sectors; that is, � is computed as the
mean of the fermion gaps of the even-parity no-vortex sectors.
In the non-Abelian case this is three of the four sectors,
whereas in the Abelian case all four are degenerate. We ignore
the finite-size gapping of the topologically degenerate states,
as this vanishes exponentially.

FIG. 6. Zero-temperature fermion gap as a function of system
size for Abelian (left), Jx = Jz = 0.25, Jz = 1, K = 0, and non-
Abelian (right), Jx = Jy = Jz = 1, K = 0.1, couplings. Both cases
quickly decay towards a fixed value. The fermion gaps obtained
from the lowest temperature Monte Carlo simulations are displayed
(orange circles) on the plots.

The fermion gap of this zero-temperature gauge configura-
tion is plotted as a function of system size for the non-Abelian
and Abelian cases in Fig. 6. Both are decaying to some
fixed value, and the non-Abelian case additionally displays
oscillations. Extrapolating these trends, we find the limiting
value of the zero-temperature fermion gap.

The lowest temperature value of the gap obtained from
our Monte Carlo simulation is plotted alongside the curves
in Fig. 6. We find good agreement between the non-Abelian
Monte Carlo data and the zero-temperature gauge configura-
tion. However, our Abelian data break away from it for small
systems, L < 10. This occurs as a result of the small vortex
gap in the Abelian case; recall that in this case the first specific
heat peak is at T ∼ 10−4. Here 1/T is, in fact, comparable to
the finite-size gapping of the topologically degenerate ground
states for L < 10, so the Monte Carlo simulation resolves
the degeneracy. Our assumption that the finite-size gapping
of the topological degeneracy can be neglected fails in these
cases. This demonstrates that we must consider systems of
size L = 10 or larger in the Abelian case.

FIG. 7. Infinite-temperature fermion gap as a function of system
size for Abelian (left), Jx = Jz = 0.25, Jz = 1, K = 0, and non-
Abelian (right), Jx = Jy = Jz = 1, K = 0.1, couplings. Both decay
quickly towards a fixed value, which from polynomial fits is found
to be � = 1.13(9) in the Abelian case and � = 0.000(6) in the
non-Abelian case. The fermion gaps obtained from the highest-
temperature Monte Carlo simulations are displayed (orange circles)
on the plots.
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2. High temperature

Large temperatures can be studied by sampling from com-
pletely random gauge configurations. Figure 7 shows the
fermion gaps obtained by averaging over 10 000 random u
patterns as a function of system size L. We fit a polynomial

decay to the data. In the Abelian case the trend is toward
a nonzero gap, whereas in the non-Abelian case the gap
vanishes in the large-system limit. The Monte Carlo values
obtained at the highest temperatures studied are plotted on the
graphs, and we find excellent agreement.
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