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Abstract

We extend the work of Antunović, Mossel and Rácz on competing types in

preferential attachment models to include cases where the types have different

fitnesses, which may be either multiplicative or additive. We show that,

depending on the values of the parameters of the models, there are different

possible limiting behaviours depending on the zeros of a certain function. In

particular we show the existence of choices of the parameters where one type is

favoured both by having higher fitness and by the type attachment mechanism,

but the other type has a positive probability of dominating the network in the

limit.

1. Introduction

In [1], Antunović, Mossel and Rácz consider preferential attachment graphs with a number of competing

types, with new vertices being assigned to the types in a way which depends on the types of their

neighbours. They show that, depending on the mechanism for assigning the types to the new vertices,

various limiting behaviours for the types of vertices are possible, including situations where one type

ends up dominating but also including situations where the types co-exist. For many choices of type
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2 Jonathan Jordan

assignment mechanism, more than one limiting behaviour is possible. In this paper, we concentrate on

the case where there are two types, which is also mainly the case in [1].

The aim of this paper is to extend the class of attachment models studied by [1], and to investigate

the effects of different types of attachment model on the competition between the types. In particular

we consider attachment models where the two types are treated differently, so that one type may be

favoured, being seen as having higher fitness. These models are based on the preferential attachment

with multiplicative fitness model, introduced by Bianconi and Barabási [6], and the additive fitness

model, introduced by Ergün and Rodgers [10]. This can be thought of as extending the framework of [1]

to include cases where one of the types has some intrinsic advantage over the other in terms of attracting

new connections.

Similarly to [1], we use stochastic approximation methods, both one and two dimensional, to show that

there are a number of possible limits, which are stable zeros of a particular function on [0, 1] which

depends on the choice of parameters and the nature of the fitness mechanism. In particular, we show

that, in both the multiplicative and additive fitness models, there are choices of the parameter values

where one type has higher fitness and is also favoured by the type assignment mechanism, but there is

positive probability of the other type dominating the network in the limit. There are also cases with a

symmetric type assignment mechanism where a less fit type is able to maintain a positive proportion of

the vertices with probability 1. Typically there are threshold values for the ratio of the fitnesses between

the types beyond which this behaviour cannot occur and the fitter type dominates almost surely.

In Section 2 we review [1] and the results of that paper. In Section 3 we extend the results on the affine

preferential attachment model, which is covered briefly in [1]; we show that the results proved in [1] fully

extend to this model. In Section 4 we consider the model with multiplicative fitness, and in Section 5

we consider the model with additive fitness, which can be seen as a generalisation of affine preferential

attachment where the additive constants are different for the two types. In each of Sections 4 and 5

we give some examples of choices of the parameters, the possible behaviours, and how phase transitions

occur as the fitness values change. Finally, in Section 6 we discuss some further topics related to the

model, including the extension to more than two colours and the link to multiple drawing Pólya urns;

urns of this type have been considered by a number of recent papers including Lasmar, Mailler and Selmi

[15] and Gao and Mahmoud [11] and have a natural connection to preferential attachment.
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2. The Antunović, Mossel and Rácz model and their results

The model in [1] is a standard Barabási-Albert model as introduced in [2], with a new vertex connecting

to m existing vertices, chosen with probability proportional to their degree, with each of the m vertices

for a given new vertex chosen independently as in the variant of preferential attachment in [13] or the

“independent model” of [4].

More precisely, we start with a graph G0, where each vertex is of one of two colours, described as red

and blue; for a given vertex v we set Tv = 1 if v is red and Tv = 2 if v is blue. Throughout this paper we

assume that G0 contains at least one vertex of each type. At each time step we form a new graph Gn+1

from Gn by adding a single vertex and edges connecting the new vertex tom verticesW
(n+1)
1 , . . . ,W

(n+1)
m ,

with the W
(n+1)
i independent of each other, conditional on Gn, and distributed so that for each vertex v

of Gn

P(W
(n+1)
i = v|Fn) =

degGn

(v)
∑

u∈V (Gn)
degGn

(u)
.

Here Fn is the σ-algebra generated by the graphs G0, . . . , Gn and the types of their vertices.

The model includes parameters pk ∈ [0, 1] for each k ∈ 0, 1, . . . ,m, and the new vertex vn+1 chooses its

colour by becoming red with probability

P(Tvn+1
= 1|Fn, {W

(n+1)
i : 1 ≤ i ≤ m}) = pKn+1

,

where Kn+1 is the number of the vertices W
(n+1)
1 , . . . ,W

(n+1)
m which are red; otherwise the new vertex

will be blue. Hence the variation in behaviour is obtained by different choices of the m and the pk. An

obvious example is to let pk = k/m, which in [1] is called the linear model and which corresponds to the

new vertex picking its colour by adopting the colour of one of its neighbours chosen at random.

In [1] it is shown that, in the linear model, the proportion of red vertices converges, and that the limiting

distribution has full support and no atoms. The proof uses the fact that, if Xn and Yn are the total

degrees of all red and blue vertices respectively, and xn = Xn/(Xn + Yn), then (xn)n∈N is a martingale.

In the non-linear models the authors of [1] define the polynomial

P (z) =
1

2

m
∑

k=0

(

m

k

)

zk(1− z)m−k

(

pk −
k

m

)

, (1)
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and they use a stochastic approximation approach to show that the proportion of red vertices converges

almost surely to a stable zero or touchpoint of P (z), and that any such stable zero in [0, 1] has positive

probability of being the limit, as does any touchpoint in (0, 1). (Note that in the linear case P (z) = 0

for all z.) Here a stable zero of P (z) is a value p such that P (p) = 0 and there exists ǫ > 0 such that

P (z) > 0 for z ∈ (p− ǫ, p) ∩ [0, 1] and P (z) < 0 for z ∈ (p, p+ ǫ) ∩ [0, 1], while a touchpoint is a value p

such that P (p) = 0 and there exists ǫ > 0 such that either P (z) > 0 for all z ∈ ((p − ǫ, p + ǫ) \ {p}) or

P (z) < 0 for all z ∈ ((p − ǫ, p + ǫ) \ {p}). Various examples are shown, including one where one of the

two colours will have a proportion tending to 1 as n→ ∞, and one where there are a number of possible

limits, each of which involves co-existence of the two types but with different limiting proportions.

3. Affine preferential attachment

In this section we consider the same type selection process as in [1], but on the affine preferential

attachment model, introduced by Dorogovtsev, Mendes and Samukhin [9] and later studied rigorously in

various papers including [8, 13]. In this model, instead of existing vertices being chosen with probability

proportional to their degrees we now have

P(W
(n+1)
i = v|Fn) =

degGn

(v) + α
∑

u∈V (Gn)
(degGn

(u) + α)
,

for some α > −m, with the model otherwise being identical to that in Section 2. This model is considered

briefly in Section 4 of [1], where, using a two-dimensional stochastic approximation process, it is stated

that the same results apply if α > 0 but it is suggested that there may be other possibilities if α < 0.

Below, using a slightly different method which only requires a one-dimensional stochastic approximation

process, we show that the same results as in [1] apply for all α.

As in [1], let An (resp. Bn) be the number of red (resp. blue) vertices in Gn, and let Xn (resp. Yn) be

their total degree. We now define

qn =
Xn + αAn

Xn + αAn + Yn + αBn

,

which is the probability that a particular edge from the new vertex connects to a red vertex, and note

that Xn+αAn+Yn+αBn = (2m+α)n+ c, where c is a constant depending on the initial graph. Below,

we work with qn, which defines a Markov process; note that almost sure convergence of qn to a limit as
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n→ ∞ also implies almost sure convergence of the conditional probability that a new vertex is red, and

hence of the proportion of red vertices, An

An+Bn

, and that as long as limn→∞ qn is a zero of P , these limits

will be the same as for qn.

3.1. The linear case

Theorem 3.1. In the linear model, with pk = k/m, we have that qn converges almost surely as n → ∞

to a limit q, which is a random variable with a distribution with full support on [0, 1] and with no atoms.

Proof. In the linear model, the probability that the new vertex in Gn+1 is red is qn, and each of its m

neighbours is red with probability qn, so E(An+1|Fn) = An + qn and E(Xn+1|Fn) = Xn + 2mqn. Hence

E(qn+1|Fn) =
1

(2m+ α)(n+ 1) + c
(Xn + 2mqn + α(An + qn))

=
1

(2m+ α)(n+ 1) + c
(((2m+ α)n+ c)qn + (2m+ α)qn)

= qn,

so that (qn) is a [0, 1]-valued martingale, and hence it converges a.s. to some limit q.

To show that the distribution of q has full support on [0, 1] and that it has no atoms, we follow the proof

of Theorem 1.1 in Section 2.2 of [1]. Firstly, we can bound

(qn+1 − qn)
2 =

(

Xn+1 + αAn+1 −Xn − αAn

(2m+ α)(n+ 1) + c

)

≤
1

(n+ 1)2
,

from where the proof of full support in (0, 1) follows exactly as in [1]. To show that there are no atoms

in (0, 1), if qn is in a neighbourhood of a point r ∈ (0, 1) we can bound Var(qn+1|Fn) >
b

(n+1)2 for some

constant b, from which again we can use the same argument as in [1] to show P(qn → r) = 0. To show

that there are no atoms at 0 or 1, the proof is again the same as in [1] except that the comparison is to

a Pólya urn with 2m+ α balls added at each step.

3.2. The non-linear case

The following result shows that the limiting behaviour of qn in the affine non-linear model satisfies the

same results as those found in [1] for standard preferential attachment.
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Theorem 3.2. In the non-linear model, qn almost surely converges to a limit, which is a stable zero or

touchpoint of the polynomial P defined in (1), and all stable zeros of P in [0, 1] and all touchpoints in

(0, 1) have positive probability of being the limit.

Proof. The probability that the new vertex is red is

m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k = 2P (qn) + qn,

and the probability that each neighbour of the new vertex is red is qn.

So

E(An+1|Fn) = An +

m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k

and

E(Xn+1|Fn) = Xn +mqn +m

m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k.

Combining these,

E(qn+1|Fn) =
1

(2m+ α)(n+ 1) + c

[

((2m+ α)n+ c)qn + (m+ α)

m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k +mqn

]

,

from which we obtain

E(qn+1|Fn)− qn =
m+ α

(2m+ α)(n+ 1) + c

[

m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k − qn

]

=
m+ α

(2m+ α)(n+ 1) + c

[

m
∑

k=0

(

pk −
k

m

)(

m

k

)

qkn(1− qn)
m−k

]

= 2
m+ α

(2m+ α)(n+ 1) + c
P (qn).

Hence (qn)n∈N satisfies the stochastic approximation

qn+1 = qn +
2(m+ α)

(2m+ α)(n+ 1) + c)
(P (qn) + ξn+1),

where ξn+1 is defined as (2m+α)(n+1)+c)
2(m+α) (qn+1 − E(qn+1|Fn)) and therefore satisfies E(ξn+1|Fn) = 0. As

|qn+1 − E(qn+1|Fn)| ≤
2m+α

(2m+α)(n+1)+c) , we have that |ξn+1| ≤ 2m + α, which is enough to tell us, using

Corollary 2.7 of Pemantle [16], that qn converges to the zero set of P , and, using Theorem 2.8 of [16], that
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all stable zeros of P have positive probability of being the limit. That this also applies to touchpoints

follows from Theorem 2.5 in [1].

If an unstable zero r ∈ (0, 1) then Lemma 2.7 of [1] applies with Xn replaced by Xn + αAn and with

k1 and k2 not necessarily integers, and hence the argument that r is a limit with probability zero is an

application of Theorem 2.9 of [16] which is essentially identical to the proof of Theorem 1.4 of [1] in this

context. For unstable zeros of P at 0 or 1, again the proof of Theorem 1.4 in [1] works, except that the

Pólya urn used for comparison adds 2m+ α balls at each step.

4. Multiplicative fitness

We now move to considering extensions of the model of [1] where the types interact differently with the

preferential attachment mechanism. We first consider a multiplicative fitness model, which is inspired by

that introduced by Bianconi and Barabási [6] and studied in more detail by Borgs et al [7], and which

has different fitnesses for the two types.

Specifically, we assume that red vertices have fitness 1 and blue vertices have fitness φ for some φ which

we assume to be greater than 1, so that red vertices are chosen with probability proportional to their

degree and blue vertices are chosen with probability proportional to their degree times φ. We also allow

a constant α > −m to be added to the degrees, as in Section 3. Formally, the model is the same as that

described in Section 2 except that we now have

P(W
(n+1)
i = v|Fn) =

(degGn

(v) + α)φTv−1

∑

u∈V (Gn)
(degGn

(u) + α)φTu−1
.

The model differs from the models of [6, 7] in that the assignment of types to vertices is now based on

the types of their neighbours rather than independent as in those papers.

Let

xn =
Xn + αAn

Xn + Yn + α(An +Bn)
=

Xn + αAn

(2m+ α)n+ c
,

where we define c so that X0 + Y0 + α(A0 +B0) = c. Define

PM (x) =
2(m+ α)

2m+ α
P

(

x

x+ φ(1− x)

)

+

(

x

x+ φ(1− x)
− x

)

, (2)
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with P as defined previously, and note that PM is a rational function with numerator having degree at

most m+ 1, and that it cannot be identically zero for any choice of the pk and α if φ > 1. In the special

case of the linear model we have

PM (x) =
(1− φ)x(1− x)

x+ φ(1− x)
.

Lemma 4.1. The sequence (xn)n∈N follows a one-dimensional stochastic approximation process associ-

ated to a flow given by PM .

Proof. Conditional on Fn, the probability that a single vertex chosen is red is xn

xn+φyn

. Hence we can

write

E(xn+1|Fn)− xn =
m xn

xn+φyn

+ (m+ α)
∑m

k=0

(

m
k

)

pk

(

xn

xn+φyn

)k (
φyn

xn+φyn

)m−k

− (2m+ α)xn

(2m+ α)(n+ 1) + c

=
(2m+ α) xn

xn+φyn

+ (m+ α)
(

2P
(

xn

xn+φyn

))

− (2m+ α)xn

(2m+ α)(n+ 1) + c

=
1

(n+ 1) + c/(2m+ α)
PM (xn),

and so (xn)n∈N satisfies the stochastic approximation

xn+1 = xn +
1

(n+ 1) + c/(2m+ α)
(PM (xn) + ξn+1),

where ξn+1 is defined as ((n+1)+c/(2m+α))(xn+1−E(xn+1|Fn)) and therefore satisfies E(ξn+1|Fn) = 0.

Theorem 4.1. As n → ∞, xn converges almost surely to a zero of the function PM defined in (2).

Furthermore, any stable zero of PM in [0, 1] and any touchpoint in (0, 1) has positive probability of being

the limit, and any unstable zero in [0, 1] has probability zero of being the limit.

Proof. That the process almost surely converges to a zero of PM follows from Corollary 2.7 of Pemantle

[16], that any stable zero of PM has positive probability of being the limit follows from Theorem 2.8 of

[16], and as before Theorem 2.5 of [1] implies that this also applies to touchpoints. That unstable zeros

in (0, 1) are limits with probability zero follows from Theorem 2.9 of [16], again using a modification of

Lemma 2.7 of [1] for the noise condition.

To show that unstable zeros at the endpoint 1 are limits with probability zero, we adapt the argument

for the equivalent part of the proof of Theorem 1.4 in [1]. This argument shows that, for some sufficiently
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small ǫ > 0, as long as the process (xn) remains in (1 − ǫ, 1] the values Xn can be coupled to a Pólya

urn process (X̄n) which adds 2m+ α balls at each step in such a way that Xn ≤lcx X̄n in the increasing

convex order ; that is to say that E(ψ(Xn)) ≤ E(ψ(X̄n)) for all increasing convex functions for which the

expectations exist.

To adapt the argument we need to show that, conditional on xn = x̄n = r, Xn+1 ≤lcx X̄n+1; once we do

this we can apply the same induction argument as in [1]. To show that, Lemma 2.9 of [1] shows that it

is enough to show that

E(Xn+1|xn = r) ≤ E(X̄n+1|x̄n = r), (3)

where x̄n denotes the proportion of red balls in the Pólya urn, and that the distribution functions F and

G of Xn+1 and X̄n+1 respectively, both conditioned on xn = x̄n = r, satisfy the property that if t1 < t2

and G(t1) < F (t1) then G(t2) ≤ F (t2). That (3) holds follows from the fact that, as we are assuming

1 is an unstable zero of PM , PM (x) < 0 for x ∈ (1 − ǫ, 1) for some ǫ, and the property involving the

distribution functions then follows, as in [1], from the increments of the urn process, X̄n+1 − X̄n, being

concentrated on {0, 2m+ α} while Xn+1 −Xn is supported on the interval [0, 2m+ α].

An analogous argument shows that unstable zeros at the endpoint 1 are limits with probability zero.

This allows us to conclude that in the linear model the type with the higher fitness dominates.

Corollary 4.1. In the linear model with φ > 1 the proportion of blue vertices converges to 1 almost

surely.

Proof. Because x + φ(1 − x) > 1 for x < 1, we have that PM (x) < 0 for 0 < x < 1, and so 0 is the

only stable zero of PM . Hence, by Theorem 4.1, xn → 0 almost surely, giving the result.

4.1. Discussion and examples

In these examples we concentrate on cases where p0 = 0 and pm = 1; if p0 > 0 then dominance by blue

vertices is impossible, and similarly if pm < 1 dominance by red vertices is impossible. We also assume

φ > 1, meaning that blue vertices have higher fitness. We first consider the case when α = 0, and then

consider the effect of varying α.
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4.1.1. The case α = 0 If p0 = 0 and pm = 1 then both 0 and 1 are zeros of PM . It is not hard to show that

0 is a stable zero, indicating positive probability of blue dominance, if φ > 1
2m
(

p1 −
1
m

)

+1 = 1
2 (mp1+1),

and an unstable zero if φ < 1
2 (mp1+1); if φ = 1

2 (mp1+1) the stability depends on the other pk. Similarly

1 is a stable zero, indicating positive probability of red dominance, if φ < 2
m(1−pm−1)+1 , and an unstable

zero if φ > 2
m(1−pm−1)+1 ; again if we have equality the stability depends on the other pk. Note that if

φ > 2 then φ > 2
m(1−pm−1)+1 always holds, so red dominance cannot have positive probability in that

case.

When m = 2 the fixed point at 0 is stable if p1 < φ − 1
2 , which is always true if φ > 3

2 , and the fixed

point at 1 is stable if p1 >
3
2 − 1

φ
, which requires φ < 2. Hence if φ > 2 blue vertices dominate almost

surely, whatever the value of p1, while if 3
2 < φ < 2, then there is always a positive probability of blue

domination, while red domination happens with positive probability if p1 >
3
2 −

1
φ
. If 1 < φ < 3

2 , then red

domination happens with positive probability if p1 >
3
2 − 1

φ
and blue domination happens with positive

probability if p1 < φ− 1
2 . One of these criteria is always satisfied, as 3

2 −
1
φ
< φ− 1

2 in this range. As the

numerator of PM is a cubic with roots at 0 and 1, at least one of which is stable, there can be no other

stable fixed point in (0, 1), so with probability 1 one of the types dominates in the limit.

When m = 3, we consider some examples of how the behaviour varies with φ for different choices of p1

and p2.

1. m = 3, p0 = 0, p1 = p2 = 1
2 , p3 = 1. In this case there is almost sure co-existence in the case

where the two types have the same fitness, φ = 1. If φ < 5/4, the zeros of PM at 0 and 1 are both

unstable, with a stable zero in (0, 1), so this remains true, but with the limiting proportion of red

decreasing with φ. For φ ≥ 5/4, the zero of PM at 0 becomes stable, and there is no stable zero in

(0, 1), so blue dominance occurs almost surely. See the left plot in Figure 1 for plots of PM either

side of the phase transition at φ = 5/4.

2. m = 3, p0 = 0, p1 = 1
4 , p2 = 3

4 , p3 = 1. In this case, if the types have the same fitness then almost

surely one of the two types dominates, with both having positive probability of doing so. If φ < 8/7,

then both 0 and 1 are stable zeros of PM and other zeros are unstable, so this remains the case.

If φ ≥ 8/7 then the zero at 1 becomes unstable, and the other zeros are outside (0, 1), so blue

dominance occurs with probability 1.
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Figure 1: Plots of PM for m = 3. Left plot: p0 = 0, p1 = p2 = 1

2
, p3 = 1, upper curve φ = 7/6, lower curve

φ = 4/3. Middle plot: p0 = 0, p1 = p2 = p3 = 1, top curve φ = 13/7, middle curve φ = 15/7, bottom curve

φ = 17/7. Right plot: p0 = p1 = 0, p2 = 9/10, p3 = 1, upper curve φ = 7/6, lower curve φ = 5/3. Plots created

using Maple.

3. m = 3, p0 = 0, p1 = p2 = p3 = 1. In this case the type assignment mechanism has a bias towards

red, as the new vertex will be red if it connects to any red vertices. There are two phase transitions

in φ. For φ ≤ 2 the zero of PM at 1 remains stable and that at 0 remains unstable, indicating

that the bias in type assignment mechanism dominates the fitness effect so that red dominance still

occurs almost surely. For 2 < φ ≤ 3+
√
2

2 the zero at 1 becomes unstable and that at 0 becomes

stable, but there is also a stable zero in (0, 1), so that both blue dominance and co-existence have

positive probability. For φ > 3+
√
2

2 , the only stable zero of PM is at 0, so the fitness effect now

dominates and blue dominance occurs almost surely. See the middle plot in Figure 1 for plots of

PM for values of φ above, below and between the two phase transitions.

4. m = 3, p0 = p1 = 0, p2 = 9/10, p3 = 1. Here there is a slight bias in the type assignment mechanism

towards blue. However, for φ < 20/13, both the zeros of PM at 0 and 1 remain stable. Hence, in

this case we see that there is positive probability of the less fit type dominating, even though there

is a bias in the type assignment mechanism against it as well as the fitness effect. For φ ≥ 20/13

the only stable zero of PM in [0, 1] is at 0, so blue dominance occurs almost surely. See the right

plot in Figure 1 for plots of PM either side of the phase transition at φ = 20/13. We investigate

this example further by simulation in Section 6.3.

4.1.2. The effect of varying α In Section 3 we showed that varying α does not change the results of [1]

in the model without fitness. By considering the form of PM , we can see that this is not the case in the



12 Jonathan Jordan

multiplicative fitness model; indeed as α→ −m with φ and the pk fixed we get PM (x) → x
x+φ(1−x) −x =

(1−φ)x(1−x)
x+φ(1−x) , which is negative for all x ∈ (0, 1) for φ > 1. Hence, for any choice of φ > 1 and the pk with

p0 = 0 and pm = 1, we get that if α is small enough PM is negative on (0, 1) and so blue dominance

occurs almost surely.

5. Additive fitness

We now extend the model of Section 3 by allowing the two types to have different values of α, which

can be seen as corresponding to different fitnesses of the two types: if α2 > α1, blue vertices are “fitter”

as they are more likely to be chosen than red vertices of the same degree. This model thus resembles

the additive fitness model of Ergün and Rodgers [10], whose degree distribution is analysed in detail by

Bhamidi [5], except that, as in the multiplicative model of Section 4, the fitnesses of the new vertices

correspond to their types, and hence are influenced by the types of their neighbours, rather than being

independent random variables as in the model of [10].

The model is as described in Section 2, except that now

P(W
(n+1)
i = v|Fn) =

degGn

(v) + αTv

∑

u∈V (Gn)
(degGn

(u) + αTu
)
,

In this section, we assume α1 6= α2 and, to avoid degeneracies, we assume α1, α2 > −m. Without loss of

generality we assume α2 > α1, so that blue vertices are fitter than red.

The probability of a new edge at time n+ 1 connecting to an existing red vertex is now

qn =
Xn + α1An

Xn + α1An + Yn + α2Bn

.

Define xn = Xn+α1An

n
and yn = Yn+α2Bn

n
, so that qn = xn

xn+yn

. We consider the bivariate process

((xn, yn))n∈N.

Define

PA(z) = (α1 − α2)z(1− z) + [2(m+ α1) + 2(α2 − α1)z]P (z).

Note that PA is a polynomial, and that it is not identically zero unless α1 = α2. Our aim is to prove the

following theorem.
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Theorem 5.1. Assume that we have 0 < pk < 1 for 0 < k < m. Then, almost surely, (xn, yn) → (x, y)

as n → ∞, where (x, y) is a (possibly random limit) such that PA
(

x
x+y

)

= 0. Furthermore, any zero q

of PA which is stable in the sense that (PA)′(q) < 0 has positive probability of having x
x+y

= q.

To move towards proving Theorem 5.1, we first consider the state space of (xn, yn); we first note that,

for all n ≥ 0,

2m+ α1 ≤ xn + yn ≤ 2m+ α2. (4)

We then observe that as

Yn + α2Bn = 2mn−Xn + α2(n−An),

we have

yn = 2m+ α2 − xn − (α2 − α1)
An

n
. (5)

Furthermore, as each vertex has degree at least m, we have

An ≤
1

m
Xn, (6)

which implies

An

(

1 +
α1

m

)

≤
1

m
(Xn + α1An),

and hence
An

n
≤

xn
m+ α1

.

Combining this with (5) gives

yn ≥ 2m+ α2 − xn

(

m+ α2

m+ α1

)

. (7)

An analogous argument gives

xn ≤ 2m+ α1 − yn

(

m+ α1

m+ α2

)

. (8)

The state space is then the parallelogram, which we call D, given by (4), (7) and (8).

We note that (6) is tight if pi ∈ (0, 1) for all i ∈ {0, 1, . . . ,m}. If p0 = 0 and pm = 1, as we usually

assume, then (6) can be improved to

An ≤
1

m+ 1
Xn,

as now any red vertex must have at least one red neighbour, and this is tight if the other pi ∈ (0, 1).

Hence (7) and (8) are modified to

yn ≥ 2m+ α2 − xn

(

m+ 1 + α2

m+ 1 + α1

)

(9)
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and

xn ≤ 2m+ α1 − yn

(

m+ 1 + α1

m+ 2 + α2

)

. (10)

Define D0 to be the parallelogram given by (4), (9) and (10); in this case the state space can be thought

of as D0 rather than D.

Now define

F1(x, y) = m
x

x+ y
+ (m+ α1)

(

m
∑

k=0

pk

(

m

k

)(

x

x+ y

)k (
y

x+ y

)m−k
)

− x

= (2m+ α1)
x

x+ y
+ 2(m+ α1)P

(

x

x+ y

)

− x

and

F2(x, y) = m
y

x+ y
+ (m+ α2)

(

m
∑

k=0

(1− pk)

(

m

k

)(

x

x+ y

)k (
y

x+ y

)m−k
)

− y

= (2m+ α2)
y

x+ y
− 2(m+ α2)P

(

x

x+ y

)

− y,

and furthermore define F : D → R
2 by F (x, y) = (F1(x, y), F2(x, y)).

Lemma 5.1. We have that ((xn, yn))n∈N follows a bivariate stochastic approximation process associated

to the flow defined by F .

Proof. We have

E(Xn+1 + α1An+1|Fn) = Xn + α1An +mqn + (m+ α1)

m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k,

giving

E(xn+1|Fn) = xn +
1

n+ 1

(

mqn + (m+ α1)
m
∑

k=0

pk

(

m

k

)

qkn(1− qn)
m−k − xn

)

= xn +
1

n+ 1
((2m+ α1)qn + 2(m+ α1)P (qn)− xn)

= xn +
1

n+ 1
F1(xn, yn),

and similarly we get

E(yn+1|Fn) = yn +
1

n+ 1
F2(xn, yn).

Thus

(xn+1, yn+1) = (xn, yn) +
1

n+ 1
(F (xn, yn) + (ξn+1, ηn+1)),
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where ξn+1 = (n+1)(xn+1−E(xn+1|Fn)) and ηn+1 = (n+1)(yn+1−E(yn+1|Fn)), so that E((ξn+1, ηn+1)|Fn) =

(0, 0).

We now analyse this stochastic approximation to prove Theorem 5.1.

Proof of Theorem 5.1. We construct a Lyapunov function for the flow defined by F as follows. Let

((x(t), y(t)))t∈R+ be a trajectory of the flow, and define q(t) = x(t)
x(t)+y(t) .

Note that
d

dt
q(t) =

y(t)F1(x(t), y(t))− x(t)F2(x(t), y(t))

(x(t) + y(t))2
=

PA(q(t))

x(t) + y(t)
,

and define L1(z) = −
∫ z

1
PA(u) du. Then

d

dt
L1(q(t)) = −(x(t) + y(t))−1

(

PA(q(t))
)2

≤ 0,

with equality only when PA(q(t)) = 0. Let S1 = inf(x,y)∈D(x+y)−1, so that d
dt
L1(q(t)) ≤ −S1

(

PA(q(t))
)2
.

Define

ℓ(x, y) = (2m+ α1)(2m+ α2) + 2m(α1 − α2)P

(

x

x+ y

)

− (2m+ α2)x− (2m+ α1)y,

so that
d

dt
((2m+ α2)x(t) + (2m+ α1)y(t)) = ℓ(x(t), y(t)),

and define L2(x, y) = (ℓ(x, y))2.

Then d
dt
L2(x(t), y(t)) is

2ℓ(x(t), y(t))

(

F1(x(t), y(t))

(

2m(α1 − α2)
y(t)

(x(t) + y(t))2
P ′(q(t))− (2m+ α2)

))

+2ℓ(x(t), y(t))

((

F2(x(t), y(t))

(

−2m(α1 − α2)
x(t)

(x(t) + y(t))2
P ′(q(t))− (2m+ α1)

)))

= 2ℓ(x(t), y(t)) (−(2m+ α1)(2m+ α2) + 2m(α2 − α1)P (q(t)) + (2m+ α2)x+ (2m+ α1)y)

+ 4mℓ(x(t), y(t))(α1 − α2)P
′(q(t))

(

x(t)y(t)

(x(t) + y(t))3
(α1 − α2) + P (q(t))

2(m+ α1)y(t) + 2(m+ α2)x(t)

(x(t) + y(t))2

)

= −2

(

(ℓ(x(t), y(t)))2 −
2m(α1 − α2)

x(t) + y(t)
P ′(q(t))ℓ(x(t), y(t))PA(q(t))

)

.

As we assume α1 < α2, define

S2 = sup
(x,y)∈D

m(α2 − α1)P
′
(

x

x+ y

)

1

x+ y
;



16 Jonathan Jordan

then
d

dt
L2(x(t), y(t)) ≤ −2

(

(ℓ(x(t), y(t)))2 − 2S2ℓ(x(t), y(t))P
A(q(t))

)

.

Define

L(x, y) = L2(x, y) + 2
S2
2

S1
L1

(

x

x+ y

)

,

so that we have
d

dt
L(x(t), y(t)) ≤ −2

(

ℓ(x(t), y(t)) + S2P
A(q(t))

)2
≤ 0,

with equality in the right inequality only when ℓ(x(t), y(t)) = 0 and PA(q(t)) = 0. Hence L is a

Lyapunov function for F with stationary points (x, y) given by ℓ(x, y) = 0 and PA
(

x
x+y

)

= 0; therefore

our stochastic approximation process will converge to one of these by Proposition 2.18 of Pemantle [16].

If (x, y) is a stationary point of L such that q = x
x+y

is a stable zero of PA in the sense that PA(q) = 0

and (PA)′(q) < 0, then (x, y) is a local minimum of L. Hence it is a limit of the process with positive

probability, by Theorem 2.16 of Pemantle [16].

Non-convergence to unstable points with x
x+y

∈ (0, 1) follows from the general non-convergence result

Theorem 9.1 in Benäım [3]. Condition (iii) of that result, which requires a constant b such that

E(((ξn+1, ηn+1) · v)
+|Fn) > b within a neighbourhood of the unstable point for any unit vector v, follows

from our assumption that 0 < pk < 1 for 0 < k < m.

To show that qn converges to 1 with probability zero if PA(1) = 0 and (PA)′(1) > 0, we use a similar

argument to the previous coupling to a Pólya urn in Section 4. For some sufficiently small ǫ, we compare

the process when qn ∈ (1 − ǫ, 1] to an urn process which, given X̄n red balls and Ȳn blue balls, adds

2m+ α1 red balls with probability βX̄n

βX̄n+Ȳn

and adds 2m+ α2 blue balls with probability Ȳn

βX̄n+Ȳn

.

The previous argument then works as long as, for some β, we can show that

E(qn+1|Fn) ≤ E

(

X̄n+1

X̄n+1 + Ȳn+1
|

X̄n

X̄n + Ȳn
= r

)

when qn = r with r ∈ (1−ǫ, 1) , and that X̄n

X̄n+Ȳn

→ 1 with probability zero. To do this, we let β = 2m+α2

2m+α1
,

and count the number of times we have added red balls and blue balls respectively as X̂n = X̄n/(2m+α1)

and Ŷn = Ȳn/(2m+ α2). Then, as

βX̄n

βX̄n + Ȳn
=

X̂n

X̂n + Ŷn
,
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the process (X̂n, Ŷn)n∈N follows a standard Pólya urn. This ensures that P
(

X̄n

X̄n+Ȳn

→ 1
)

= 0 and that

E

(

X̄n+1

X̄n+1 + Ȳn+1
|

X̄n

X̄n + Ȳn
= r

)

= r,

which gives us what we need as FA(r) < 0 by assumption.

As with the multiplicative fitness model, in the linear model we get almost sure dominance by the fitter

type.

Corollary 5.1. In the linear model with α2 > α1 the proportion of blue vertices converges to 1 almost

surely.

Proof. Here PA(z) = (α1 − α2)z(1 − z), which is negative on (0, 1) if α2 > α1, and has a stable zero

at 0 and an unstable one at 1. Hence the result follows from Theorem 5.1.

5.1. Discussion and examples

As in Section 4, in these examples we concentrate on cases where p0 = 0 and pm = 1; if p0 > 0 then

dominance by blue vertices is impossible, and similarly if pm < 1 dominance by red vertices is impossible.

First, we consider the general case where m = 2. There are always two stationary points at (4 + α1, 0)

and (0, 4 + α2), corresponding to dominance of the two types. There is also a stationary point with

x
x+y

= 2α1p1−α2+4p1−2
(α2−α1)(1−2p1)

where this is within (0, 1), but this is never stable. The stationary point (0, 4+α2)

is stable if α1 − α2 + (p1 −
1
2 )(2α1 + 4) < 0, that is if

p1 <
1

2
+
α2 − α1

2α1 + 4
.

If α2 > 2(α1 + 1), this always holds for all values of p1. The stationary point (4 + α1, 0) is stable if

α2 − α1 − (p1 −
1
2 )(2α2 + 4) < 0, that is if

p1 >
1

2
+
α2 − α1

2α2 + 4
.

Hence there is a range where 1
2 + α2−α1

2α2+4 < p1 <
1
2 + α2−α1

2α1+4 where both stationary points are stable, and

hence limits with positive probability; outside this range there is only one stable fixed point. Co-existence

is not stable for m = 2 if p0 = 0 and p2 = 1, unless α1 = α2.
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When m = 3, we give a couple of examples of how the values of α1 and α2 affect the behaviour for some

specific values of the pk. As elsewhere, we assume α2 > α1.

1. m = 3, p0 = 0, p1 = p2 = 1
2 , p3 = 1. Here there are zeros of PA at 0 and 1. Both are unstable

if α2 <
3
2 (α1 + 1), and in this case there is a single stable zero in (0, 1), indicating almost sure

co-existence. If α2 >
3
2 (α1 +1) then the zero at 0 is stable, and this is the only stable zero in [0, 1],

indicating almost sure blue dominance. So as in the multiplicative fitness case we see a condition on

the relationship between the fitnesses determining whether we get co-existence or blue dominance.

2. m = 3, p0 = p1 = 0, p2 = 9/10, p3 = 1. Again, there are zeros of PA at 0 and 1. Both are stable

if α1 >
3α2−21

10 , while if α1 <
3α2−21

10 the zero at 0 is the only stable zero in [0, 1]. So in the latter

case blue dominance happens almost surely, whereas in the latter case (for example if α1 = 0 and

α2 = 1) we see that both types have a positive probability of dominance although the blue type is

fitter and is also slightly favoured by the type assignment mechanism.

6. Further discussion

6.1. More than two types

A natural extension to the models considered in this paper is to consider them with more than two types

of vertex. Antunović, Mossel and Rácz discuss this extension for their model in Section 3 of [1], where

they show that in the linear model their results can be easily extended to any number of types but that

in non-linear models the stochastic approximation involves a multi-dimensional function about which it

is hard to state general results. This is reinforced by Haslegrave and Jordan in [12], where an example of

the original model of [1] with three types is discussed and shown to have cycling behaviour in the limit,

with no convergence to a fixed point.

In our setting with the types having different fitnesses, the linear model can be handled in a similar

way to that in [1]. If all types but the fittest have the same fitness, then they can be combined into a

single type, and Corollary 4.1 (for multiplicative fitness) or Corollary 5.1 (for additive fitness) can then

be applied to show that we get almost sure dominance by the fittest type. In the more general case where



Preferential attachment with types of different fitnesses 19

the fitnesses may all be different, we can similarly couple the linear model to a two-type model where all

types except the fittest are given the fitness of the second largest type; this coupling can only decrease

the proportion of the total degree associated to the fittest type, so we can apply the same results.

For non-linear models, having more than two types would involve the generalisation of the functions

PM and PA to multi-dimensional ones, which can have a variety of forms according to the choice of the

parameters. As a result, the situation is similar to the one in [1] in that it is hard to state general results,

and we might expect examples along the lines of that in [12], where the associated differential equations

do not converge to a fixed point.

6.2. Pólya urns with fitness and multiple draws

There is a natural connection between preferential attachment schemes and urn processes. In the case of

our model and the model of [1], the connection is to generalisations of Pólya urn schemes with multiple

draws, about which there are a number of recent papers. Kuba and Mahmoud [14] consider a two-colour

urn where, at each step, m balls are drawn from the urn and the numbers of balls of each colour added to

the urn depend (in a deterministic way) on the numbers of balls of each colour drawn. They concentrate

on a special case which produces a martingale, reminiscent of the linear model in [1], and prove a central

limit theorem in this setting. Lasmar, Mailler and Selmi [15] use stochastic approximation to extend the

results to more general cases; as in [1] and this paper the limiting behaviour is associated to the limiting

behaviour of a certain differential equation. Gao and Mahmoud [11] extend the model to allow for a

random replacement matrix, and also use stochastic approximation to prove convergence results.

The clearest link to these papers is with the multiplicative model when α = 0. In this case the total

degrees of the two colours, (Xn, Yn), can be seen as following an urn scheme of this type where the

two colours have different fitnesses or, in urn terminology, activities. This means that the blue balls

have weight φ and the red balls weight 1, and balls are drawn with probability proportional to their

weights. Drawing m balls then corresponds to drawing m random edge ends with the same weights,

which corresponds to our multiplicative fitness model. The urn model corresponding to our model then

has a random replacement matrix with a particular distribution, where all the balls added are of the

same colour, corresponding to the colour of the new vertex in the graph model. Our results in Theorem

4.1 can thus be seen as an extension of the results of [11, 14, 15] to the setting with fitnesses and this
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specific choice of replacement matrix.

6.3. Distribution of the limit

In cases where the function PM or PA has more than one stable zero, the results in Theorems 4.1 and 5.1

tell us that each stable zero is a limit with positive probability but do not tell us the actual probabilities

that the different zeros are limits. Finding the actual distribution of the limit in cases like this is a hard

problem in general, and we expect that the distribution will usually depend on the initial graph.

We investigate this problem for Example 4 from Section 4.1 by simulation. Here m = 3, p0 = p1 = 0,

p2 = 9/10 and p3 = 1, giving a small bias towards blue in the type assignment mechanism, and we saw

that for φ < 20/13 both convergence to 0 (blue domination) and convergence to 1 (red domination) have

positive probability. For each of a range of values of φ in [1, 20/13), we ran 10000 simulations with 100000

vertices and counted the number which appeared to be converging to 1; simulations were estimated to be

converging to 1 if x100000 > 1/2 and, to exclude cases of very slow convergence to 0, x100000 > x90000. The

results (shown as numbers of simulations out of 10000) are in Table 1. It can be seen that convergence

to 1 is extremely rare for values of φ closer to 20/13, suggesting a continuous phase transition, but is

reasonably common for values of φ a little larger than 1.

φ 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Red domination 3465 2425 1577 965 521 236 85 33 4 0 0

Table 1: Numbers of simulations, out of 10000, appearing to show red domination for Section 4.1 Example 4

Acknowledgement

The author thanks two anonymous referees for useful comments and suggestions.



Preferential attachment with types of different fitnesses 21

References
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