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Nano-scale wave dispersion beyond the First Brillouin Zone

simulated with inertia gradient continua
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Nano-scale wave dispersion beyond the First Brillouin Zone is often observed as descending
branches and inflection points when plotting frequency or phase velocity against the wave number.
Modelling this with discrete chain models is hampered by their restricted resolution. A continuum
model equipped with higher-order inertia gradients is here developed as a suitable and versatile
alternative. This model can be derived from discrete chain models, thereby providing a lower-scale
motivation for the higher-order gradient terms. The derived gradient model is without free param-
eters, as the material constants are calculated a priori by minimising the error with respect to
the discrete chain response. Unlike asymptotic approximations that provide a best fit for vanishing
wave numbers, the error is here minimised over the entire range of reduced wave numbers 0 to
1, which leads to a much improved accuracy beyond the First Brillouin Zone. The new gradient
model has been validated against (i) phonon dispersion curves measured through neutron scattering
experiments in bismuth, aluminium and nickel, and (ii) Molecular Dynamics (MD) flexural wave
propagation simulations of Carbon Nanotubes (CNTs). The model captures all qualitative aspects
of the experimental and MD dispersion curves without requiring bespoke curve fitting procedure.
With the exception of one set of MD results, the accuracy of the gradient model is very good.

I. INTRODUCTION

Dispersion of propagating waves occurs if the wave
length is of the same order of magnitude as the char-
acteristic spacing of the dominant source of heterogene-
ity. Experimental evidence exists of phonon dispersion
in lattice materials1–5, and this has been backed up
by molecular dynamics simulations6–8. The majority of
these studies focus on waves whose half wave length is
larger than the lattice spacing — a cut-off point known
as the First Brillouin Zone (FBZ). However, some limited
experimental evidence is available for waves with shorter
wave lengths, and this indicates that these very short
waves are still propagating, but at much reduced angular
frequencies9–12.
To simulate dispersive wave propagation beyond the

FBZ, discrete lattice models are of limited use, since their
spatial resolution is set by the lattice geometry. Instead,
it may be more advantageous to use continuum models.
However, in order to capture wave dispersion, continuum
models need to be equipped with appropriate terms that
capture the lower-scale behaviour — these may take the
form of higher-order spatial gradients of relevant field
variables13,14.
In this paper, we will argue the case to include higher

order inertia gradients in the governing equations in or-
der to capture the dispersive effects accurately. Material-
independent model parameters are obtained from a best
fit of the discrete chain response across the range of rele-
vant wave numbers k; this is superior to the straightfor-
ward application of asymptotic expansions that provide
a best fit for k → 0. The model is able to replicate some

experimental results from the literature with good accu-
racy. In particular, we consider a group of phonon disper-
sion curves from neutron scattering measurements for a
range of materials. The model is also able to approximate
Molecular Dynamics simulations of bending in Carbon
Nanotubes with reasonable accuracy. The same set of
material-independent model parameters is used through-
out the paper, thus avoiding bespoke curve fitting and/or
tuning parameters.

II. STRAIN GRADIENTS OR INERTIA

GRADIENTS?

An oft-used motivation for elasticity with higher-order
spatial gradients is to consider asymptotic approxima-
tions of the response of a linear chain model. The linear
chain is assumed to consist of masses M connected by
springs with stiffness K and length ℓ, which leads to the
following equation of motion for the nth mass:

Mün = K (un+1 − 2un + un−1) (1)

where un is the displacement of the nth mass and a su-
perimposed dot denotes a derivative with respect to time
t. The discrete particle displacements are replaced by a
continuous function u, and Taylor series are used for the
continuum displacement at the neighbouring particles.
This yields

ü = c2
e

(

∂2u

∂x2
+

1

12
ℓ2
∂4u

∂x4
+

1

360
ℓ4
∂6u

∂x6
+ . . .

)

(2)
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FIG. 1: Dispersion curves of discrete chain and gradient elasticity with strain gradients (left) and with inertia gradients (right)

where ce is the elastic speed of sound. Since the higher-
order terms appear on the stiffness side of the equation,
the higher-order terms are called strain gradients.
As is well-known and as will be shown briefly below,

models with strain gradients exhibit anomalies in dynam-
ics. To overcome these, use can be made of asymptotic
equivalence in that the strain gradients of Eq. (2) can be
replaced by equivalent inertia gradients15,16. To do so,
higher-order derivatives of Eq. (2) are taken and alternat-
ingly substracted from or added to the original expres-
sion (2). Applying this recursively provides a [0, n]-Padé
approximant counterpart of Eq. (2) as

(

ü− 1

12
ℓ2
∂2ü

∂x2
+

1

240
ℓ4
∂4ü

∂x4
− . . .

)

= c2
e

∂2u

∂x2
(3)

To compare the two sets of gradient-enriched models
with the original discrete model of Eq. (1), the fundamen-
tal solution u = U exp (i(ωt+ kx)) is substituted, where
ω is the angular frequency, k is the wave number and
U is the amplitude. The results for various truncations
of Eqns. (2) and (3) are plotted in Figure 1. It can be
seen that both sets of models show a convergence to-
wards the discrete chain when more terms are included.
However, for the strain gradient models certain trunca-
tions (second-order, sixth-order, etc.) lead to imaginary
frequencies for the larger wave numbers, which in turn
result in artificial model instabilities17. The other trunca-
tions (fourth-order, eighth-order, etc.) lead to unbounded
frequencies for the larger wave numbers. Both effects are
unrealistic and thus undesirable. In contrast, a mono-
tonic convergence towards the discrete chain response is
observed for the inertia gradient models, and both imagi-
nary and unbounded angular frequencies are avoided. An
inflection point is obtained for truncations of fourth-order
or higher.
Whilst this shows the superiority of inertia gradients

over strain gradients, the asymptotic series are expanded
around kℓ = 0 — i.e. every truncation is a best fit for
kℓ → 0 rather than a best fit across the range kℓ ∈ [0, 2π].

As an alternative, for each individual truncation the er-
ror (in the square of the angular frequency) between dis-
crete chain response and inertia gradient model response
can be integrated over kℓ ∈ [0, 2π] and then minimised
with respect to the higher-order coefficients. As men-
tioned above, it is clear that the fourth-order term must
be included if an inflection point is desired — this is the
model that will be considered. The truncated model can
be written generically as

ü− αℓ2
∂2ü

∂x2
+ βℓ4

∂4ü

∂x4
= c2

e

∂2u

∂x2
(4)

Carrying out the above error minimisation leads to

α =
6
(

32π4 − 200π2 + 315
)

(Si(4π)− 2Si(2π))

π (256π4 − 2400π2 + 4545)

+
256
3
π5 − 600π3 + 1140π

π (256π4 − 2400π2 + 4545)
(5a)

β =

(

80π2 − 150
)

(2Si(2π)− Si(4π))− 150π

π (256π4 − 2400π2 + 4545)
(5b)

where Si(x) =
∫

x

0
sin(t)/tdt. This then leads to numerical

values α ≈ −0.036723 and β ≈ 0.021337.

Remark 1 The kinetic energy density K underlying the
model of Eq. (4) can be written as

K =
1

2

(

u̇2 + αℓ2
(

∂u̇

∂x

)2

+ βℓ4
(

∂2u̇

∂x2

)2
)

(6)

With the negative sign for α found in Eq. (5a), loss of
positive-definiteness could lead to loss of stability. How-
ever, imaginary (and thus destabilising) frequencies can
only occur for 1 + αℓ2k2 + βℓ4k4 < 0. For α < 0 this
would require β < 1

4
α2. It can be verified that the values

reported in Eqns. (5) do not satisfy the last inequality.
Thus, stability of this model is guaranteed.
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FIG. 2: Experimental results from Yarnell and coworkers for bismuth (left) and aluminium (right) simulated with discrete chain
and inertia gradient models
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FIG. 3: Experimental results from Dederichs and coworkers for aluminium (left) and nickel (right) simulated with discrete chain
and inertia gradient models

Remark 2 A more general formulation of Eq. (4) in-
volves a simultaneous series expansion of left-hand-side
and right-hand-side, thus leading to an [m/n]-Padé ap-
proximation including strain gradients as well as inertia
gradients. This allows to capture a non-zero asymptote
for infinite wave numbers if required18,19.

III. LONGITUDINAL PHONON DISPERSION

FROM NEUTRON SCATTERING

MEASUREMENTS

The model of Eq. (4) with the numerical values for α
β obtained above has been used to simulate the experi-
mental results of Yarnell and coworkers from the 1960s
concerning bismuth9 and aluminium10. The results are
shown in Figure 2, whereby the elastic constants are fit-
ted such that the peak in the experimental results coin-
cides with the maximum of the discrete chain response.
Note that for the case of aluminium, the experimentally
reported values did not have their maximum at kℓ = π;
to correct this, we have adjusted the horizontal scaling
of the two model responses slightly. It can be seen that
the accuracy of the discrete chain model is better for the
pre-peak part of the curve, but that of the inertia gra-

dient model is better able to capture the post-peak part
of the curve. Overall, the inertia gradient model captures
all qualitative aspects of the experimental results.

An additional set of neutron scattering measurements
of Al and Ni beyond the FBZ were reported by Dederichs
et al.11 and more recently referenced in other simula-
tion approaches12. These additional phonon dispersions
curves are reported in Figure 3 and compared with the
corresponding predictions from discrete chain and inertia
gradient models. Again it is seen that the inertia gradient
model is able to capture these experimental results with
good accuracy without the need to carry out additional
parameter calibration.

IV. FLEXURAL WAVE DISPERSION IN

CARBON NANOTUBES

Next, the efficacy of the model with inertia gradients
to emulate the flexural behaviour of Carbon Nanotubes
(CNTs) is verified. As has been shown in various ear-
lier studies, it is expedient to adopt beam bending the-
ories from structural mechanics20–27, with in more re-
cent years an expanding range of applications and novel
solutions28,29. Timoshenko beam theory is particularly
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FIG. 4: MD results from Wang and Hu for a (5,5) CNT (left) and a (10,10) CNT (right) simulated with inertia gradient models

suitable for the modelling of relatively short beams,
which in the context of CNTs means that this theory
is appropriate for the modelling of relatively short wave
lengths.
Adopting a coordinate system with the x-axis along

the beam, the coupled equations of standard Timoshenko
beam theory read

ρAẅ = χGA

(

∂2w

∂x2
− ∂φ

∂x

)

(7a)

ρIφ̈ = χGA

(

∂w

∂x
− φ

)

+ EI
∂2φ

∂x2
(7b)

Here, E and G are the Young’s modulus and shear mod-
ulus of the material, τ and σ are the transverse shear
stress and axial normal stress, whilst the primary un-
knowns are the transverse displacement w and the rota-
tion of the cross section φ. Furthermore, A = 2πRt and
I = π

(

R3t+ 1
4
Rt3
)

are the area and the second moment
of area of the cross section, respectively, with R the ra-
dius and t the wall thickness of the CNT. Finally, χ is
the so-called “shear correction factor” and is a dimen-
sionless constant that depends on the geometry of the
cross-section (e.g. χ = 1

2
for thin-walled cylinders).

In the spirit of Eq. (4), the inertia sides of these
two equations are expanded with higher-order inertia
gradients of the relevant kinematic state variable. The
gradient-enriched Timoshenko theory is thus given by

ρA

(

ẅ − αℓ2
∂2ẅ

∂x2
+ βℓ4

∂4ẅ

∂x4

)

= χGA

(

∂2w

∂x2
− ∂φ

∂x

)

(8a)

ρI

(

φ̈− αℓ2
∂2φ̈

∂x2
+ βℓ4

∂4φ̈

∂x4

)

=

χGA

(

∂w

∂x
− φ

)

+ EI
∂2φ

∂x2
(8b)

Simultaneous solutions w(x, t) = W exp (ik(x− ct)) and
φ(x, t) = Φ exp (ik(x− ct)) are substituted, and after
elimination of the amplitudes W and Φ a quartic equa-
tion in terms of the phase velocity c is found as

c4

c4
e

(

1 + αℓ2k2 + βℓ4k4
)

− c2

c2
e

(

χG

E
+

χGA

EIk2
+ 1

)

+
χG

E (1 + αℓ2k2 + βℓ4k4)
= 0 (9)

This equation has two solutions for c2, the higher of which
is the optical mode and the lower of which is the acoustic
mode. The latter has been verified against the Molecular
Dynamics (MD) results of Wang and Hu20 for (5,5) and
(10,10) armchair CNTs. These authors reported ρ = 2237
kg/m3, with E = 460 GN/m2 and Poisson’s ratio ν =
0.22 for the (5,5) CNT while E = 470 GN/m2 and ν =
0.20 for the (10,10) CNT.
With a C–C bond length b = 0.142 nm, the closest

longitudinal distance between two rings of atoms in an
armchair CNT equals 1

2
b
√
3 = 0.123 nm. However, it

must be realised that consecutive rings of atoms are off-
set in a circumferential sense. The correct periodicity is
obtained by a translation over a distance b

√
3 = 0.246

nm, and we propose that this is the correct analogue of
longitudinal atomic spacing in an armchair CNT. Thus,
we take ℓ = b

√
3 = 0.246 nm. The radius of the CNT

can be found from R = 3nb/2π where n = 5 or n = 10.
Finally, for the wall-thickness we have followed the rec-
ommendations of Vodenitcharova and Zhang30 and taken
t = 0.0617 nm.
We have used the material-independent values of α and

β obtained in Eqns. (5) to emulate the results of Wang
and Hu. Thus, we are avoiding further bespoke curve fit-
ting by assuming again the discrete model as an objective
measure for calculating the model coefficients not only for
longitudinal wave dispersion, but also for flexural wave
propagation simulations. Figure 4 shows the results for
both CNTs. The material-independent values of α and β
provide a good approximation of the MD results for the
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(5,5) CNT. On the other hand, for the (10,10) CNT the
material-independent values of α and β lead to a much
larger discrepancy between inertia gradient beam theory
and MD results — in fact, a similar loss of accuracy is
present in the work of Wang and Hu who used a different
gradient enrichment of Timoshenko beam theory.

Remark 3 Vodenitcharova and Zhang also argued the
case for a much larger value for the Young’s modulus
of CNTs compared to that reported by Wang and Hu. We
have not taken this larger value but instead used those re-
ported by Wang and Hu as indicated above, since this al-
lows us to adopt the MD results of Wang and Hu without
modification of the speed of sound and, thus, the vertical
scaling in Figure 4.

V. CONCLUSIONS

In order to simulate elastic wave dispersion, continuum
models equipped with higher-order inertia terms are su-
perior to continuum models equipped with higher-order
strain gradient terms. We have suggested a model with
two higher-order inertia gradients which allows to cap-

ture the inflection point beyond the First Brillouin Zone
observed in experiments. We have also used this contin-
uum model to formulate a novel Timoshenko beam the-
ory with inertia gradients in order to capture flexural
wave dispersion in Carbon Nanotubes.

A material-independent best fit of the coefficients of
the higher-order terms has been shown to give good ap-
proximations of longitudinal dispersive wave propagation
for a range of materials. The same parameter also allows
to capture flexural wave dispersion in CNTs. The ac-
curacy of the gradient model for CNTs with a relatively
small radius is good; the accuracy of the model for CNTs
with a larger radius is less — the latter observation is con-
sistent with the work of Wang and Hu who provided the
Molecular Dynamics benchmark solution as well as their
own Timoshenko beam theory approximation.

It is emphasized here that the model discussed in
this paper is without free parameter and can, thus, be
used straightforwardly without requiring any experimen-
tal calibration. This offers advantages over most other
gradient models used in the literature, which typically
require bespoke, material-dependent calibration from ex-
perimental data to be usable.
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