

This is a repository copy of Assessment of occupational exposure to pesticide mixtures with endocrine disrupting activity.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/138286/

Version: Accepted Version

Article:

Wong, Hie Ling, Garthwaite, David G, Ramwell, Carmel T et al. (1 more author) (2019) Assessment of occupational exposure to pesticide mixtures with endocrine disrupting activity. Environmental Science and Pollution Research (ESPR). pp. 1642-1653. ISSN: 1614-7499

https://doi.org/10.1007/s11356-018-3676-5

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Assessment of occupational exposure to pesticide mixtures with endocrine disrupting activity

Hie Ling Wong^{1,3}, David G. Garthwaite², Carmel T. Ramwell², Colin D. Brown¹

¹ Environment Department, University of York, York, YO10 5NG, United Kingdom

² Fera Science Ltd (Fera), Sand Hutton, York, YO41 1LZ, United Kingdom

³ Faculty of Earth Science, University Malaysia Kelantan, Locked Bag 100, Jeli, 17600, Kelantan, Malaysia

Corresponding author: Hie Ling Wong

e-mail: hw1166@york.ac.uk

Supplementary Material

Table legend

Table S1 Classification of 48 pesticide active substances with known or possible endocrine activity by pesticide type, chemical group, and approval status in the EU. All information sourced from the Pesticide Properties Database (PPDB 2018)

Table S2 List of pesticide co-formulants used in the UK orchard system that were identified as having potential endocrine activity based on the Hazardous Substances Data Bank (HSDB) of the TOXNET database and the Pesticide Properties Database (PPDB 2018)

Table S3 Equations to predict median exposure to pesticides on a daily basis; the total amount of active substance/co-formulant (TA) is the major parameter for exposure; the slope α was set to 1 in case $\alpha > 1$; exposure is given in μ g/person (Gro β kopf et al. 2013)

Table S4 Summary of toxicological data for 48 active substances with known or possible endocrine activity

Figure legend

Fig. S1 Comparison of relative contributions of fungicides, insecticides and herbicides to the total use (a), total exposure (b) and total risk (c) associated with known/possible endocrine disrupting activity across the five cropping systems over the survey period

References

Table S1 Classification of 48 pesticide active substances with known or possible endocrine activity by pesticide type, chemical group, and approval status in the EU. All information sourced from the Pesticide Properties Database (PPDB 2018)

Active substances	Pesticide type	Substance group	Endocrine disrupting classification	Status of use
2,4-D	Herbicide	Alkylchlorophenoxy	Possibly	Approved
Amitrole	Herbicide	Triazole	Possibly	Not approved
Beta-cyfluthrin	Insecticide	Pyrethroid	Possibly	Approved
Bifenthrin	Insecticide	Pyrethroid	Yes	Approved
Bromoxynil	Herbicide	Hydroxybenzonitrile	Yes	Approved
Bupirimate	Fungicide	Pyrimidinol	Possibly	Approved
Captan	Fungicide	Phthalimide	Possibly	Approved
Carbendazim	Fungicide	Benzimidazole	Possibly	Not approved
Chlorothalonil	Fungicide	Chloronitrile	Possibly	Approved
Chlorpyrifos	Insecticide	Organophosphate	Possibly	Approved
Chlorpyrifos-methyl	Insecticide	Organophosphate	Possibly	Approved
Copper oxychloride	Fungicide	Inorganic compound	Possibly	Approved
Cypermethrin (alpha-/zeta-	Insecticide	Pyrethroid	Possibly	Approved
cypermethrin)				
Cyproconazole	Fungicide	Triazole	Possibly	Approved
Deltamethrin	Insecticide	Pyrethroid	Yes	Approved
Difenoconazole	Fungicide	Triazole	Possibly	Approved
			(based on open literature) ^a	
Epoxiconazole	Fungicide	Triazole	Possibly	Approved
Esfenvalerate	Insecticide	Pyrethroid	Possibly	Approved
Fenbuconazole	Fungicide	Triazole	Possibly	Approved
Fenoxycarb	Insecticide	Carbamate	Yes	Approved

Fluazinam	Fungicide	Phenylpyridinamine	Possibly	Approved
Flusilazole	Fungicide	Triazole	Possibly	Not approved
Glyphosate	Herbicide	Phosphonoglycine	Possibly	Approved
Indoxacarb	Insecticide	Oxadiazine	Possibly	Approved
Ioxynil	Herbicide	Hydroxybenzonitrile	Yes	Not approved
Linuron	Herbicide	Urea	Possibly	Approved
Mancozeb	Fungicide	Carbamate	Possibly	Approved
Maneb	Fungicide	Carbamate	Possibly	Approved
Metconazole	Fungicide	Triazole	Possibly	Approved
			(based on open literature) ^b	
Methoxyfenozide	Insecticide	Diacylhydrazine	Possibly	Approved
Metiram	Fungicide	Carbamate	Possibly	Approved
Metribuzin	Herbicide	Triazinone	Possibly	Approved
Myclobutanil	Fungicide	Triazole	Possibly	Approved
Paclobutrazol	Fungicide	Triazole	Possibly	Approved
			(based on open literature) ^c	
Penconazole	Fungicide	Triazole	Possibly	Approved
Pendimethalin	Herbicide	Dinitroaniline	Possibly	Approved
Picloram	Herbicide	Pyridine compound	Yes	Approved
Prochloraz	Fungicide	Imidazole	Possibly	Approved
Propamocarb (hydrochloride)	Fungicide	Carbamate	Possibly	Approved
Propiconazole	Fungicide	Triazole	Possibly	Approved
Pyrimethanil	Fungicide	Anilinopyrimidine	Possibly	Approved
Pyriproxyfen	Insecticide	Unclassified	Possibly	Approved
S-metolachlor	Herbicide	Chloroacetamide	Possibly	Approved
Tau-fluvalinate	Insecticide	Synthetic pyrethroid	Yes	Approved

Tebuconazole	Fungicide	Triazole	Possibly	Approved
			(based on open literature) ^d	
Triadimenol	Fungicide	Triazole	Yes	Approved
Tribenuron-methyl	Herbicide	Sulfonylurea	Possibly	Approved
Ziram	Fungicide	Carbamate	Possibly	Approved

^a Teng M, Qi S, Zhu W, Wang Y, Wang D, Dong K, Wang C (2018) Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio). Environmental Pollution 233:208-217

^b Marx-Stoelting P, Niemann L, Ritz V, Ulbrich B, Gall A, Hirsch-Ernst KI, Pfeil R, Solecki R (2014) Assessment of three approaches for regulatory decision making on pesticides with endocrine disrupting properties. Regulatory Toxicology and Pharmacology 70:590-604

^c Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jorgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology 179:1-12

^d Lv X, Pan L, Wang J, Lu L, Yan W, Zhu Y, Xu Y, Guo M, Zhuang S (2017) Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Environmental Pollution 222:504-512

Table S2 List of pesticide co-formulants used in the UK orchard system that were identified as having potential endocrine activity based on the Hazardous Substances Data Bank (HSDB) of the TOXNET database and the Pesticide Property Database (PPDB 2018)

Chemical name	CAS No.	Potential ED effect(s)
1-methoxy-2-propanol	107-98-2	Mild damage to the liver and adrenal glands
		were observed in laboratory rats following
		repeated exposure to high vapour levels.
1,2-propanediol/propane-1,2-	57-55-6	Seizures developed in an 11-year old boy
diol/propylene glycol		with multiple endocrine problems and
		systemic candidiasis who ingested a
		medication containing propylene glycol.
		Endocrine modulation: did not cause any
		significant changes in adrenal
		steroidogenesis in the rat; spleen weights
		were increased in the treatment groups in
		acute exposure.
1,2,4-trimethylbenzene	95-63-6	Rat (4-week): observations in high dose
		group (2.0g/kg) included enlarged adrenals
		(only 2 doses tested; low dose: 0.5 g/kg
		diet).
2-ethylhexan-1-ol	104-76-7	Rat (11-day): absolute spleen weights of
		both sexes were reduced at 1000 mg/kg
		bw/d; decreased absolute spleen and adrenal
		weights at 1500 mg/kg bw/d.
3-pyridinecarboxamide, 2-chloro-N-	188425-85-6	Induction of liver microsomal enzyme
(4'-chloro(1,1'-biphenyl)2-yl)-		system resulting in increased
		glucuronidation of thyroxine, resulting in an
		increase in TSH secretion as a
		compensatory response of the physiological
		negative feedback system; increased TSH
		resulted in increased thyroid weight.
4,4'-methylenediphenyl	101-68-8	Repeated doses for 5 days in corn oil
diisocyanate/diphenylmethane-4,4'-		produced slight spleen enlargement in rats.
diisocyanat		
Amines, tallow alkyl,	61791-26-2	Polyethoxylated tallow amine: decrease of
ethoxylated/polyetoxylated N-tallow		aromatase activity, a key enzyme in the
alkyltrimethylenedi-		balance of sex hormones (Defarge et al.
amine/tallowalkylamineethoxylate		2016).
•		

Ammonium sulphate/sulfate	7783-20-2	Rat (1-year): absolute spleen weights were decreased in high dose males.
Citric acid	77-92-9	Rat (6-week): slight degeneration of the thymus gland and spleen.
Cumene	98-82-8	Rat (2-week inhalation): For females in the two highest dose groups, the relative and absolute adrenal weights were increased significantly over control values.
Ethylene glycol	107-21-1	Target organ cellular damage is seen in the kidney, brain, myocardium, pancreas, and blood vessel walls.
Hydrocarbon, C9, aromatics	N/A	Polycyclic aromatic hydrocarbons (PAHs):
Hydrocarbon, C10, aromatics, <1%	N/A	Endocrine modulation: PAHs exhibited
naphthalene		either weakly estrogenic or antiestrogenic
Hydrocarbons, C11-C14, n-alkanes,	N/A	responses.
isoalkanes, cyclics <2% aromatic		
Lignin, alkali, reaction products with	8061-51-6	When given to rats in drinking-water 16-
sodium bisulfite and		week; spleen changes.
formaldehyde/Lignosulfonic acid,		
sodium salt/sodium ligninsulfonate		
Naphtha/petroleum distillates	64742-94-5	Rat (7/8-week developmental/reproductive toxicity, f/m): increased spleen weights in parental females at 7500 ppm.
Naphthalene	91-20-3	Mice (14- and 90-day): Females had
		decreased spleen at the high dose, 267
		mg/kg and 133 mg/kg, respectively. Mice
		(14- and 90-day): Females had decreased
		spleen at the high dose, 267 mg/kg and 133 mg/kg, respectively.
N-methyl-2-pyrrolidone/methyl	872-50-4	Subchronic exposure of rats had atrophy of
pyrrolidone		lymphoid tissue in the spleen and thymus.
Nonylphenol	9016-45-9	Nonylphenol: discovered to have estrogenic
ethoxylated/polyethylene glycol nonylphenyl ether		activity.
Talc	14807-96-6	There was clear evidence of carcinogenic activity of talc in female F344/N rats based on increased incidences of alveolar/bronchiolar adenomas and carcinomas of the lung and benign or

		malignant pheochromocytomas of the adrenal gland.
Cyprodinil	121552-61-2	Cyprodinil acts as an aryl hydrocarbon receptor activator, a potential endocrine disrupter, and an extracellular signal-regulated kinase disrupter. Weak androgen receptor binding was shown for cyprodinil.
Dicamba	1918-00-9	Rat (115-118 weeks): adrenal enlargement was increased at >/= 250 ppm in both sexes.
Diquat (diquat dibromide)	2764-72-9	Diquat dibromide (1-year): reductions in adrenal and epididymal weights were noted in males.
Fludioxonil	131341-86-1	Endocrine modulation: fludioxonil showed endocrine disruptor activity as antiandrogens in an androgen receptor reporter assay in engineered human breast cancer cells.
Fumaric acid	110-17-8	Rabbit (17-29 weeks): by the end of the test period, gonadotropic activity of the serum, as well as estrogenic activity was detected. Chromophobe cells were increased in the pituitary.
Metribuzin	21087-64-9	Metribuzin shows effects in single high doses corresponding to a depression of the CNS system. With repeated high doses, it effects the thyroid and stimulates the metabolizing enzymes of the liver.
Pyraclostrobin	175013-18-0	Subchronic or prechronic exposure/ Mice, in a 90-day feeding study, also showed thickening of the duodenal mucosa together with erosion or ulcers in the glandular stomach and a decrease in lipid vacuolization in the adrenal cortex. Females were more sensitive than males with adrenal effects occurring at 50 ppm (12.9 mg/kg/day).

Table S3 Equations to predict median exposure to pesticides on a daily basis; the total amount of active substance/co-formulant (TA) is the major parameter for exposure; the slope α was set to 1 in case $\alpha > 1$; exposure is given in μ g/person (Gro β kopf et al. 2013)

	enposare to given in pg person (crophopi et an 2015)
Tank ML	$\log exposure = \alpha \cdot \log TA + [formulation \ type] + constant$
Total hands	$\log DE_{ML(H)} = 0.71 \cdot \log TA + 0.57 [liquid] + 1.55 [WP] - 0.34 [glove wash] + 2.73$
Protected	$\log DE_{ML(Hp)} = 0.39 \cdot \log TA + 0.17 [liquid] + 1.74 [WP] + 1.02$
hands	
Total body	$\log DE_{ML(B)} = 0.71 \cdot \log TA + 0.24 \left[liquid \right] + 1.69 \left[WP \right] + 2.87$
Protected body	$\log DE_{ML(Bp)} = 0.95 \cdot \log TA - 0.05 [liquid] + 1.99 [WP] + 0.87$
Head	$\log DE_{ML(C)} = \log TA + 0.55 [liquid] + 1.31 [WP] + 1.52 [no face shield] - 1.07$
Inhalation	$\log IE_{ML} = 0.53 \cdot \log TA - 0.73 [liquid] + 2.26 [WP] + 0.61$
LCTM AP ^a	$\log exposure = \alpha \cdot \log TA + [droplet] + [equipment] + constant$
Total hands	$\log DE_{AP(H)} = \log TA + 1.43 [normal \ droplet] - 1.41 [normal \ equipment] + 1.30$
Protected hands	$\log DE_{AP(Hp)} = \log TA + 1.46 [normal droplet] - 0.61 [normal equipment] - 0.67$
Total body	$\log DE_{AP(B)} = \log TA + 0.56 [normal droplet] - 1.62 [normal equipment] + 2.52$
Protected body	$\log DE_{AP(Bp)} = \log TA + 0.34 [normal droplet] - 0.94 [normal equipment] + 0.49$
Head	$\log DE_{AP(C)} = \log TA + 0.32 [normal droplet] - 0.22 [normal equipment] - 0.22$
Inhalation	$\log IE_{AP} = 0.46 \cdot \log TA + 0.13 [normal droplet] + 0.65 [normal equipment] - 0.89$
HCTM AP	$\log exposure = \alpha \cdot \log TA + [cabin] + constant$
Total hands	$\log DE_{AP(H)} = 0.49 \cdot \log TA + 0.89 [no \ cabin] + 2.29$
Protected	$\log DE_{AP(Hp)} = 0.88 \cdot \log TA + 1.18^{c}$
hands	
Total body	$\log DE_{AP(B)} = \log TA + 0.86 [no \ cabin] + 2.86$
Protected body	$\log DE_{AP(Bp)} = \log TA + 0.50 [no \ cabin] + 1.30$
Head	$\log DE_{AP(C)} = \log TA + 1.46 [no \ cabin] + 0.82$
Inhalation	$\log IE_{AP} = 0.63 \cdot \log TA + 1.00 [no \ cabin] + 0.51$
HCHH AP ^b	$\log exposure = \alpha \cdot \log TA + [culture] + constant$
Total hands	$\log DE_{AP(H)} = \log TA - 0.94 [normal \ culture] + 4.02$
Protected	$\log DE_{AP(Hp)} = \log TA - 1.26 [normal \ culture] + 1.90$
hands	
Total body	$\log DE_{AP(B)} = 0.32 \cdot \log TA - 1.50 [normal \ culture] + 5.75$
Protected body	$\log DE_{AP(Bp)} = \log TA - 1.48 [normal \ culture] + 3.72$
Head	$\log DE_{AP(C)} = 0.34 \cdot \log TA - 1.18 [normal \ culture] + 2.87$
Inhalation	$\log IE_{AP} = 0.74 \cdot \log TA - 0.57 [normal \ culture] + 2.13$
For LCTM AP the	dronlet sizes are grouped into 'normal' and 'coarse' subsets with the latter size being chosen when drift

^a For LCTM AP, the droplet sizes are grouped into 'normal' and 'coarse' subsets with the latter size being chosen when drift reducing nozzles are used; the 'normal' and 'small' equipment subsets are used with the small equipment for treatment in small areas/high crops.

AP, application; ML, mixing/loading; DE, dermal exposure; IE, inhalation exposure; H, total hands; Hp: protected hands; B, total body; Bp, protected body; C, head; WP, wettable powder formulation

^b For HCHH AP, the 'normal' and 'dense' culture subsets with the dense culture refers to unavoidable direct contact with sprayed crop during applications.

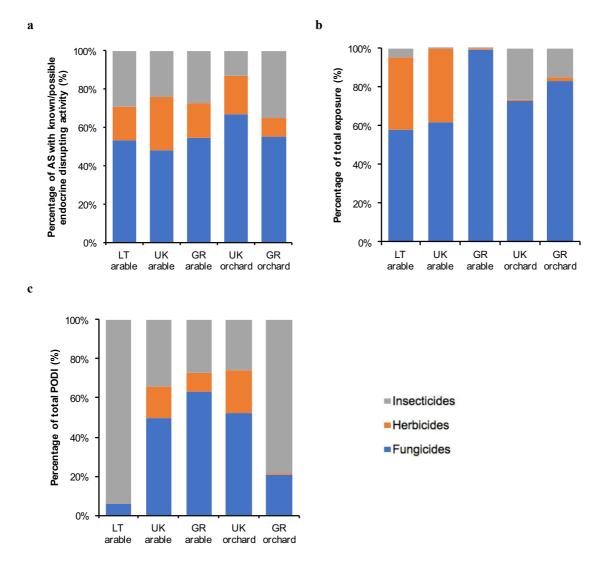
^c The dependency of the factor [cabin] was not significant.

Table S4 Summary of toxicological data for 48 active substances with known or possible endocrine activity

Active substance	Species / study	Doses	NO(A)EL/LO(A)EL	LOAEL / effects	Toxicological
			(mg/kg bw/d)		database
2,4-D	Rat	0, 1, 15, 100, 300 mg/kg/d	NOAEL: 15	LOAEL: 100 mg/kg/d based on the	EPA
	90-day oral diet	(average daily compound		alterations in some hematology and	(EDSP Tier 1)
		intake: 0.93, 13.98, 93.93,		clinical chemistry (decreased T ₃ (females)	
		278.39 mg/kg/d for males		and T ₄ (both sexes)) parameters, and	
		and 0.96, 14.39, 96.16,		cataract formation in females.	
		293.42 mg/kg/d for			
		females)			
Amitrole	Rat	0, 2, 10, 50 ppm (0.11,	NOAEL: 0.11	LOAEL: 10 ppm equivalent to 0.58	EFSA (DAR)
	90-day oral	0.58, 2.85 mg/kg bw/d)	(2 ppm)	mg/kg bw/d based on the thyroid effect.	
Beta-cyfluthrin	Rat	0, 5, 20, 80 mg/kg bw/d	NOEL: 20	Increased absolute and relative weights of	TOXNET (HSDB)
(cyfluthrin)	4-week gavage			the adrenal glands in female rats at the	
	(once daily)			end of treatment at the highest dose.	
Bifenthrin	Rat	0, 50, 100, 200, 300, 400	NOAEL: 21.9 (m)	Based on significantly elevated adrenal	IPCS INCHEM
	28-day	ppm (approximately 0, 4.4,	(200 ppm)	weight and depressed testes weight and	(JMPR); ECHA
		10.75, 21.9 and 34.5 mg/kg		relative adrenal in males at 300 ppm	(2009)
		bw/d in males and 0, 5.4,		group.	
		11, 21.6 and 32.6 mg/kg			
		bw/d in females)			
Bromoxynil	Dog	0, 0.43, 1.43, 7.14 mg/kg/d	NOEL: <0.43	Increased absolute and relative adrenal	TOXNET (HSDB)
	13-week oral			weights.	
	(7 days/week)				

Bupirimate	Dog	0, 3, 15, 30, 600 mg/kg	NOAEL: 3	LOAEL: 15 mg/kg bw/d based on	EFSA (DAR)
	90-day oral diet	bw/d		Increased thyroid weight.	
Captan	Rat	0, 25, 100, 250 mg/kg/d	NOEL: 25	Increased relative organ weights of liver	TOXNET (HSDB)
	2-year			and thyroid/parathyroid (F) and kidney (m	
				& f).	
Carbendazim	Dog	0, 100, 300, 1000 ppm	NOAEL: 7.5	On the basis of minor changes in clinical	IPCS INCHEM
	13-week diet		(300 ppm)	chemistry and organ weights. There were	(JMPR)
				slight increases in relative thyroid weight	
				in the group at the highest dose.	
Chlorothalonil	Dog	0, 160, 1280, 10240 ppm	NOAEL: 43.3/45.3 (m/f)	LOAEL: 10240 ppm based on a very	EPA
	1-year	(0, 5.10, 43.26, 374)	(1280 ppm)	slight hypertrophy of the cells in the zona	(EDSP Tier 1)
		mg/kg/d in males and 0,		fasciculate of the adrenal glands.	
		5.92, 45.30, 354 mg/kg/d in			
		females)			
Chlorpyrifos	Rat	-	NOAEL: 5	Increased fatty vacuolation of the adrenal	IPCS INCHEM
	13-week			zonal fasciculate and changes in	(JMPR)
				haematological and clinical chemical	
				parameters.	
Chlorpyrifos-methyl	Rat	0, 0.1, 1, 10, 250 mg/kg	NOAEL: 1	On the basis of histological alterations	IPCS INCHEM
	13-week	bw/d		detected in adrenals at 10 mg/kg bw/d.	(JMPR)
Copper oxychloride	Rat	0, 1000, 2000, 4000, 8000,	NOAEL: 23	A minimal to mild decrease in erythroid	ECHA (2013)
(copper)	15-day	16000 ppm (23, 44, 162,	(1000 ppm)	haematopoesis was seen in the spleens at	
		196, 285 mg/kg bw/d in		\geq 2000 ppm. (No guideline GLP with	
		males and 23, 46, 92, 198,		deviations of 15-day instead of 28-day).	
		324 mg/kg bw/d in females			

Cypermethrin	Rat	0, 6.25, 12.5, 25, 50	NOEL: 6.25	Damage to the seminiferous tubules and	EPA
(alpha-	15-day oral	mg/kg/d		spermatids in studies reported as other	(EDSP Tier 1)
cypermethrin/zeta-	gavage			scientifically relevant information	
cypermethrin)				(OSROI) (Hu et al. 2011)	
Cyproconazole	Rat	5, 15, 300, 600 ppm (0.7,	NOAEL: 0.7/1.0 (m/f)	Increased relative adrenal weight in	ECHA (2014)
	90-day	2.2, 43.8, 88.8 mg/kg bw/d	(5 ppm)	females at 15 ppm (2.2/3.2 mg/kg bw/d).	
		in males and 1.0, 3.2, 70.2,			
		128.2 mg/kg bw/d in			
		females)			
Deltamethrin	Rat	1, 2 mg/kg w/d	LOEL: 1	Based on spermatogenesis, testosterone	EC (EDS)
	65-day		(divided by 1000-factor for	levels and pituitary weight in vivo.	
			NOEL: 0.001)		
Difenoconazole	Dog	0, 100, 1000, 3000, 6000	NOAEL: 31.3/34.8 (m/f)	Based on decreased prostate weight.	EFSA (DAR)
	6-month diet	ppm (0, 3.6, 31.3, 96.6,	(1000 ppm)		
		157.8 mg/kg/d in males			
		and 0, 3.4, 34.8, 110.6,			
		203.7 mg/kg/d in females)			
Epoxiconazole	Rat	30, 90, 270, 800 ppm	NOAEL: 7/8 (m/f)	Both absolute and relative adrenal	EFSA (DAR)
	13-week dietary		(90 ppm)	weights were slightly reduced in all	
				treated groups, but more clearly so at the	
				upper two dose levels.	
Esfenvalerate	Rat	0, 50, 150, 300 or 500 ppm	NOAEL: 7.5	On the basis of parenchymal-cell	IPCS INCHEM
	90-day diet		(150 ppm)	hypertrophy in the parotid salivary and	(JMPR)
				pituitary glands in some rats at 300 ppm.	
Fenbuconazole	Rat	0, 20, 80, 400, 1600 ppm	NOAEL: 1.3	Hypertrophy of thyroid gland follicular	IPCS INCHEM
	3-month dietary		(20 ppm)	cells at higher doses.	(JMPR)


Fenoxycarb	Rat	0, 30, 150, 750, 3000 ppm	NOEL: 9.71/10.14 (m/f)	Based on histological changes in thyroid.	TOXNET (HSDB)
	3-month oral		(150 ppm)		
Fluazinam	Rat	-	NOAEL: 4.1	LOAEL: 41 mg/kg bw/d. Effect on uterus	Ewence et al.
	90-day oral			weight may be indicative of endocrine	(2013)
				disruption with no mechanistic evidence.	
Flusilazole	Rat	0, 125, 375, or 750 ppm (0,	NOAEL: 14.8	Increased incidence of testicular	IPCS INCHEM
	2-year diet	5.03, 14.8, 30.8 mg/kg		interstitial-cell (Leydig-cell) tumours in	(JMPR)
		bw/d for males and 0, 6.83,		males at the highest dose.	
		20.5, 45.6 mg/kg bw/d for			
		females)			
Glyphosate	Dog	0, 30, 300, 1000 mg/kg	NOAEL: 300	LOAEL: 1000 mg/kg bw/d based on	ECHA (2016)
	13-week oral	bw/d		prostate and uterus atrophy.	
Indoxacarb	Rat	0, 10, 25 (females only),	NOEL: 0.62/<0.76 (m/f)	Histologic effects in the spleen.	TOXNET (HSDB)
	90-day	50, 100, 200 (males only)	(10 ppm)		
		(0, 0.62, 3.09, 6.01, 15)			
		mg/kg/d for males and 0,			
		0.76, 2.13, 3.78, 8.94			
		mg/kg/d for females)			
Ioxynil	Rat	-	NOEL: 0.7 to 1.4	LOAEL: 10 mg/kg bw/d. There appears	Ewence et al.
	90-day oral			to be an increase in basal metabolism and	(2013)
				an effect on the thyroid.	
Linuron	Rat	-	NOEL: 6.25	Spleen and bone marrow changes	IRIS
	2-year		(125 ppm)	indicative of haemolysis, increased	
				mortality, growth retardation.	
Mancozeb	Rat	0, 30, 60, 125, 250, 1000	NOAEL: 7.4	Increased serum TSH and decreased T4	IPCS INCHEM
	13-week oral	ppm	(125 ppm)	values at 250 ppm.	(JMPR)

Maneb	Dog	0, 100, 400, 1600 ppm	NOAEL: 3.7	Based on thyroid follicular cell	IPCS INCHEM
	13-week dietary		(100 ppm)	hyperplasia at 400 ppm.	(JMPR)
Metconazole	Mouse	0, 30, 300, 2000 ppm	NOAEL: 4.6	LOAEL: 50.5 mg/kg/d (300 ppm) based	EFSA (DAR)
	90-day oral		(30 ppm)	on increased spleen weight and spleen	
				lymphoid hyperplasia.	
Methoxyfenozide	Rat	250, 1000, 5000, 20000	NOAEL: 24	On the basis of follicular cell hypertrophy	IPCS INCHEM
	2-week diet	mg/kg diet	(250 mg/kg diet)	and/or hyperplasia of the thyroid in both	(JMPR)
				sexes at 1000 mg/kg (equal to 98 mg/kg	
				bw/d).	
Metiram	Rat	0, 50, 100, 300, 900 (equal	NOAEL: 6	Decreased serum T4 levels and increased	IPCS INCHEM
	13-week dietary	to 0, 3, 6, 20, 61 mg/kg	(100 ppm)	thyroid weights at dietary levels of 300	(JMPR)
		bw/d for males and 0, 4, 8,		and 900 ppm.	
		24, 76 mg/kg bw/d for			
		females)			
Metribuzin	Rat	0, 35, 100, 300, 900 ppm	NOAEL: ≤ 2.41	LOAEL: ≥ 35 ppm: effects on thyroid	EFSA (DAR)
	9-week oral		(≤ 35 ppm)	gland and liver.	
Myclobutanil	Rat	0, 100, 300, 3000 ppm (0,	NOAEL: 18.8	Histomorphological alterations of the	IPCS INCHEM
	13-week diet	6.2, 18.8, 192 mg/kg bw/d	(300 ppm)	liver, kidney and adrenal glands at the	(JMPR)
		in males and 0, 6.9, 19.6,		highest dietary level of 3000 ppm.	
		225 mg/kg bw/d in			
		females)			
Paclobutrazol	Dog	0, 15, 75, 300 mg/kg/d	NOAEL: 75	Based on the slight increase of adrenal	EFSA (DAR)
	1-year			weights in females at 300 mg/kg bw/d.	

Penconazole	Rat	0, 100, 500 mg/kg bw/d	NOAEL: < 100	Thyroids and adrenals (males) with	EFSA (DAR)
	28-day gavage			histopathological findings at $\geq 100 \text{ mg/kg}$	
				bw/d.	
Pendimethalin	Rat	-	NOAEL: 41.3	Based on thyroid effects.	EFSA (DAR)
	90-day oral				
Picloram	Rat	-	NOEL: 50	LEL: 150 mg/kg/d (3000 ppm) based on	IRIS
	90-day		(1000 ppm)	liver histopathology, necrosis, and bile	
				duct proliferation.	
Prochloraz	Dog	1, 2.5, 7, 20 mg/kg bw/d	NOAEL: 2.5	On the basis of effects on prostate and	IPCS INCHEM
	13-week gastric			testes weights at the next highest dose.	(JMPR)
	intubation				
Propamocarb	Rat	-	NOAEL: 37.5	Some evidence of disruption of the male	Ewence et al.
hydrochloride	2-generation oral		(parental & reproductive)	reproductive system (sperm concentration	(2013)
	reproductive			and count).	
Propiconazole	Dog	0, 50, 250, 1250 ppm	NOAEL: 7	Organ weights were not different than	IPCS INCHEM
	1-year diet		(250 ppm)	those of control animals except for	(JMPR)
	(short-term)			significantly decreased relative pituitary	
				weight in males of the highest dose group.	
Pyrimethanil	Rat	-	NO(A)EL: 5.4	Follicular epithelial hypertrophy and	EFSA (DAR)
	90-day oral			pigment deposits in thyroid.	
Pyriproxyfen	Rat	0, 120, 600, 3000 mg/kg	NOAEL: 16.4/21.1 (m/f)	Increased severity of systemic	EFSA (DAR)
	78-week diet	food	(120 mg/kg food)	amyloidosis was noted in several organs	
				as the adrenal cortex, thyroid, heart,	
				spleen, kidneys, liver, stomach, ovary,	
				testes, etc.	

S-metolachlor	Rat	0, 300, 600 mg/kg/d	LO(A)EL: 300	Based on a dose-related increase in serum	EPA
(metolachlor)	Post-natal day 22		(divided by 1000 for	T4 levels of 14% and 25% in the 300 and	(EDSP Tier 1)
	to 42 oral gavage		NO(A)EL: 0.3)	600 mg/kg/d groups, respectively; the	
				increase was significant (p<0.05) at 600	
				mg/kg/d only.	
Tau-fluvalinate	Dog	0, 2, 5, 15, 50 mg/kg/d	NOEL: 2	Decreased spleen weight.	TOXNET (HSDB)
	6-month				
Tebuconazole	Rat	0, 100, 400, 1600 ppm	NOAEL: 9/11 (m/f)	Histopathological changes (vacuoles) in	EFSA (DAR)
	90-day feeding		(100 ppm)	the adrenal cortex.	
Triadimenol	Mice	0, 160, 500, 1500, 4500	NOAEL: 235/297 (m/f)	Reduced adrenal weights in the high-dose	ECHA (2011)
	13-week	ppm (0, 25, 77, 235, 872	(1500 ppm)	groups only in males and females.	
		mg/kg/d in males and 0,			
		31, 94, 297, 797 mg/kg/d)			
Tribenuron-methyl	Rat	-	NOAEL: 7/8 (m/f)	LOAEL: 118/135 mg/kg/d (m/f).	TOXNET (HSDB)
	90-day oral			Increased relative brain, heart, liver,	
				kidney, testes, and spleen weights.	
Ziram	Rat	0, 100, 500, 2500, 5000	NOAEL: 10	On the basis of growth retardation.	IPCS INCHEM
	28-day oral	ppm (0, 10, 50, 250, 500 mg/kg bw/d)	(100 ppm)		(HSDB)

EC (EDS), European Commission Endocrine Disruptors Database; EFSA (DAR), EFSA Draft Risk Assessment Report and Assessment Report; EPA (EDSP Tier 1), EPA Endocrine Disruptor Screening Program Tier 1 screening determinations and associated data evaluation records; IPCS INCHEM (JMPR), Joint Meeting on Pesticide Residues of the International Programme on Chemical Safety; IRIS, Integrated Risk Information System; LO(A)EL, lowest observed (adverse) effect level; NO(A)EL, no observed (adverse) effect level; TOXNET (HSDB), Hazardous Substances Data Bank of Toxicology Data Network

Fig. S1 Comparison of relative contributions of fungicides, insecticides and herbicides to the total use (a), total exposure (b) and total risk (c) associated with known/possible endocrine disrupting activity across the five cropping systems over the survey period

References

- ECHA (2009) CLH report: proposal for harmonised classification and labelling bifenthrin. https://echa.europa.eu/documents/10162/81b13962-33ca-4a28-81fa-69c3c0e11a0f. Accessed 6 October 2017
- ECHA (2013) CLH report: proposal for harmonised classification and labelling tetracopper hexahydroxide sulphate (1) tetracopper hexahydroxide sulphate hydrate (2). https://echa.europa.eu/documents/10162/13626/clh_proposal_tribasic_copper_sulphate_en.pdf. Accessed 6 October 2017
- ECHA (2014) CLH report: proposal for harmonised classification and labelling cyproconazole. https://echa.europa.eu/documents/10162/13626/clh_rep_ie_cyproconazole_dv003871-27_en.pdf. Accessed 6 October 2017
- ECHA (2016) CLH report: proposal for harmonised classification and labelling N-(phosphonomethyl)glycine; Glyphosate (ISO). https://echa.europa.eu/documents/10162/13626/clh_report_glyphosate_en.pdf. Accessed 6 October 2017
- ECHA (2011) CLH report: proposal for harmonised classification and labelling triadimenol. https://echa.europa.eu/documents/10162/13626/clh triadimenol en.pdf. Accessed 6 October 2017
- Ewence A, Rumsby P, Johnson I (2013) Extended impact assessment study of the human health and environmental criteria for endocrine disrupting substances proposed by HSE, CRD, Defra9088.02. WRc plc, Swindon
- Groβkopf C, Martin S, Mielke H, Westphal D, Hamey P, Bouneb F, Rautmann D, Erdtmann-Vourliotis M, IVA Expert Committee for Operator Safety, ECPA Occupational and Bystander Exposure Expert Group, Tiramani M, Gerritsen R, Spaan S (2013) Joint development of a new agricultural operator exposure model, BfR Wissenschaft, Germany
- Hu JX, Li YF, Li J, Pan C, He Z, Dong HY, Xu LC (2011) Toxic effects of cypermethrin on the male reproductive systems: with emphasis on the androgen receptor. Journal of Applied Toxicology 33:576-585
- PPDB (2018) The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERY), University of Hertfordshire, funded by UK national sources and the EU-funded Footprint Project (FP6-SSP-022704). http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm. Accessed 17 March 2018