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a b s t r a c t

Heteroscedasticity, or time-dependent variance, is often observed in long-term monitoring

data in the context of SHM, where it is normally induced by the seasonal variations of the

ambient environment. In the effort to project out the environmental and operational vari-

ations, cointegration, a method originating in econometrics, has been successfully

employed in various SHM studies. This paper will explore a possible enhanced approach

to cointegration, to make it applicable to heteroscedastic data. The fact that the variance

of heteroscedastic data is constantly changing has a significant negative impact on conven-

tional damage detection algorithms, making it difficult to calculate accurate confidence

intervals. Thus, in the current paper, an exponential smoothing method is presented to

explore and deal with the complex seasonal patterns observed in SHM time series. More

specifically, in this framework, a seasonally-corrupted time series can be decomposed into

three components, namely, level, seasonal and residual terms. Subsequently, the series

purged of seasonality will be fed into a cointegration analysis, in order to produce a more

stationary residual series (damage indicator series). Two case studies, including a synthetic

case and a real world SHM dataset, are demonstrated with results and discussions.

� 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Structural Health Monitoring (SHM) is increasingly crucial for the maintenance of important infrastructure; research

work in this area has seen a dramatic boost in the last decade. One of the major obstacles holding back the transition of

SHM from the laboratory and theoretical research to real-world engineering practice is the confounding influence of the

environmental and operational variations (EOVs). As elaborated in [1], ‘‘without intelligent feature extraction, the more sen-

sitive a measurement is to damage, the more sensitive it is to changing operational and environmental conditions”. Before

building a damage detection algorithm, the normal baseline state of the underlying structure firsts needs to be accurately

identified. Thermal conditions, for example, may account for 5% to 10% of the variations of the modal properties of bridges

[2,3]; daily traffic loading variations may cause up to a 5.4% shift in the first natural frequency of a plate-girder bridge [4]. An

introductory survey of EOV effects on SHM can be found in [5]; readers can also find some of the latest developments in EOV

effects in [6–9].

In recent work of the last two authors here, cointegration, a method originating in econometrics, has been successfully

adapted to effectively remove the effects of EOVs in SHM data [10]. Cointegration is a property of nonstationary time series;
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two nonstationary time series can be said to be cointegrated if some linear combination of them forms a stationary series.

Perhaps one of the most successful applications of cointegration is in the pairs trading strategy to financial time series, where

two highly-correlated time series are paired to form a stationary cointegrated residual, purged of the variations caused by

market volatility [11]. Analogously, in the context of SHM, the EOVs may be regarded as some set of stochastic common

trends affecting the dynamic behaviour of the structure simultaneously. By building the cointegration relationship among

the measurements of the structure, one can find a stationary cointegrated residual with the EOVs eliminated, which can

be used as an efficient damage indicator. After the first introduction of cointegration to SHM [10], a number of exploratory

studies have been carried out to further enhance the applicability of the cointegration method. In an effort to analyse the

nonstationarity of a time series, Worden et al. [12] utilise discrete wavelet analysis as a means of characterising the time

scale on which nonstationarity manifests itself. By finding the ‘most nonstationary’ time scale, one may possibly enhance

the damage sensitivity of the cointegration method. The authors of this paper also attempted to use Gaussian Processes

to build a nonlinear cointegration relationship, so as to model the distinct behaviour of bridges during summer and winter

time [13]. Zolna et al. presented a nonlinear cointegration approach using a scaling transformation that can produce a

variance-stationary residual series [14]. A more recent review paper on time series methods was presented by Worden

et al. [15]; they reviewed the latest developments of time series algorithms in the field and imposed two open problems

regarding cointegration analysis; namely heteroscedasticity and nonlinearity. This paper will attempt to address the first

of these issues.

With the rapid advancement of sensing technology, the availability and accessibility of all kinds of data from structures

has been greatly improved. As the duration of recorded data grows, seasonal effects become inevitably important, especially

for long-termmonitoring. Meteorological variations and human activities might couple with the behaviour of the structures,

making the modelling of underlying states of the structure extremely difficult. More specifically, the seasonal effects may

produce input-dependent noise in the measurements of the structure, or heteroscedastic noise, as in the statistical literature.

As is well known, many statistical and machine learning estimation methods are based on ordinary least squares (OLS) or

maximum likelihood; thus heteroscedastic noise may bias the estimation of the model, causing misleading judgements of

the health state of the structure. Therefore, this study seeks to further strengthen the practice of the cointegration method;

a well-established method from the time series literature, called the TBATS (Trigonometric, Box-Cox transform, ARMA errors,

Trend, and Seasonal components) model [16], is explored to deal with seasonal effects in SHM data. After suppressing the

heteroscedasticity in the series, cointegration analysis is performed to build a damage sensitive residual series.

This paper begins with a motivating example, followed by brief theoretical introductions to the exponential smoothing

method and the TBATS model, it will then go on to an introduction and a brief review of the cointegration method. A syn-

thetic case study will be presented in the fifth part to illustrate the proposed method. Another case study, of the National

Physical Laboratory (NPL) Bridge with the proposed method, is presented in the same section, the last part includes summary

and some discussions.

2. A motivating example

Nowadays, many long-term SHM studies have continuously collected years worth of sensor data from structures. When

time span and resolution of available data are comprehensive enough, accounting for seasonality or periodicity becomes cru-

cial for data modelling.

Consider the National Physical Laboratory (NPL) Bridge, for example [17]. The NPL Bridge was monitored for an extensive

time span meaning that the data capture a wide range of behaviours induced by environmental variations. The monitoring

campaign also introduced several kinds of damage scenarios to the bridge. However, observing time series of measured tilt

data, as shown in Fig. 1, no immediate damage information is available as it is overwhelmed by the environmental variations.

These time series are clearly nonstationary, both in mean and variance, with unfortunately few methods being valid for such

time series. Worden et al. [18] attempted to model the tilt sensor data using the linear cointegration method (theories of

which will be reviewed shortly).

Cointegration was applied to the eight tilt sensor time series, in order to form a stationary residual for damage detection

purposes. As demonstrated in Fig. 2, the vertical black line shows the end of the training samples for cointegration, which

accounted for a full year of environmental variations. The residual series clearly possesses time-varying variance, the under-

lying seasonality has severely undermined the effectiveness of the algorithm. With the help of the Statistical Process Control

(SPC) chart, the ‘‘X-bar chart” in this case [19], the situation can be somewhat alleviated. The measurements of the tilt sensor

were hourly-based, every 24 measurements were averaged to obtain a daily representative sample, the resulting residual

series is shown in Fig. 3, the horizontal dashed lines indicate �3r (standard deviation) control limits, the vertical blue line

marks where the first damage scenario was implemented. Despite the nonstationarity in the residual variance, the algorithm

clearly retains the power of damage detection, such that after the damage introduction, the mean of the residual gradually

goes beyond the control limits.

In terms of seasonality/periodicity in the NPL Bridge data, the daily cycle is an apparent one (usually synchronised with

the daily cycle of temperature). Another important observation is that as time approaches the middle of a year, the

amplitude of the daily cycle gets bigger as well, it will then shrink towards the end of a year. This might be caused by

the fact that the tilt sensors are generally sensitive to temperature variations, such that their associated measuring errors
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may be amplitude dependent as well. Many econometric studies have attempted to integrate seasonality into the original

cointegration framework, most of them stem from [20], where seasonal unit root tests and seasonal cointegration are devel-

oped. However, this paper will look in a different direction, which is to understand the different components in the original

time series, and apply cointegration on the decomposed long-term trend components. This is partly inspired by [12], which

finds that cointegration tends to manifest itself on longer time scales. Thus, it can be advantageous to decompose the original

time series into long-term trend components, heteroscedastic seasonality components and noise, and then apply cointegra-

tion on the trend components, which contain information that is of most interest. In the subsequent sections, the decompo-

sition framework adopted in this paper, the TBATS model, will be reviewed in detail; the NPL Bridge will be re-examined

with the proposed method in the later section.

Fig. 1. Data collected from all 8 tilt sensors installed on the NPL Bridge.

Fig. 2. Cointegrated residual series from the 8 tilt sensor signals acquired from the NPL Bridge; the vertical black line indicates the end of the training data

for cointegration.
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3. Exponential smoothing and TBATS model

3.1. Introduction

There are many possible solutions offered by various research communities to decompose a time series: From the per-

spective of signal processing, Fourier-based transforms, the discrete wavelet transform (DWT), the empirical mode decom-

position, etc. are some of the mainstream methods adopted. Consider the DWT for example, it passes a raw signal through a

series of quadratic mirror filters, both high-pass and low-pass filters. The high-pass filter produces details and the low-pass

produces approximations. The process is repeated on the detailed signal until the last level is reached, the detail at each level

expresses how the signal manifests itself at that level (scale band). In the wavelet context, each level is expressed by a num-

ber of wavelets which can be fitted to the interval of interest [12]. In the time series domain some of the classical parametric

time series models have been extended in order to model nonlinear and nonstationary time series. For example, the Seasonal

AutoRegressive Integrated Moving Average (SARIMA) model demonstrated in [21] attempted to accommodate the season-

ality in the classical ARIMA model. Additionally, the Time-dependent AutoRegressive Moving Average (TARMA) or Time-

dependent State-Space (TSS) have been developed in order to model the complex structures embedded in time series. A thor-

ough investigation of the Functional Series TARMA (FS-TARMA) models can be found in [22]. Some literature has considered

time series to be combinations of different components which exhibit distinct behaviours, examples of such components are

trend components, seasonal components, and error components, and the forms of combination can be additive, multiplica-

tive, or both [23].

Studying the characteristics of the motivating example above, this paper chooses a time series decomposition method

over a signal processing method for the following reasons. First, as the magnitude of the daily cycle in the NPL data is

time-varying, filter-based methods will struggle to separate this out, whereas time-series-based methods can have greater

flexibility in specifying the seasonal components. Secondly, the TBATS model is selected here because it has been reported to

be good at dealing with multiple seasonality in time series models, it also enables one to model multiplicative seasonal com-

ponents, where other conventional time series decomposition methods, the STL decomposition for instance [24], tend to

incorporate just one time-invariant seasonal component. Finally, the TBATS model is built using state space models, which

enable probabilistic predictions rather than point estimates.

Exponential smoothing methods have been amongst the most widely-used and successful time series methods for

decomposition and forecasting, since they were established in the late 1950s. Generally, predictions with exponential

smoothing are made with weighted averages of the past observations, with the weights exponentially decaying as the obser-

vations get away from the current time instant. Recent developments have established that exponential smoothing methods

Fig. 3. X-bar chart plot of the cointegrated residual; the black vertical line indicated the end of the training data; the blue line shows when a static and

dynamic test was conducted; the red lines imply damage introduction. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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can be greatly enhanced within the framework of an innovations state space model [25]. They can not only generate the

same point estimate, but also calculate the prediction intervals. The innovations state space model differs from its conven-

tional analogue, the state space model, such that it only allows a single source of error (innovations) for both state and mea-

surements equations, but it is more robust, and has fewer undetermined parameters; a thorough investigation on this topic

can be found in [23].

3.2. TBATS model forms

Complex seasonal patterns exist in real engineering applications, for example multiple seasonality, dual-calendar effects

(the coupling effect of the solar calendar and the Chinese calendar for instance [26]). To overcome this issue, De Livera et al.

have introduced a novel approach based on an innovations state space model called the TBATS model [16]. The acronym

‘TBATS’ represents their key features: Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal

components. Consider a time series ytf gNt¼1, the TBATS model has the following form:

y
ðxÞ
t ¼

yxt �1

x ; x – 0

log yt; x ¼ 0

(

ð1Þ

y
ðxÞ
t ¼ lt�1 þ /bt�1 þ

X

T

i¼1

s
ðiÞ
t�1 þ dt ð2Þ

lt ¼ lt�1 þ /bt�1 þ adt ð3Þ

bt ¼ ð1� /Þbþ /bt�1 þ bdt ð4Þ

s
ðiÞ
t ¼

Xki

j¼1
s
ðiÞ

j;t ð5Þ

s
ðiÞ

j;t ¼ s
ðiÞ

j;t�1 cos k
ðiÞ

j þ s
�ðiÞ

j;t�1 sin k
ðiÞ

j þ cðiÞ1 dt ð6Þ

s
�ðiÞ

j;t ¼ �sj;t�1 sin k
ðiÞ

j þ s
�ðiÞ

j;t�1 cos k
ðiÞ

j þ cðiÞ2 dt ð7Þ

dt ¼
Xp

i¼1
uidt�i þ

X

q

i¼1

hi�t�i þ et ð8Þ

Eq. (1) is the Box-Cox transformation of the series yt , which is designed to eliminate skewness of the distribution of the data,

such that the data becomes ‘‘more” normally distributed, making it easier to implement a maximum likelihood approach in

the estimation part. This can be beneficial for SHM data, as this mostly tends to be non-normally distributed, although its

application may also raise some concern, in light of the fact that a general SHM aim is to detect outlying data. One may

choose to exclude the Box-Cox step, however, here, the idea is that damage will manifest itself by breaking the cointegration

relationship, not be identified in the usual way of detected outlying points.

Eq. (2) is the main representation of the TBATS model, where y
ðxÞ
t is the transformed series of yt ; lt�1 is the local level at

time t � 1, and bt�1 is the short-run trend at time t � 1; s
ðiÞ
t�1 are the seasonal components, i is the index of the type of sea-

sonality (as the model may allow multiple types of seasonal components), and T is the total number of types of seasonality,

dt is an ARMA process disturbance.

Eqs. (13), (4)–(8) explain the corresponding components in detail: Eq. (13) explains that the current level of the series is

determined by the previous level and the short run adjustment bt�1 times a damping parameter /;a dictates the smoothness

of the level series. In Eq. (4), b is the long-run trend, bt is the short-run trend in the period; it indicates the fact that the short-

run trend consists of effects from the long-run trend and the left over short-run effect from the previous time step, the damp-

ing parameter / is the same as the one in Eq. (13). In practice, the short-run adjustments can sometimes be omitted if one

only wants the smooth trend series. Eqs. (5)–(7) are seasonal components based on a Fourier series with ARMA errors. Eq. (8)

is a stationary ARMA residual.

3.3. Innovations state space model forms

To derive the model likelihood and subsequently estimate the model parameters, one can first rewrite the TBATS model

into an innovations state space model form. For the sake of parsimony of this illustration, only two seasonal patterns are

considered here, with each seasonal component consisting of only one harmonic (one frequency component); the error pro-

cess is set to be an ARMA(1,1) process, i.e. T ¼ 2; k1 ¼ 1; k2 ¼ 1; p ¼ 1; q ¼ 1. Therefore, Eq. (2) can be reorganised as:

y
ðxÞ
t ¼ lt�1 þ /bt�1 þ

X

2

i¼1

s
ðiÞ
t�1 þu1dt�1 þ h1�t�1 þ et ð9Þ

The corresponding innovations state space model has the following form:

y
ðxÞ
t ¼ w0xt�1 þ et ; ð10Þ
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xt ¼ Fxt�1 þ get ð11Þ

where the state vector xt ¼ ðlt ; bt ; s
1
t ; s

2
t ; dt ; dt�1; et ; et�1Þ

0
, where s1t ¼ ðs

ð1Þ
1;t ; s

�ð1Þ
1;t Þ; s2t ¼ ðs

ð2Þ
1;t ; s

�ð2Þ
1;t Þ; the emission vector w equals

ð1;/;1;0;1;0;u1; h1Þ
0, and 0 is a transpose operator; the transition matrix F has the following form:

F ¼

1 / 0 0 0 0 au1 ah1
0 / 0 0 0 0 bu1 bh1

0 0 cos k
ð1Þ

j sin k
ð1Þ

j 0 0 cð1Þ1 u1 cð1Þ1 h1

0 0 � sin k
ð1Þ

j cos k
ð1Þ

j 0 0 cð1Þ2 u1 cð1Þ2 h2

0 0 0 0 cos k
ð2Þ

j sin k
ð2Þ

j cð2Þ1 u1 cð2Þ1 h1

0 0 0 0 � sin k
ð2Þ

j cos k
ð2Þ

j cð2Þ2 u1 cð2Þ2 h2

0 0 0 0 0 0 u1 h1

0 0 0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and g ¼ ða; b; cð1Þ1 ; cð1Þ2 ; cð2Þ1 ; cð2Þ2 ;1;1Þ
0
. Since TBATS models can be converted into standard innovations state space model

forms, they can be nicely fitted into the framework of the Kalman filter. However, the unknown parameters, including

the initial conditions, are computationally heavy to estimate, the authors in [16] used a smart algorithm to significantly

reduce the computational burden, which will be briefly introduced in the following section. It is also worth noting that

the above specifications are just for the simplest form of the TBATS model, one can adapt the above matrices according to

specific model settings, comprehensive derivations can be found in [16].

3.4. Parameter estimation

After the Box-Cox transformation, a maximum likelihood estimation method is then used to estimate all parameters in

the model. One can immediately see that the main obstacle here is the large number of parameters, which includes the

damping parameter, the smoothing parameter, the Box-Cox transformation parameter, the ARMA coefficients and also the

initial conditions of the innovations state space model. The trick the paper [16] employed is to make use of the single error

term et , and concentrate the initial conditions out of the likelihood: substituting (10) into (11), one can have

xt ¼ Fxt�1 þ gðy
ðxÞ
t �w0xt�1Þ ¼ ðF� gw0Þxt�1 þ gy

ðxÞ
t ; then, by substituting xt back to x0 in Eq. (13), one can have,

et ¼ y
ðxÞ
t �w0xt�1

¼ y
ðxÞ
t �w0

X

t�1

j¼1

ðF� gwÞ0j�1gy
ðxÞ

t�j �w0ðF� gw0Þx0

ð12Þ

From above, one can see that the initial condition x0 can be regarded as linearly related to the error term et , therefore x0 can

be estimated using an ordinary least squares method and substituted into the likelihood. This is one of the advantageous

features of innovations state space models in comparison to the conventional state space model alternatives, it leads to sav-

ings on parameter estimation and perhaps, more accurate predictions. The representation and derivation of the likelihood is

cumbersome and omitted here, readers can find the full details in [16].

3.5. Model selection

For most applications, seasonal periods are known a priori. In the motivating example, a daily cycle seems an obvious

choice, as the measured tilts are aligned with the daily temperature cycle. Additionally, a yearly cycle is also a common sea-

sonal period, unfortunately in the NPL data, only one year’s worth of data can be used for training, making it hard to single

out the yearly components from the training data. In cases where seasonal periods are unknown, one can apply a Fourier

analysis on the series first to identify significant frequency components. In the scenario of multiple seasonality, one can

use the Akaike Information Criteria (AIC) to evaluate every possible seasonal model, and choose the optimal model based

on AIC values.

To determine the number of harmonics ki in the seasonal components in (5), appropriate de-trending algorithms need to

be applied to the original series first; then one fits the linear regression
PT

i¼1

PðkiÞ

j¼1a
ðiÞ

j cosðk
ðiÞ

j tÞ þ b
ðiÞ

j sinðk
ðiÞ

j tÞ to the de-trended

series. Starting from one harmonic and gradually adding more, one applies an F-test to each number of harmonics, so as to

find the most significant ki for the i
th
seasonal component. The above procedure is repeated for every seasonal component

and one computes the corresponding AIC value, increasing the number of harmonics until the minimum AIC is achieved.

To determine the orders p and q of the ARMA models, first a TBATS model without the ARMA error is fitted as a baseline

model, the residual series of which will be fitted with an ARMA ðp; qÞ model; then a model is fitted again but with an ARMA

ðp; qÞ error process. If the newly fitted model has a lower AIC value than the baseline model, the orders p and q will be

accepted; otherwise, new sets of p and q will be tested, until the lowest AIC value is achieved.
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3.6. Summary

TBATS can be viewed as a model decoupling the seasonality and trend components which are often modelled together in

many seasonal models (SARIMA for example [21]). A few advantages that the TBATS model may offer are obvious: firstly,

time varying parameters in the seasonal components (Eqs. (5)–(7) are suitable for describing changing variances in the data.

Secondly, it allows for the accommodation of possible multiple seasonal effects, for example the nested effect of daily,

weekly, monthly and annual periodicity, potentially suitable for analysis of operational data. Lastly, it allows any autocor-

relation in the residuals to be taken into account.

However, the TBATS model can also cause trouble in a few ways: a large parameter space is set to be estimated, including

the initial state of the parameter space. Furthermore, the Box-Cox transformation limits its application to only positive time

series; but possible pre-processing of data can overcome this difficulty. Note that the Box-Cox transformation is an invertible

transformation, one can easily recover the original series after transformation. It is also worthwhile to explore other forms of

mathematical transformations, affine transformation for instance, may be a good choice [27]. Finally, irregular calendar

effects might cause trouble, but this may also be addressed by introducing a dummy variable [16]. Therefore, complex sea-

sonal variations observed in long-termmonitoring data can be well modelled by the TBATS model, which can be hugely ben-

eficial for further research.

4. Cointegration method

The concept of cointegration is based on the idea that a single time series might be difficult to accurately model and pre-

dict, but it may be more simple to find the relationship between two or more time series. To describe nonstationary time

series, a common way is through the order of integration. If a time series becomes stationary after d times differencing, then

this series can be said to be integrated of order d, denoted as IðdÞ. Therefore, Ið0Þ series are stationary time series, and in fact,

many SHM time series are found to be Ið1Þ series. For instance, let xtf gNt¼1 and ytf gNt¼1 be two Ið1Þ time series, they are said to

be cointegrated, if there exists some linear combination of them forming a stationary Ið0Þ series, explained as the following

form:

yt ¼ aþ bxt þ �t ; ð13Þ

where �t is a stationary process. xt and yt each follow a nonstationary random walk process, which is unpredictable individ-

ually, but a linear combination, yt � bxt , becomes a stationary process which is fairly predictable. The above cointegration

relationship can be easily augmented with endogenous terms such as a trend component in which the relationship is writ-

ten: yt ¼ aþ bxt þ ct þ �t .

Many methods have been developed to test and estimate cointegration relationships, the Engle-Granger estimation and

the Johansen procedure have been perhaps the two most popular choices [28]. The former method is classically a two-stage

approach; firstly the regression equation is fitted using a conventional Ordinary Least Squares (OLS) method, subsequently

the residual term is tested for stationarity using the Augmented Dickey-Fuller (ADF) test. As OLS is used in the Engle-Granger

method, it becomes prone to spurious regression, which means that in the scenario where in fact no cointegration exists

between yt and xt , OLS will still produce an estimation result, which is spurious and indicates no useful information [28].

The latter approach generalises the cointegration model to the vector case, which normally starts by fitting an m-

dimensional vector time series Xt into the following Vector Error Correction Model:

DXt ¼ PXt�1 þ
X

p�1

j¼1

WjDXt�j þ ut ¼ ABTXt�1 þ
X

p�1

j¼1

WjDXt�j þ ut ð14Þ

where ut is am-dimensional vector Gaussian noise series, ut � Nð0;XÞ. A and B are twom� r matrices, where r is the rank of

the matrix P. Matrix B is the cointegration vector matrix to be found, consisting of r cointegrating vectors. Matrix A is the

adjustment matrix. The subsequent steps involve estimating all of the parameters with a maximum likelihood method, and

performing statistical tests on the rank of the matrix B. Readers who are interested in the technical details of the Johansen

procedures, may refer to [29]. In the context of SHM, cointegration is particularly useful. Loosely speaking, system variables

all undergo the same sort of stochastic shifting under the influences of environmental and operational changes, even though

each individual variable may be difficult to predict, the mutual relationship among them is relatively stable whenever the

structure maintains intact. Or in the terms of cointegration, under normal conditions, the relevant system variables are coin-

tegrated, the formed cointegrated residual should remain stationary as long as the health state of the structure does not

change. For a full treatment of cointegration in the context of SHM, interested readers are referred to [10,30].

5. Case studies

Normally, cointegration analysis requires the noise term to be i:i:d. (independent and identically distributed) stationary

Gaussian noise. In fact, an i:i:d. stationary Gaussian noise assumption is ubiquitous in many time series methods, which often

employ ordinary least squares or maximum likelihood estimation approaches. However, i:i:d. stationary Gaussian noise or
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homoscedastic noise is not always the case in real world applications, the existence of input dependent noise or

heteroscedastic noise may therefore bias many estimation algorithms. In the context of SHM, the existence of multiple sea-

sonality/periodicity is sometimes the source of heteroscedastic noise. Motivated by this, this paper will first separate the sea-

sonal components from the original time series, in a attempt to suppress the associated heteroscedasticity. Cointegration is

then applied to the de-seasonalised series. The proposed idea will be tested on two case studies here, a simulated cantilever

beam and real monitoring data from a bridge.

5.1. Case study I: A cantilever beam

Consider a steel cantilever beam with a force applied at the free end, as shown in Fig. 4. Different thermal fields are

applied to the top and bottom of the beam, so as to mimic the uneven distribution of the temperature profile of a structure

operating in a real environment. In addition, to mimic the daily and seasonal patterns, and a linear trend of temperature in

the real world, the temperature fields T1 and T2 are imposed to be:

T1 ¼10� sinð12ptÞ þ sinð4ptÞ þ 3t � 10�3 � 2
n o

T2 ¼8� sinð12pt � 0:5pÞ þ sinð4ptÞ þ 3t � 10�3 � 2
n o

As the beam is simulated as an isotropic material, the temperature of the beam monotonically decreases from the top to the

bottom, with a linear gradient, which is illustrated in the cross-sectional plot in Fig. 4. 10000 sample points are simulated, as

Fig. 4. Schematic plot of a cantilever beamwith a force applied at the end; the top and bottom of the beam are applied with different temperature fields, the

cross-section plot shows the gradient distribution of temperature.

Fig. 5. Temperature of the top of the cantilever beam T1 , and temperature of the bottom T2.
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shown in Fig. 5. Because temperature is assumed to change over time, the stress and deflection of the beam will also change

accordingly. There are two reasons why the beam’s deflection will change with temperature; firstly, the Young’s modulus of

steel is normally considered to be linearly correlated with temperature; secondly, the temperature gradient of the beam will

also change with time, thus the thermal expansion of the beamwill be varying with time. The angle of rotation of the beam is

therefore composed of two parts, mechanical and thermal rotation, as expressed in the following equations:

Thermal : hT ¼
aðT1 � T2Þx

d

Mechanical : hM ¼
Fð�Lxþ 1

2
x2Þ

EI

Overall : h ¼hT þ hM

where a is the thermal expansion coefficient, and x is the position of the beam from the fixed-point at the left end.

5.1.1. Simulations

The thermal field in Fig. 5 is applied to the cantilever beam and the angles of rotation of four positions on the beam,

ð0:25L;0:5L;0:75L; LÞ, are evaluated. 4� 10000 samples points are therefore obtained. It is not uncommon in engineering

that measurement noise can be input-dependent, or in econometric terms, heteroscedastic noise. To simulate this situation,

an amplitude-dependent Gaussian noise is added to the theoretical results, as expressed by the following:

ĥ ¼ hþ 0:1� h� �t

where ĥ is the measured rotation, and �t is Gaussian noise with �t � Nð0;1Þ. The measurements with heteroscedastic noise

corruption are plotted in Fig. 6.

To simulate damage, the stiffness of the beam is reduced by 50% after data point 7500, as illustrated by a black vertical

line in Fig. 6. Although damage is introduced, only a slight shift in amplitude is visible; changes due to temperature varia-

tions are still dominant.

5.1.2. Results

If one uses the conventional cointegration method to cointegrate the four series with the training set ranging from point 1

to 5000, the cointegrated residual series is shown in Fig. 7. As expected, the heteroscedastic noise sabotages the required

condition of normally-distributed noise, which comes from the fact that the Johansen procedure is a maximum likelihood

method.

The TBATS decomposition is therefore applied, in order to extract the daily and seasonal components first, before appli-

cation of the cointegration method. A representative result of the decomposition of X1 is shown in Fig. 8. One can see that the

seasonal and daily patterns have been accurately identified and that most of the noise is left in the level term. Damage infor-

mation can also be clearly discerned in the level term.

Although damage information is clear in this case, it is likely that in other scenarios, the trend term itself is great enough

to disguise the damage information. The de-seasonalised series are subsequently fed to cointegration and the cointegrated

residual series is now shown in Fig. 9. With the three standard deviation confidence interval overlaid, the plot is much

clearer than Fig. 7, the residual stays mostly stationary in the mean and the nonstationary level in the variance has also been

somewhat suppressed; most importantly the damage information is evident immediately after it is introduced.

5.2. Case study II: The NPL bridge

Continuing with the motivating example of the NPL Bridge in Section 2, this section will present more details of the SHM

of the NPL Bridge, and revisit the heteroscedastic issue concerned with the NPL Bridge, the subsequently attempt to address

it with the proposed method.

5.2.1. The SHM of the NPL bridge

The NPL Bridge is 20 m long and 5 m high, weighing around 15 tonnes, as illustrated in Figs. 10 and 11. After it was in

service for nearly 50 years, the bridge was moved to a new location to conduct long-term monitoring experiments with a

variety of different sensors, during the years 2009 to 2011. The monitoring covered an extensive time period consisting

of at least two full seasonal variations. The monitoring campaign implemented several testing events, the respective time

lines are summarised in Fig. 12. The bridge was subjected to a series of static short-term and sustained loading tests, starting

from March 2009. Loading was employed with water tanks of different weights, at the edge of the bridge deck, as illustrated

in the left end of Fig. 10. Apart from loading tests, a few damage scenarios were also realised on the bridge; on 18th October

2010 for example, artificial damage was introduced by cutting the rebar on the top of the bridge deck, so as to represent the

decrease of the cross section. A number of other test events were also implemented, readers can find details from [31].

As mentioned above, this bridge was heavily instrumented with many kinds of sensors, but only the tilt sensor data will

be analysed in this study. The tilt sensors were installed by the ITMSOIL instrumental company in December 2008; Fig. 10

shows the schematic of all the locations of the 8 tilt sensors. Tilt sensors are used to measure the local inclination of the
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structure, therefore they can potentially be used to indicate the onset of damage in the structure. The data were originally

collected at a five-minute time interval except for a number of days of special tests. Consequently, before doing any analysis,

the first thing is to make the data regularly sampled. As the data were carefully labelled with a time stamp, the data on the

hour were used to form a new time series, a representative example of the tilt sensor 1 (TL1) data is shown in Fig. 12, the

time stamps for the important test events are summarised in Table 1.

Notice that in the original study of the monitoring campaign, thermal sensors were also installed on multiple positions of

the bridge. However, after investigating the origins of measurement uncertainty, Barton and Esward [17] found that the tem-

perature measurements at different locations of the bridge might have a lagged effect due to the temperature gradients

caused by heating from the sun. In this study, temperature data will not be used, as cointegration is able to remove environ-

mental variations without the measurements of the environmental variables.

5.2.2. Results and discussion

It is not difficult to see from Fig. 12 that the tilt sensor measurements are quite nonstationary, both in mean and variance.

The changes in mean could be caused by environmental variations or destructive test implementation, and obviously any

Fig. 6. The angles of rotation measured at the four positions ð0:25L; 0:5L;0:75L; LÞ of the beam, corrupted with heteroscedastic noise; the black vertical line

indicates where damage is simulated.

Fig. 7. The residual series obtained using the conventional cointegration method, the vertical dashed line marks where damage is introduced.
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potential changes induced by damage are overwhelmingly masked by environmental variations. While the changes in the

variance are a bit more complex, one can roughly observe that the volatility level in the winter time is significantly smaller

than that in the summer time, and the volatility level has a repeated pattern resembling seasonal variations. As the measure-

ments were taken over a time period of two years and eight months, two complete seasonal cycles can be visualised; the first

ranges from February 2009 to February 2010, the second seasonal cycle starts in February 2010 and ends in February 2011.

Fig. 8. Decomposition results from the TBATS model: the first row is the original time series, the second row is the decomposed level series, the third row

and the fourth row represent the two different seasonal components.

Fig. 9. Cointegrated residual series of the de-seasonalised series; red horizontal lines indicate three standard deviation intervals; black vertical line marks

the damage introduction point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Layout of all tilt sensors on the bridge and the loading implementation position.
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Fig. 11. The photo of the NPL Bridge in situ.

Fig. 12. Timetable of the respective destructive tests implemented on the NPL Bridge and hourly data of tilt sensor 1 (TL1) during February 2009 to

September 2011.
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Barton and Esward found that the thermal expansion of this bridge was unexpectedly large and complex, it could produce

almost the same strain level that was caused by a two-tonne loading [17].

As mentioned above, cointegration has been developed to deal with environmental and operational variations and the

Johansen procedure is normally used to estimate cointegration relationships. However, the Johansen procedure is a

likelihood-based method, which would naturally require the residuals to be an i.i.d. process; marked seasonality in the data

would therefore sabotage this condition and underestimate the variance level. In this paper, the TBATS time series decom-

position method will be employed first, in order to concentrate out the underlying complex seasonal components; subse-

quently, a normal cointegration analysis will be carried out to the de-seasonalised series.

A representative example of the TBATS decomposition of the sixth tilt sensor data is shown in Fig. 13. The top plot is the

original time series, the decomposed components are shown in the middle and bottom plots, and they are the level and sea-

sonal series respectively. The level series can be thought to be the extracted trend of the original series, purged of observa-

tion noise and seasonality. One can see that the level series is much smoother than the original series, most of the

fluctuations have been removed, and the long-term trend is well preserved. The seasonal pattern is set to be 24 h (daily

cycle), as expressed in Eqs. (5)–(7), which means that the seasonal series has a daily pattern whose magnitude changes over

time. Comparing the shape of the envelope of the seasonal series with the original series, most of the time-varying daily cyc-

lic components have been accurately singled out, potential damage information is manifested in the long-run component,

the trend component, hence cointegration can be subsequently applied for damage detection.

After conducting TBATS decompositions to each of the eight tilt sensor datasets, one can obtain eight de-seasonalised

trend series and error series. The data ranging from February 2009 to February 2010 are used to form a training set, as this

period covers a full seasonal variation. The Johansen procedure is then applied to the eight trend component series using the

training data set, in order to estimate a cointegration relationship. A residual series is then formed using the whole data set,

as shown in Fig. 14. The shaded area in the figure indicates a 95% confidence interval. The region between the beginning of

the series and the first black vertical line consists of the training set. Apart from a few occurrences of alarms, the series stays

mostly stationary, and the changes caused by environmental variations are largely eliminated. The blue vertical line at

Table 1

Important test events and their corresponding time stamps.

Index Time Test Event

1 2009.03.24 Static loading

2 2009.06.29 Static loading

3 2009.08.03 Static loading

4 2010.06.30 Static/Dynamic loading

5 2010.10.08 Static loading

6 2010.10.18 Damage: removing the rebar

7 2010.11.01 Repairing damage

Fig. 13. A single seasonal TBATS decomposition of the tilt sensor 6 (TL6) data: the first row is the original time series, the second row is the decomposed

level series, the third row shows the decomposed seasonal series, and the plot below shows the zoom-in view of the first 8000 samples of the decomposed

seasonal series.
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around June 30th 2010 indicates when a major static test was conducted. One can see that after this date, the residual series

has a major shift in the mean and also exceeded the lower confidence boundary, which can be regarded as a clear alarm sig-

nal. This can be explained by the fact that once the health state of the structure has changed, the underlying cointegration

relationship may no longer hold, and consequently the cointegrated residual will no longer stay stationary.

From Fig. 12, it is also known that after June 30th, the campaign implemented a few other events on this bridge. It is

worth noticing that on May 6th 2011, the campaign introduced a severe damage (removing the damaged concrete) to the

bridge. Correspondingly on Fig. 14, the mean level of the residual series undergoes a significant increase after this date,

which is an indication that the bridge is experiencing a change of state. Although the mean of the residual seems to return

to the mean of the training set, it certainly does not mean that the bridge is recovering to its healthy state. In order to further

detect any damage after June 30th, one would possibly need to re-evaluate the latest cointegration relationship of the bridge,

and form a new state of ‘‘normal condition’.

5.2.3. Comparison with the linear cointegration method

Comparing the results in Fig. 14 with the cointegrated residual plotted in Fig. 3, one can draw the following conclusions:

First of all, the heteroscedastic noise in the residual has been significantly suppressed, the residual series before the first

blue line is quite stationary both in mean and variance, the environmental variations have been largely purged; this confirms

the assumption that most of the heteroscedasticity is manifested in the seasonal components;

Secondly, Fig. 14 has accurately captured the long-term trend component; any information about structural changes to

the bridge is well reflected in the residual series. For example, on June 30th 2010, the monitoring campaign conducted both

static loading and dynamic loading on the bridge, the residual in the figure presents a sudden drop in the mean and exceeds

the lower confidence interval soon after the time mark. It was observed that early cracking had been developed in the bridge

weeks after the test on March 24th, 2009; static and dynamic tests further deteriorated the condition of the bridge, thus one

can observe a gradual development of damage in the residual series [18]. In contrast, in Fig. 2, the underlying trend is over-

whelmed by the heteroscedastic noise. Interestingly, the residual series behaves quite differently even after it goes beyond

the control limit; for example, points between the two red lines and the points after the second red line show distinct char-

acteristics. However, one needs to notice that once the cointegration relationship has ‘broken”, it is necessary to update with

a new cointegration relationship, and a new cointegrated residual needs to be estimated as well.

The TBATS model above has successfully dealt with heteroscedastic noise, but if one also wishes to apply the X-bar chart,

similar to the one used in [18], it is trivial to obtain the plot, shown in Fig. 15. Comparing with Fig. 12, one obvious improve-

ment is that the time varying variance has been eliminated here, the residual during the undamaged condition maintains

stationary. Although, near the first blue line, the residual gives early alarms, this is probably because that the TBATS model

is an off-line method in nature, meaning that it has to decompose the series as a whole, which may smooth out sharp

changes in the trend component.

Fig. 14. Cointegrated residual with confidence intervals marked with black horizontal lines; the black vertical line indicated the end of the training data;

the blue line shows when a static and dynamic test was conducted; the red lines imply damage introduction. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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Moreover, from a practical perspective, if one wishes to apply the proposed algorithm to a real world engineering prac-

tice, say the SHM of a bridge in operation, one would first need to acquire sufficient amount of sensor measurements of the

bridge under healthy conditions; then, the proposed method can be used to build a baseline model and a baseline residual

series; as new data come in, the TBATS decomposition is applied on the whole dataset, including training data and newly-

arrived data, followed by the cointegration analysis; finally, the baseline model can be updated on a regular basis, in order to

improve computational efficiency.

6. Conclusions

In this paper, an extension of previous studies of the cointegration method for SHM has been explored. The TBATS model

from the time series community has been tested in order to project out the seasonality observed in SHM data. The TBATS

model is a flexible and robust state space model with a single source of error, which has been widely adopted in the analysis

of seasonal time series. As long-term SHM data are inevitably affected by daily, seasonal and annual environmental varia-

tions, and maybe in some cases the interactions of human activities, it will be beneficial if the seasonal component can

be extracted before doing subsequent analysis. As cointegration has proved to be a powerful tool to deal with the issue of

environmental and operational variations in SHM, the TBATS model can be seen as a pre-processing tool for cointegration

analysis. By removing the seasonality one may potentially suppress the heteroscedastic noise caused by it, and as the Johan-

sen procedure for cointegration would normally require the noise to be an i.i.d. process, this might help to rectify any ill-

conditioned procedures. In the fourth section of the paper, two case studies were presented. A synthetic case simulates a

cantilever beam under varying temperature conditions; heteroscedastic noise is added to the simulations. The TBATS model

is first used to separate the two seasonal components and then the cointegration approach is applied, damage information

can then be visualised in the residual series. Another case study of the NPL bridge is presented with the proposed method.

The result is encouraging, in that the TBATS model can elegantly extract the daily cycles from the original series and most of

the heteroscedasticity is accounted for by the seasonal components. The long term trend series is then used in a cointegra-

tion analysis, the resulting residual series is mostly stationary in the training set, with most of the environmental variations

removed, the residual series remains sensitive to damage information.
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