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SUMMARY

Small RNAs play a crucial role in genome defense
against transposable elements and guide Argonaute
proteins to nascent RNA transcripts to induce co-
transcriptional gene silencing. However, the molecu-
lar basis of this process remains unknown. Here,
we identify the conserved RNA helicase Aquarius/
EMB-4 as a direct and essential link between small
RNA pathways and the transcriptional machinery in
Caenorhabditis elegans. Aquarius physically inter-
acts with the germline Argonaute HRDE-1. Aquarius
is required to initiate small-RNA-induced heritable
gene silencing. HRDE-1 and Aquarius silence over-
lapping sets of genes and transposable elements.
Surprisingly, removal of introns from a target gene
abolishes the requirement for Aquarius, but not
HRDE-1, for small RNA-dependent gene silencing.
We conclude that Aquarius allows small RNA path-
ways to compete for access to nascent transcripts
undergoing co-transcriptional splicing in order to
detect and silence transposable elements. Thus,
Aquarius and HRDE-1 act as gatekeepers coordi-
nating gene expression and genome defense.

INTRODUCTION

Transposable elements (TEs) are a feature of almost all eukary-

otic genomes, which if left unchecked present a considerable

danger to genome integrity and species survival. Therefore, or-

ganisms have evolved robust pathways to silence the expres-

sion of transposable elements and to restrict their mobility

(Slotkin and Martienssen, 2007). Among these, DNA and chro-

matin modification and small RNA (sRNA)-mediated silencing
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are ancient and conserved mechanisms. sRNA pathways in eu-

karyotes are all related to RNAi mechanisms (Fire et al., 1998):

21–32-nt sRNAs are bound by Argonaute superfamily proteins,

interact with target RNAs through Watson-Crick base pairing,

and initiate silencing of these targets. Such sRNA-mediated

silencing can be post-transcriptional onmRNAs in the cytoplasm

(PTGS) or co-transcriptional on nascent transcripts in the

nucleus (coTGS). The latter provides the potential to couple

sRNA-mediated silencing to DNA and chromatin-based gene

regulatory pathways. The mechanisms by which such sRNA-

mediated silencing affects DNA methylation and/or chromatin

modification remain largely unknown, particularly in animals

(Holoch and Moazed, 2015; Weick and Miska, 2014).

Most organisms have also evolved sRNA amplification sys-

tems to enhance sRNA-mediated silencing. The ancestral ampli-

fication mechanism is based on RNA-dependent RNA polymer-

ases (RdRPs), which use target RNAs as templates to generate

secondary sRNAs. Some animals, including mammals, have

lost RdRPs but have instead evolved the Ping-Pong amplifica-

tion system (Brennecke et al., 2007; Gunawardane et al.,

2007). The Ping-Pong pathway amplifies Piwi-interacting RNAs

(piRNAs), an animal-specific class of sRNAs, through double-

stranded target RNA intermediates and Argonaute RNase

activity (RNA slicing). piRNAs are named after a subfamily of

Argonautes, the Piwi proteins (Cox et al., 1998). Piwi proteins

and piRNAs act in TE silencing in the germline of many animals.

Another distinction of piRNAs is that they act in trans,

whereby piRNAs generated from genomic clusters silence TEs

throughout the genome. piRNA clusters can be thought of as a

memory of TEs within the genome of an organism analogous

to the guide RNA cluster/CRISPR systems of prokaryotes (Wie-

denheft et al., 2012). Like other sRNAs, piRNAs have been

shown to act through PTGS and coTGS mechanisms in nema-

todes, insects, fish, and mice (Holoch and Moazed, 2015; Weick

and Miska, 2014).

Caenorhabditis elegans has both PTGS and coTGS mecha-

nisms in the soma and the germline (Weick and Miska, 2014).
ugust 7, 2017 ª 2017 The Authors. Published by Elsevier Inc. 241
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Figure 1. SILAC Proteomics Identifies Aquarius/EMB-4 as an Interactor of the Nuclear Argonaute HRDE-1

(A) SILAC labeling and IP scheme for wild-type (heavy labeled) and hrde-1(tm1200) mutants (light labeled) using anti-HRDE-1 antibodies.

(B) Known protein interactions identified by the STRING database for mammalian orthologs of nuclear HRDE-1 interactors. Gray lines indicate known protein-

protein interactions, red circles highlight known RNA-processing factors, blue circles highlight RNA pol II subunits, and gray circles highlight nuclear pore

complex subunits.

(C) Aquarius and two exon-junction complex proteins eIF4A3 and ALY are detected in HRDE-1 IPs (second column, mean log2 fold enrichment heavy/light and

number of replicates detected) and in D. melanogaster PIWI IPs (third column, number of IPs detected/total number of IPs). The effect on TE desilencing in

D. melanogaster upon RNAi knockdown (fourth column, number of TEs desilenced out of four tested).

(D) EMB-4 domain structure based on the mammalian homolog Aquarius and the position of emb-4 mutations used in this study.

(E) Validation of protein-protein interactions between HRDE-1 and EMB-4 using anti-HRDE-1 antibodies to immunoprecipitate HRDE-1 complexes in CRISPR-

tagged OLLAS-EMB-4 strain with or without RNase treatment (immunoglobulin G [IgG] negative control).

(legend continued on next page)
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In the germline, sRNAs and piRNAs can initiate coTGS through a

two-step mechanism. C. elegans piRNAs are 21-nt RNAs with a

50 uracil (21U-RNAs) that are bound by the PRG-1 Piwi protein in

the germline cytoplasm (Batista et al., 2008; Das et al., 2008;

Wang and Reinke, 2008). Once a PRG-1/piRNA complex has

recognized a target RNA it recruits an RdRP-containing complex

to generate 22-nt antisense sRNAswith a 50 guanine (22G-RNAs)

(Bagijn et al., 2012; Pak and Fire, 2007). 22G-RNAs are then

bound by the Argonaute HRDE-1 and imported into the nucleus

(Ashe et al., 2012; Buckley et al., 2012). An HRDE-1/22G-RNA

complex is thought to directly interact with nascent transcripts.

Genetic screens have identified several additional factors that

are required for HRDE-1-mediated coTGS including NRDE fac-

tors (NRDE-1/-2/-4), the H3K9 histone methyltransferases

SET-25 and SET-32, and the heterochromatin protein 1 (HP1)

homolog HPL-2 (Ashe et al., 2012; Buckley et al., 2012; Burkhart

et al., 2011; Guang et al., 2008; Shirayama et al., 2012). However,

howHRDE-1 links sRNA-mediated silencing to coTGS and chro-

matin modifications remains unknown.

Transcription andmobility of TEs is actively suppressed by this

two-step piRNA/22G-RNA coTGS system in C. elegans. Inter-

estingly, piRNA- and sRNA-mediated coTGS can last formultiple

generations (Ashe et al., 2012; Luteijn et al., 2012; Shirayama

et al., 2012) and can be the source of non-genetic transgenera-

tional effects (Ashe et al., 2012; Jobson et al., 2015; Ni et al.,

2016; Rechavi et al., 2014), and loss of genes in the piRNA and

the 22G-RNA pathway result in a multi-generational loss of

fertility (de Albuquerque et al., 2015; Buckley et al., 2012; Phillips

et al., 2015; Simon et al., 2014).

Eukaryotic mRNA transcription is a complex, multi-step pro-

cess. First, the RNA polymerase II holoenzyme assembles on

genomic DNA at a transcription start site. Second, nascent tran-

scripts are produced by the elongating RNA polymerase II. Third,

nascent RNA transcripts are processed to mature mRNAs

through the assembly of multiple large RNA protein (RNP) com-

plexes to carry out 50 capping (Gonatopoulos-Pournatzis and

Cowling, 2014), splicing (Carrillo Oesterreich et al., 2016), and

30 poly(A) tailing (Shatkin and Manley, 2000). All of these steps

are required to protect transcripts from degradation and to

ensure that mRNAs are successfully exported into the cytoplasm

for protein translation. Of these co-transcriptional events splicing

is probably the most complex of all, requiring more than 200

proteins and many non-coding RNAs (Nilsen, 2003; Wahl and

L€uhrmann, 2015). Pre-mRNA splicing by the spliceosome is

immediately followed by the assembly of a set of proteins known

as the exon-junction complex (EJC). EJC functions in the export,

localization, and translation of mRNAs. Assembly of different

EJC components can determine the fate of mRNAs, and EJC

can be considered a regulatory hub between transcription and

translation (Le Hir et al., 2016).

Interestingly, most TEs are adapted to the host transcrip-

tion and RNA-processing machineries, and exploit them for
(F) qRT-PCR analysis of emb-4 mRNA expression at different developmental

fem-1(hc17)), in animals lacking oocytes (male germline fog-2(q71)), and in anim

glp-4(bn2) are temperature-sensitive mutants and were grown at 25�C alongside

(G) Western blot analysis of EMB-4 protein levels using anti-EMB-4 antibodies fo

(H) Localization of EMB-4 protein in the germline of adult animals.

See also Figures S1 and S2.
their own expression and mobility. Furthermore, TEs have

been domesticated in such a way that their regulation can

contribute to gene regulation (Cowley and Oakey, 2013; Rebollo

et al., 2012).

Here, we used a proteomics approach to identify protein inter-

actors of the germline Argonaute HRDE-1 in C. elegans. One

HRDE-1 interacting factor is the conserved RNA helicase

Aquarius/EMB-4. HRDE-1 and Aquarius/EMB-4 act to silence

an overlapping set of TEs and TE-containing genes. Surprisingly,

removal of introns from a coTGS target removes the require-

ment for Aquarius/EMB-4 in sRNA-mediated silencing. Thus,

Aquarius/EMB-4 activity allows HRDE-1 access to the nascent

RNA transcripts.

RESULTS

SILAC Proteomics Identifies Protein Interactors of the
Germline Nuclear Argonaute HRDE-1
To further our understanding of coTGS in animals and as a com-

plement to genetic approaches, we sought to identify proteins

interacting with the nuclear Argonaute HRDE-1 by protein immu-

noprecipitation (IP) coupled with SILAC (stable isotope labeling

of amino acids in cell culture) proteomics (Ong et al., 2002), using

the SILAC labeling for nematodes approach (Akay et al., 2013;

Fredens et al., 2011; Larance et al., 2011) (Figure 1A). We pro-

duced protein extracts from wild-type young adult C. elegans

grown on ‘‘heavy’’ isotopes and hrde-1(tm1200) mutant animals

grown on ‘‘light’’ isotopes. We chose the young adult stage, as

the germline is then fully developed and endogenous HRDE-1

expression is at its peak (Ashe et al., 2012). We then immunopre-

cipitated a 1:1mix of protein extracts of both genotypes using an

anti-HRDE-1 antibody followed by liquid chromatography-tan-

demmass spectrometry (LC/MS-MS). Based on three biological

replicates, LC/MS-MS identified 130 candidate HRDE-1 inter-

acting proteins. For further analysis and to take advantage of

prior proteomics data frommammals, we focused on 53 proteins

with human orthologs that are also classified as being nuclear

(Uhlén et al., 2015; UniProt Consortium, 2015). We used the

STRING database (Szklarczyk et al., 2015) to identify known pro-

tein complexes between these factors. Twenty-eight of these 53

proteins were connected with each other based on known inter-

actions, and the majority of the proteins represent RNA process-

ing factors, RNA polymerase II subunits, and nuclear pore com-

plex components (Figures 1B and S1A). In the fruit fly Drosophila

melanogaster, the Piwi protein has a function analogous to that

of HRDE-1 in coTGS in the germline (Weick and Miska, 2014).

Interestingly, eight proteins identified in our HRDE-1 IPs were

also found in D. melanogaster PIWI IPs. In addition, 13 of our

HRDE-1 interactors were hits in genome-wide RNAi screens

for regulators of transposable elements (Figure 1C and Table

S1) (Czech et al., 2013; Le Thomas et al., 2013). However, the

role of these interactors in the sRNA pathway is currently not
stages (embryo to gravid adult), in animals lacking sperm (female germline

als lacking a germline (soma only glp-4(bn2)). fem-1(hc17), fog-2(q71), and

the wild-type gravid adult control. Error bars represent SD.

r the same conditions as in Figure 2A.
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Figure 2. Aquarius/EMB-4 Is Required for the piRNA-Mediated

Silencing of a Sensor Transgene

(A) piRNA sensor transgene and its expression pattern in C. elegans germline.

(B) Fluorescent microscope images of wild-type and mutant animal germlines

with an integrated single-copy piRNA sensor transgene (germline boundaries

are marked by white dotted lines).

(C) qRT-PCR analysis of GFP expression in animals described in Figure 3B

(two biological replicates with at least two technical replicates).

See also Figure S3.
understood in any organism. Overall, our SILAC-based HRDE-1

proteomics identified a set of conserved proteins that might

bridge sRNA pathways, RNA processing, and TE silencing.

The Aquarius RNA Helicase Ortholog EMB-4 Is Nuclear
and Germline Enriched and Interacts with HRDE-1
Of the candidateHRDE-1 protein interactors,wewere particularly

curious about EMB-4 as its interaction with nuclear Argonaute

proteins that appeared to be conserved in D. melanogaster (Fig-

ure 1C). EMB-4 is the C. elegans ortholog of Aquarius, or AQR, a

large scaffolding protein that includes an Armadillo repeat and

two RecA helicase domains (Figure 1D). Aquarius/EMB-4 is

conserved inall eukaryoteswithan intactRNAi pathway, including

the fission yeast Schizosaccharomyces pombe, but not Saccha-

romyces cerevisiae, which lacks RNAi (Drinnenberg et al., 2011)

(Figures S1A–S1C). As Aquarius has a conserved role in nascent
244 Developmental Cell 42, 241–255, August 7, 2017
RNA processing in eukaryotes (Figure S1D) (De et al., 2015;

Wahl and L€uhrmann, 2015), we wondered whether Aquarius/

EMB-4 might provide new insights into the interface between

the nuclear RNAi pathway and the general RNA-processing

machinery. Therefore, we validated the interaction between

HRDE-1 and EMB-4 independently. First, we generated an N-ter-

minal epitope-tagged version of EMB-4, in vivo, using CRISPR/

Cas9 genome engineering (Paix et al., 2015; Wiedenheft et al.,

2012) (Ollas tag, Figure 1D). We then tested the interaction be-

tween HRDE-1 and EMB-4-Ollas using an anti-Ollas antibody

(Park et al., 2008) and an anti-HRDE-1 antibody (Ashe et al.,

2012), through IP followed by western blotting. As shown in Fig-

ure 1E, we found that EMB-4-Ollas interacts specifically with

HRDE-1 inwhole-cell extracts (IPa-HRDE-1(�) RNase treatment,

Figures S1E andS1F). A significant portion of the EMB-4/HRDE-1

interaction remains intact upon strong RNase treatment (Fig-

ure 1E, IP a-HRDE-1(+) RNase treatment, Figure S1F), consistent

with a model in which EMB-4 binds directly to HRDE-1 but with

interactionbeingstabilizedon thenascentRNA transcript. Inaddi-

tion, we validated this interaction using an anti-EMB-4 antibody

and an FLAG-tagged version of HRDE-1 generated by MosSCI

transgenesis (Frøkjær-Jensen et al., 2008; Shirayama et al.,

2012) (Figures S1G and S1H). Next, we asked whether EMB-4 is

co-expressed with HRDE-1 in vivo. We found that emb-4 mRNA

was highly enriched in the germline, embryo, and early larval

stages of C. elegans (Figure 1F). Using an anti-EMB-4 antibody,

we observed the same for the endogenous EMB-4 protein (Fig-

ure 1G). Taking advantage of temperature-sensitive germlinemu-

tants of C. elegans, we found that in gravid adult animals the ma-

jority of EMB-4 mRNA and protein is germline restricted (Figures

1F and 1G). This is of particular interest, as HRDE-1 expression

is germline specific (Ashe et al., 2012). Within the germline, we

find that EMB-4 is highly enriched in germline nuclei and closely

associated with chromatin in the mitotic, transition, and pachy-

tene region of the germline as well as in oocytes (Figures 1H,

S2A, andS2B).Mutations inhrde-1donot affect thenuclear local-

ization of EMB-4, in line with the general role of EMB-4 in pre-

mRNA processing. Similarly, mutations in emb-4 do not change

theoverall nuclear localizationofHRDE-1 (FigureS2B).Ourobser-

vations are in agreement with the findings of the related work

in this issue of Developmental Cell by Tyc et al. (2017). We

conclude that EMB-4 is expressed in the germline nuclei and

is a bona fide HRDE-1 interacting protein.

Aquarius/EMB-4 Is Required for piRNA-Mediated
Co-transcriptional Gene Silencing
We examined whether, like the Argonaute HRDE-1, Aquarius/

EMB-4 is required for coTGS in the germline. For this purpose

we used a piRNA sensor strain we generated previously (Bagijn

et al., 2012). The piRNA sensor (mjIs144) is a transgene that

drives the expression of a GFP histone H2B fusion protein

through the germline-specific mex-5 gene promoter and is in-

serted as a single copy on chromosome II. In addition, the piRNA

sensor contains a 21-nt sequence perfectly complementary to

the endogenous piRNA 21UR-1 (Figure 2A). In otherwise wild-

type animals, the piRNA sensor is silenced by piRNA-mediated

coTGS. However, mutations in the piRNA or the germline nuclear

RNAi pathway, e.g., prg-1 (Bagijn et al., 2012), prde-1 (Weick

et al., 2014), or hrde-1 (Ashe et al., 2012), lead to reactivation
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Figure 3. RNA Helicase Domain of Aquarius/EMB-4 Is Required for

the Establishment of Transcriptional Gene Silencing

(A) Structural alignment of the RecA1 and the pointer domains of human

Aquarius (white) with C. elegans EMB-4 (red). Blown-up region shows the

location of the G884R substitution found in emb-4(sa44) strain. G884R affects

the loop region of the helicase domain. Green lines show possible salt bridge

interactions between the amino acids.

(B) Fluorescent images of wild-type and emb-4(sa44) germlines with the in-

tegrated piRNA sensor transgene (germline boundaries are marked by white

dotted lines).

(C and D) Scheme of genetic crosses showing the effect of emb-4(sa44) mu-

tation during the establishment of gene silencing. (C) In the control cross, a

wild-type copy of hrde-1(+) in the F1 heterozygous animals re-establishes

complete piRNA sensor silencing. (D) Wild-type copy of hrde-1 fails to

establish piRNA sensor silencing in the emb-4(sa44) homozygous background

(number of assayed F1 progeny is indicated below each cross).

See also Figure S4.
of the piRNA sensor. Taking advantage of two previously iso-

lated alleles of emb-4 (Checchi and Kelly, 2006; Katic andGreen-

wald, 2006), we tested the requirement of EMB-4 in piRNA-

mediated gene silencing. We observed that two null mutants

of emb-4 desilenced the piRNA sensor in the germline of

C. elegans as indicated by GFP expression in germline nuclei,

as did hrde-1 as the positive control, while the piRNA sensor

was silenced in otherwise wild-type animals (Figures 2B and

S3A). We also quantified mRNA levels of piRNA sensor expres-

sion in these mutant backgrounds, which confirmed the desi-

lencing in emb-4 and hrde-1 mutant backgrounds (Figure 2C).

Finally, we carried out an analogous experiment using an inde-
pendent transgene targeted by the piRNA pathway (ccSi1504,

gift from C. Frøkjær-Jensen). ccSi1504 is integrated on chromo-

some V and expressed under smu-1 promoter, utilizes smu-1

introns, and contains SV40 and EGL-13 nuclear localization sig-

nals. Both emb-4 and hrde-1 mutants desilenced the ccSi1504

transgene similarly to the mjIs144 transgene (Figures S3B and

S3C). Our results demonstrate that EMB-4 is an essential factor

for piRNA-mediated coTGS in the germline.

A Functional RNA Helicase Domain of Aquarius/EMB-4
Is Required to Establish Co-transcriptional Gene
Silencing
The molecular function of Aquarius/EMB-4 in vivo remains

unknown in any organism. However, previous studies identified

Aquarius as intron binding and associated with spliceosome

and EJC recruitment (Hirose et al., 2006; Ideue et al., 2007).

In vitro experiments suggested a role for the ATPase activity of

the RecA1 helicase domain of human Aquarius/AQR in RNA un-

winding and spliceosomal complex assembly (De et al., 2015).

We noted that the previously isolated allele sa44 of Aquarius/

EMB-4 in C. elegans is a missense mutation that induces a

G884R substitution in the RecA1 helicase domain (Figure 3A)

(Katic and Greenwald, 2006). emb-4(sa44) was identified in a ge-

netic suppressor screen and lacks the embryonic lethality asso-

ciatedwith null mutants of emb-4 (Checchi and Kelly, 2006; Katic

and Greenwald, 2006). Based on the structural alignment be-

tween human Aquarius/AQR, UPF1, and C. elegans EMB-4 (Fig-

ures S4A–S4C), G884R likely affects RNA binding and, thus, heli-

case activity (Figures 3A and S4D), without affecting the overall

protein levels of Aquarius/EMB-4 (Figure S4E) (Chakrabarti

et al., 2011; Cheng et al., 2007; De et al., 2015). Interestingly,

emb-4(sa44) animals desilence the piRNA sensor similarly to

emb-4(null) mutations (Figure 3B). Thus, Aquarius/EMB-4 heli-

case activity is required for co-transcriptional gene silencing.

We next asked whether Aquarius/EMB-4 is required for the

establishment and/or the maintenance of co-transcriptional

gene silencing. Taking advantage of the emb-4(sa44) mutants,

we addressed this using genetic crosses (Figures 3C and 3D).

When hrde-1(tm1200);mjIs144 (piRNA sensor) animals with a

desilenced piRNA sensor are crossed to mjIs144 animals

generating F1 animals heterozygous for hrde-1, piRNA sensor

silencing is restored (Figure 3C). However, when carrying out

an analogous cross of hrde-1(tm1200);mjIs144;emb-4(sa44)

and mjIs144;emb-4(sa44) animals, piRNA sensor silencing is

not restored (Figure 3D). We conclude that Aquarius/EMB-4

is required for the establishment of co-transcriptional gene

silencing.

Aquarius/EMB-4 Is Required for sRNA-Dependent
Co-transcriptional Silencing of Endogenous Genes
Next, we aimed to understand the role of Aquarius/EMB-4 on the

endogenous transcriptome. We generated total RNA and sRNA

expression profiles using high-throughput sequencing of wild-

type animals and hrde-1 and emb-4 mutant animals. In our

RNA sequencing (RNA-seq) data, when only the genes that

show significant expression change in both hrde-1 and emb-4

mutants are considered, the majority of these genes show upre-

gulation as opposed to downregulation and there is a significant

correlation in gene expression levels between emb-4 and hrde-1
Developmental Cell 42, 241–255, August 7, 2017 245
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Figure 4. EMB-4 and HRDE-1 Are Required for Transcriptional Silencing of Genes and Transposable Elements

(A) Log2 fold change values of genes, which show significant expression change (adjusted p% 0.05) in both hrde-1 and emb-4mutants (151 genes in total), are

plotted against each mutant background (dashed line, linear fit curve; PCC, Pearson’s correlation coefficient; green dot, piRNA sensor transgene).

(B) Exon-intron split analysis (EISA) for comparison of transcriptional and post-transcriptional gene expression changes.

(C and D) Transcriptional and post-transcriptional gene expression changes in hrde-1 (C) and emb-4 (D) are colored as in (B). Significant gene expression changes

are highlighted by larger dot size (large dots denote mRNA log2 fold change R 1, p % 0.05). piRNA sensor transgene is highlighted by the green dot.

(E) Model showing 22G-RNA amplification in mutator foci, which requires HRDE-1 for 22G-RNA transport and stability.

(F and G) Comparison of RNA log2 fold change in hrde-1 and emb-4mutants with log2 22G-RNA density in wild-type animals (22G-RNA density = 22G-RNA count

in HRDE-1 IP [wild-type]/RNA reads per kilobase per million mapped reads [wild-type]). piRNA sensor transgene is highlighted by the green dot.

See also Figure S5.
mutants (Figure 4A and Table S2, PCC = 0.644, p < 0.0001).

Next, we took advantage of the fact that total RNA-seq contains

intronic sequence reads in addition to exonic sequence reads.
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Considering intronic reads as a measure of nascent RNA tran-

scription, one can therefore infer changes of transcription rate

in addition to steady-state mRNA levels. Such a method was
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recently reported as exon-intron split analysis (EISA) (Figure 4B)

(Gaidatzis et al., 2015). Plotting the logarithm of the ratio of in-

tronic reads from wild-type and mutant samples against the log-

arithm of the ratio of exonic reads of the same datasets, one can

infer the type of gene expression change between the samples;

that is, genes that vary in their transcription rate are aligned on

the diagonal (yellow, Figures 4B–4D), positive post-transcrip-

tional regulation is above the diagonal (blue, Figures 4B–4D),

and negative post-transcriptional regulation is below the diago-

nal (gray, Figures 4B–4D). Comparing three biological replicates

each of wild-type animals, hrde-1, and emb-4 mutants (three

replicates each of the qm31 and hc60 alleles, combined), we

found that the majority of gene expression changes in hrde-1

and emb-4mutants are due to changes in transcription rate (Fig-

ures 4C and 4D, percent transcriptional changes: 83% in hrde-1

and 73% in emb-4; transcriptionally up/down: 34/5 in hrde-1,

100/16 in emb-4). Similarly, the piRNA sensor showed increased

transcription rates in both hrde-1 and emb-4 mutants (Figures

4C and 4D, green dot). These findings are consistent with the

known role of HRDE-1 in co-transcriptional gene silencing

(Ashe et al., 2012; Buckley et al., 2012). We conclude that

EMB-4 similarly affects transcription rate, which is consistent

with a model of EMB-4 and HRDE-1 acting together in co-tran-

scriptional gene silencing. In addition, we conclude that EMB-4

has no major impact on pre-mRNA splicing, as only a few

genes showed a relative increase in intronic reads (Figure 4D,

gray dots).

Furthermore, we considered sRNA expression alongside total

RNA expression to focus on the direct targets of co-transcrip-

tional gene silencing. As expected, hrde-1 and emb-4 mutants

do not show any change in piRNA population (21U-RNAs), indi-

cating that the upstream piRNA pathway remains intact in these

mutant backgrounds (Figure S5A). HRDE-1-bound sRNAs are

22G-RNAs, antisense to their target RNAs and generated by

RdRPs at perinuclear foci called mutator bodies (Figure 4E).

HRDE-1 is required for the stability and amplification of 22G-

RNAs in the germline (Ashe et al., 2012; Buckley et al., 2012; Sa-

petschnig et al., 2015). We therefore calculated the 22G-RNA

density for genes with a matching 22G-RNA in HRDE-1 IPs, as

the ratio of HRDE-1-bound 22G-RNAs in the wild-type and the

expression levels of their target RNAs (Gerson-Gurwitz et al.,

2016; Sapetschnig et al., 2015). We found that genes with high

22G-RNA density in wild-type animals tended to be upregulated

in both hrde-1 and emb-4 mutants (Figures 4F and 4G).

Aquarius/EMB-4 Is Required for Silencing of
Transposable Elements
For further analysis we grouped all genes from Figures 4F and 4G

into bins of increasing 22G-RNA density (Figures 5A and 5B, bins

1–5, 275–569 genes per bin) and found a number of correlating

features. HRDE-1-bound 22G-RNAs are enriched in germline
Figure 5. HRDE-1 and EMB-4 Are Required for the Suppression of Mu

(A and B) Genes in Figures 4F and 4G are grouped into bins of increasing 22G-R

parentheses, boxes show the lower and upper quartiles, red line shows the media

shows percent abundance of transposable elements in each 22G-RNA bin.

(C) Heatmap showing RNA fold change of transposable element families in wild-typ

indicate retro-element families.

(D) Venn diagram summarizing the overlap of upregulated transposable element
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22G-RNA targets and depleted from somatic 22G-RNA targets,

as expected (Figure S5B) (Gu et al., 2009). In addition, 22G-RNA

density correlates positively with piRNA targets and targets of

the WAGO-1 pathway, which is known to overlap with HRDE-1

targets (Figure S5B) (Lee et al., 2012). Finally, ERGO-1, ALG-

3/4, and CSR-1 Argonautes are all required for additional endog-

enous RNAi pathways that also produce 22G-RNAs (Claycomb

et al., 2009; Conine et al., 2010; Vasale et al., 2010). We found

that HRDE-1-bound 22G-RNAs were overall depleted from

ERGO-1 and ALG-3/4 targets, and the density of HRDE-1-bound

22G-RNAs inversely correlated with CSR-1 targets (Figure S5B).

HRDE-1-bound 22G-RNAs are known to target transposable

elements (Ni et al., 2014). Indeed, genes with the highest 22G-

RNA density also have the highest TE content and show the

strongest mRNA upregulation both in hrde-1 and emb-4 mutant

animals (Figures 5A and 5B). We therefore asked whether

EMB-4, like HRDE-1, regulates transposable element expres-

sion. When grouping TEs into families, we found that several

DNA transposons and retro-elements were overexpressed in

hrde-1 and/or emb-4 mutants (Figure 5C). Out of 22 TE families

that show upregulation, 12 are co-regulated by EMB-4 and

HRDE-1, whereas 6 are upregulated specifically in emb-4 mu-

tants and 4 are upregulated specifically in hrde-1 mutants (Fig-

ure 5D). For instance, CER9-I_CE, CER9-LTR_CE, CEMUDR1,

and Chapaev-2 are strongly induced in both hrde-1 and emb-4

mutants. Furthermore, this RNA induction is accompanied by

significant loss of 22G-RNAs to the same locus in both mutant

backgrounds (Figures 6A–6C). On the other hand, bath-45 is a

piRNA pathway target gene with multiple piRNA target sites on

all of its exons. bath-45 mRNA levels were upregulated in

hrde-1 but not in emb-4 mutant animals (Figure 6D). Similarly

two TEs, CER15-I_CE andMirage1, showed strong upregulation

only in emb-4 mutants (Figures 6E and 6F). Interestingly,

CER15-I_CE is also upregulated in hrde-1 mutants when the

animals are subjected to heat stress (Ni et al., 2016). Altogether,

we conclude that HRDE-1 and Aquarius/EMB-4 act together

to silence many endogenous 22G-RNA target loci, genes, and

transposable elements.

Chromatin-level silencing by histone modifications such as

histone H3 lysine 9 trimethylation (H3K9me3) on the target

loci has been proposed as a mechanism to maintain long-term

silencing of sRNA targets in animals (Holoch and Moazed,

2015). InC. elegans, mutations in the histone methyltransferases

set-25 and set-32 are sufficient to abolish the silencing of the

piRNA sensor transgene (Ashe et al., 2012). We performed

genome-wide H3K9me3 profiling by establishing the chipmenta-

tion method in C. elegans (Schmidl et al., 2015). Triplicate

analysis of wild-type, hrde-1, and emb-4 mutant animals show

that H3K9me3 response is highly loci specific. For instance,

H3K9me3 levels on the piRNA sensor, particularly on the GFP

sequence, show strong reduction in hrde-1 and emb-4 mutant
ltiple Transposable Element Families

NA density as shown on the x axis (number of genes in each bin is shown in

n, and p values of two-sample t test are shown above the box plots). Heatmap

e, hrde-1, and emb-4mutants comparedwithmeanwild-type levels. Asterisks

families in hrde-1 and emb-4 mutant animals as shown in (C).
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animals, which also correlate with the level of GFP mRNA upre-

gulation in each mutant background (Figures 6G and 2C). Simi-

larly, H3K9me3 levels are reduced on bath-45, Chapaev-2, and

CER15-I_CE in mutant backgrounds that showmRNA upregula-

tion in these loci (Figures 6C–6E). In contrast, H3K9me3 levels do

not show much change on CER9-I_CE, CEMUDR1, or Mirage1

loci. These observations are in line with recent studies showing

that methyltransferase mutants affect certain C. elegans sRNA

pathways more than others (McMurchy et al., 2017; Zeller

et al., 2016) and that the correlation between H3K9me3 levels

and gene silencing can be highly gene and loci specific (Kalinava

et al., 2017; Lev et al., 2017).

Aquarius/EMB-4 Is Specifically Required to Silence
Spliced Transcripts
As Aquarius is known to bind introns and is required for RNP re-

modeling during spliceosome and EJC assembly, we wondered

whether Aquarius/EMB-4 is specifically required to allow co-

transcriptional gene silencing on nascent transcripts undergoing

splicing. To test this we took advantage of the piRNA sensor,

which requires HRDE-1 and EMB-4 for co-transcriptional gene

silencing (Figures 2, 3, and 4). We previously characterized

22G-RNA populations for the piRNA sensor in detail (Sapetsch-

nig et al., 2015): upon initial piRNA targeting of the sensor

transgene in the 30 UTR, 22G-RNAs are generated proximal

to the piRNA target site that are independent of HRDE-1 and

the nuclear RNAi machinery and are not sufficient for piRNA

silencing (Figure 7A, wild-type [blue bars]). Subsequently,

HRDE-1-dependent 22G-RNAs spread along the whole length

of the transcript, including the GFP coding region, to induce

co-transcriptional gene silencing (Figure 7A, wild-type [green

bars]). We find that loss of HRDE-1 or Aquarius/EMB-4 resulted

in the loss of the majority of 22G-RNAs mapping specifically

to the coding region of the piRNA sensor, consistent with

HRDE-1 and Aquarius/EMB-4 acting together in nuclear RNAi

(Figure 7A, hrde-1 and emb-4 [green bars]).

The piRNA sensor transgene (mjIs144) has three synthetic

introns within the GFP gene sequence. These same introns are

generally used by the community to promote efficient transgene

expression in C. elegans. To test whether Aquarius/EMB-4 is

specifically required for co-transcriptional gene silencing of tran-

scripts undergoing splicing, we removed two of the three introns

from the piRNA sensor transgene (mjIs144) to generate a new

single-intron piRNA sensor integrated into the same chromo-

somal location (mjIs588) (Figure 7B). We retained the single

remaining intron, as an intronless transgene is unlikely to be

expressed in C. elegans (Fire et al., 1990). As expected, the sin-

gle-intron piRNA sensor (mjIs588) was completely silenced in

wild-type animals and fully desilenced in hrde-1 mutant animals

(Figures 7B–7D). In contrast, while the three-intron piRNA sensor

required Aquarius/EMB-4 for silencing, the single-intron piRNA

sensor did not (Figures 7B–7D). Importantly, GFP expression

levels of the three-intron piRNA sensor and the single-intron
Figure 6. Exemplary Upregulated Regions with mRNA, 22G-RNA, and

(A–F) CER9-LTR_CE/CER9-I_CE retro-elements (A), CEMUDR1 transposable ele

CER15-I_CE retro-element (E), andMirage1 transposable element (F). Repeatmas

for canonical introns (UCSC genome browser).

(G) H3K9me3 chromatin IP profile of piRNA sensor transgene.
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piRNA sensor were similar in hrde-1 mutants, confirming that

the difference in Aquarius/EMB-4 dependence was not simply

due to different transcription rates (Figure 7D). Comparing

22G-RNA populations for both piRNA sensors we found that

the single-intron piRNA sensor accumulated 5- to 6-fold more

22G-RNAs compared with the three-intron piRNA sensor in

wild-type animals (Figures 7A and 7B, wild-type panels: y axis

range is different between graphs), indicating that introns can

potentially form a barrier to nuclear RNAi by limiting 22G-RNA

levels. On the other hand, most endogenous C. elegans genes

have, on average, four introns (Michael and Manyuan, 1999),

and intronic sequences are also present in transposable ele-

ments (Sijen and Plasterk, 2003) (Figure 6, spliced expressed

sequence tags [ESTs] track). Nuclear RNAi machinery needs to

overcome the intronic barriers for efficient and complete

silencing of target sequences. Aquarius/EMB-4 can help over-

come the intronic barriers to silencing and lead to spreading of

22G-RNAs along transcripts. Indeed, we observed that gene

desilencing in both hrde-1 and emb-4 mutants correlated

with 22G-RNA depletion (Figures 7E and 7F, yellow quadrant).

Furthermore, the negative correlation between 22G-RNA abun-

dance and mRNA levels is stronger when all exons of a gene

are targeted by 22G-RNAs (Figures 7E and 7F, red line [all exons

targeted] versus gray line [single exon targeted]) when consid-

ering hrde-1 and emb-4 mutant animals.

Taken together, our results support a model in which the

RNA helicase Aquarius/EMB-4 is required to provide the co-

transcriptional silencing complex access to nascent transcripts

undergoing splicing (Figure 7G). We conclude that pre-mRNA

processing is a natural and powerful barrier to co-transcriptional

gene silencing.

DISCUSSION

Here we have identified the spliceosomal RNA helicase

Aquarius/EMB-4 as an interactor of the germline nuclear Argo-

naute HRDE-1, which is required for heritable co-transcriptional

gene silencing. We show that in C. elegans, Aquarius/EMB-4

expression is enriched in germ cell nuclei in adult-stage animals,

which coincides with peak HRDE-1 expression in the germline.

Our genetic experiments demonstrate that Aquarius/EMB-4 is

required during the initiation step of silencing by HRDE-1 and

that mutations in the helicase domain of Aquarius/EMB-4 are

sufficient to impair its function in transcriptional gene silencing.

Loss of Aquarius/EMB-4 leads to transcriptional desilencing of

otherwise silenced genes, transposable elements, and piRNA

sensor transgenes. We demonstrate that Aquarius/EMB-4 is

specifically required to silence nascent transcripts undergoing

splicing. In conclusion, we define a key interaction between

sRNA pathways and the general transcription machinery.

Aquarius/EMB-4 acts as a gatekeeper that permits sRNA path-

ways to monitor the nascent transcriptome. Interestingly, in a

related article Claycomb’s group reports that Aquarius/EMB-4
H3K9me3 Chromatin IP Profiles in hrde-1 and emb-4 Mutants

ment (B), Chapaev-2 transposable element (C), piRNA target gene bath-45 (D),

ker tracks show transposable elements, and spliced EST tracks show evidence
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Figure 7. Aquarius/EMB-4 Acts to Remove Intronic Barriers to Transcriptional Gene Silencing

(A and B) 22G-RNA profiles of the three-intron (A) and the single-intron (B) piRNA sensors in wild-type, hrde-1, and emb-4 mutant animals (mean

22G-RNA abundance of three replicates) (y axis scale in wild-type animals of B is different from that of A; colors indicate different regions of the sensor

transgene).

(C) Silencing of the three-intron piRNA sensor (mjIs144) and the single-intron piRNA sensor (mjIs588) in wild-type and mutant animals (20 animals assayed for

each condition).

(D) Fluorescent microscope images of animals with the single-intron piRNA sensor (mjIs588). Germline boundaries are marked by the white dotted lines.

(legend continued on next page)
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can also act together with the CSR-1 Argonaute protein in

C. elegans (Tyc et al., 2017).

Previously, other factors involved in the nuclear sRNA-medi-

ated transcriptional gene silencing have been identified in

C. elegans and D. melanogaster through genetic screens (Ashe

et al., 2012; Czech et al., 2013; Handler et al., 2013; Lee et al.,

2012). These factors include the NRDE factors in C. elegans

that are required for nuclear RNAi by an as yet unknown mech-

anism (Guang et al., 2008, 2010), as well as several histone

methyltransferases and chromatin factors common to both nem-

atodes and flies (Ashe et al., 2012; Shirayama et al., 2012). Much

less is known of the events preceding chromatin level changes.

In C. elegans, HRDE-1 and other nuclear RNAi factors not only

are required for transcriptional gene silencing but also affect

the biogenesis and/or the stability of 22G-RNAs, which are the

effector sRNAs for nuclear gene silencing (Sapetschnig et al.,

2015). One possible explanation is that in the absence of these

factors, interactions between the nuclear Argonaute HRDE-1

and its target RNAs are abolished, leading to 22G-RNA destabi-

lization. It is known that for the microRNA pathway, such Argo-

naute-target interactions are required to stabilize the associated

microRNAs (Chatterjee and Grosshans, 2009; Chatterjee et al.,

2011). Considering that numerous factors are required for effec-

tive HRDE-1 function, it is possible that RNA itself harbors

intrinsic features refractory to HRDE-1 targeting.

Intronic Barriers to Transcriptional Gene Silencing
Mammalian Aquarius binds to introns at a certain distance from

the intron branch point, in a sequence-independent manner (Hir-

ose et al., 2006). Even though thedetails of such interactions have

not been studied in C. elegans, EMB-4 has been shown to bind

nascent transcripts (Shiimori et al., 2012). Thus, it is reasonable

to hypothesize that introns can influence the function of

Aquarius/EMB-4 during transcriptional gene silencing. Indeed,

when we reduced the number of introns from three to one in

our piRNA sensor transgene, the absence of Aquarius/EMB-4

no longer resulted in desilencing of the transgene, showing that

Aquarius/EMB-4 needs intronic sequences to function. Together

with our observation that the single intron piRNA sensor accumu-

lates several-fold more 22G-RNAs compared with a three-intron

piRNA sensor, we propose that introns and/or factors interacting

with introns are the inhibitory signals for HRDE-1 silencing.

Transcription, Introns, and Silencing
Our results add to the growing body of evidence implicating

co-transcriptional processes in sRNA-mediated gene silencing.

In S. pombe an sRNA-mediated coTGS mechanism is required

for the silencing of centromeric repeats (Allshire and Ekwall,

2015; Martienssen and Moazed, 2015). Several factors that

interact with nascent transcripts and non-essential splicing

factors are required for efficient coTGS (Bayne et al., 2008,

2014). In addition, factors influencing the efficiency of RNA poly-

merase elongation are also important in coTGS mechanism in
(E and F) mRNA expression levels correlate negatively with 22G-RNA abundance

line, all genes; black line, genes that show significant 22G-RNA change in one exon

shows log2 fold change of 22G-RNAs in mutants/wild-type and the y axis show

p values are shown on graphs).

(G) Model for Aquarius/EMB-4 function in intron-dependent transcriptional gene
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S. pombe (Kowalik et al., 2015). In plants, similar to our results,

intron-containing transgenes are protected from nuclear RNAi

pathway in comparison with the strongly silenced intronless

transgenes (Christie et al., 2011). One hypothesis is that introns

or factors interacting with introns are capable of blocking the nu-

clear RdRPs found in yeast and plants (Dumesic and Madhani,

2013; Vermeersch et al., 2010). In contrast, in the pathogenic

yeast Cryptococcus neoformans unspliced introns are a signal

for sRNA biogenesis and silencing of genes and transposable

elements (Dumesic et al., 2013). Clearly, coTGS mechanisms

in different organisms have evolved, one way or the other, to

incorporate co-transcriptional processes for the regulation

of gene silencing. Unlike in yeast and plants, animals do not

possess nuclear RdRPs, and although C. elegans relies on

RdRPs for sRNA amplification, this process occurs in the cyto-

plasm (Phillips et al., 2012). Nuclear processes that lead to

coTGS in nematodes, flies, and mammals instead rely on the

transport of sRNAs from cytoplasm to the nucleus by Argonaute

proteins. Our results show that in animal coTGS pathways in-

trons can pose a barrier to transcriptional gene silencing, and

we provide evidence that the conserved spliceosomal helicase

Aquarius/EMB-4 is required to remove these inhibitory signals.
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E.M., Hur, J.K., Aravin, A.A., and Tóth, K.F. (2013). Piwi induces piRNA-guided

transcriptional silencing and establishment of a repressive chromatin state.

Genes Dev. 27, 390–399.

Tyc, K.M., Nabih, A., Wu, M.Z., Wedeles, C.J., Sobotka, J.A., and Claycomb,

J.M. (2017). The conserved intron binding protein EMB-4 plays differential

roles in germline small RNA pathways of C. elegans. Dev. Cell 42, this issue,

256–270.

Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-EMB-4 This paper 5M19

Rabbit polyclonal anti-HRDE-1 (Ashe et al., 2012) N/A

Rat monoclonal anti-OLLAS epitope tag Novusbio Cat#:NBP1-06713; RRID: AB_1625979

Rat monoclonal anti-alpha tubulin Accurate Chemical Cat#:YSRTMCA77P

Mouse monoclonal anti-alpha tubulin SIGMA DM1A; cat#: 9026; RRID: AB_477593

Rabbit polyclonal anti-Histone H3K9me3 Abcam Cat#: ab8898; RRID: AB_306848

Goat anti-rabbit AlexaFluor 568 Molecular Probes A11011; RRID: AB_143157

Goat anti-mouse AlexaFluor 647 ThermoFisher A-21235; RRID: AB_141693

Bacterial and Virus Strains

E. coli HB101 Caenorhabditis Genetics

Center

N/A

Critical Commercial Assays

TruSeq small RNA library preparation kit Illumina RS-200

NEBNext Ultra RNA library prep kit NEB E7530

Ribo-Zero rRNA Removal Kit Illumina MRZH11124

Deposited Data

SILAC proteomics data of HRDE-1 IPs This paper Proteinexchange PXD004416

Small RNA and total RNA sequencing data This paper E-MTAB-4877

H3K9me3 ChIP-Seq data This paper E-MTAB-5662

HRDE-1 bound 22G-RNA data (Sapetschnig et al., 2015) GSE66344

Experimental Models: Organisms/Strains

C. elegans: Strain SX1316 mjIs144 II (Bagijn et al., 2012) N/A

C. elegans: Strain SX2000 mjIs144 II; hrde-1(tm1200) III (Ashe et al., 2012) N/A

C. elegans: Strain SX2929 mjIs144 II; emb-4(qm31) V This paper N/A

C. elegans: Strain SX2930 mjIs144 II; emb-4(hc60) V This paper N/A

C. elegans: Strain SX3041 mjIs144 II; emb-4(sa44) V This paper N/A

C. elegans: Strain SX3073 mjIs588 II This paper N/A

C. elegans: Strain SX3074 mjIs144 II; hrde-1(tm1200) III; emb-4(sa44) V This paper N/A

C. elegans: Strain SX3078 mjIs588 II; hrde-1(tm1200) III This paper N/A

C. elegans: Strain SX3079 mjIs588 II; emb-4(qm31) V This paper N/A

C. elegans: Strain SX3117 emb-4(mjSi92) This paper N/A

C. elegans: Strain PD1504 ccSi1504 V This paper N/A

C. elegans: Strain SX3118 hrde-1(tm1200) III ccSi1504 V This paper N/A

C. elegans: Strain SX3179 emb-4(qm31) V ccSi1504 V This paper N/A

C. elegans: Strain VM285 neSi21 (Shirayama et al., 2012) N/A

Oligonucleotides

GFP mjIs144 RT-PCR Fwd: 50-TCTGTCAGTGGAGAGGGTGA-30 (Weick et al., 2014) N/A

GFP mjIs144 RT-PCR Rev: 50-TTTAAACTTACCCATGGAACAGG-30 (Weick et al., 2014) N/A

GFP mjIs588 RT-PCR Fwd:

50-CGTACCATCTTCTTCAAG-30
This paper N/A

GFP mjIs588 RT-PCR Rev:

50-GATGTTTCCGTCCTCCTT-30
This paper N/A

cgh-1 RT-PCR Fwd: 50-CCACCCCAGGAAGAATTCTC-30 (Weick et al., 2014) N/A

cgh-1 RT-PCR Rev: 50-GGTAAGTCTCGGCGTTTCTT-30 (Weick et al., 2014) N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

emb-4 RT-PCR Fwd: 50-TTCGTCCCCTGTTCCATATC-30 This paper N/A

emb-4 RT-PCR Rev: 50-ATCGGCTTCTGGCCTAAAAT-30 This paper N/A

act-3 RT-PCR Fwd: 50-CCAAGAGAGGTATCCTTACCCTCAA-30 This paper N/A

act-3 RT-PCR Rev: 50-AAGCTCATTGTAGAAGGTGTGATGC-30 This paper N/A

Recombinant DNA

pCFJ1416 (Psmu1:GFP2:smu1UTR)

GFP2-GFP with altered codons and smu1 introns

This paper (gift of Christian Frøkjær-Jensen)

CRISPR gRNA for emb-4 N-term

50-CAAGAAGCCGTGGTGACTCG-30
This paper Dharmacon

Software and Algorithms

MaxQuant quantitative proteomics software package (Cox and Mann, 2008) http://www.maxquant.org,

version 1.3.0.5

RepeatMasker (Smit et al., 2015) http://www.repeatmasker.org/,

version open-4.0.5

Cutadapt (Martin, 2011) Version 1.9.0

STAR aligner (Dobin et al., 2013) Version v2.5.1b

SAMtools (Li et al., 2009) v1.3

featureCounts (Liao et al., 2014) v1.5.0-p1

DESeq2 (Love et al., 2014) v3.2.2

Segemehl (Hoffmann et al., 2009) version 2.0

SeqPlots (Stempor and Ahringer, 2016) http://przemol.github.io/seqplots/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Eric A.

Miska (eam29@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. eleganswere grown under standard conditions at 20�C unless otherwise indicated. The wild-type strain was var. Bristol N2 (Bren-

ner, 1974). E.coli strain HB101 was used as the food source on NGM plates (Stiernagle, 2006). Adult C. elegans animals were

bleached to obtain synchronized L1 larvae population to grow synchronized animals used in experiments. Synchronized young adult

animals were used in most experiments unless otherwise stated. All strains used are listed in Key Resources Table. Developmental

stage of animals used in experiments are indicated in method details.

METHOD DETAILS

SILAC Proteomics
Bacterial and nematode growth conditions for SILAC experiments are previously described (Larance et al., 2011). Heavy (R10K8)

labelled wild-type animals and medium (R6K4) labelled hrde-1 mutant animals were grown to young adult stage, washed 33 with

M9 buffer and lysed in native lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% NP40, Roche complete pro-

tease inhibitor cocktail) by beat beating using zirconia beads and the PreCelys instrument (6,500 rpm, 3330 s with 30 s intervals at

4�C). The lysate was kept on ice for 30 min and centrifuged for 10 min at 16,000 rcf at 4�C to remove insoluble material. BCA assay

(Thermo Scientific) was used to determine protein concentration of the supernatant. 3-8 mg of total protein has been used for immu-

noprecipitations (IP) with 3mg of anti-HRDE-1 antibody coupled dynabeadsM270 (20 mg antibody / mg beads) for 1 hr at 4�C. Beads
were washed 33with wash buffer (10 mMTris-HCl pH 7.5, 300mMNaCl, 0.5 mMEDTA, Roche complete protease inhibitor cocktail)

and equal amounts of beads from heavy and medium labelled IPs were mixed together prior to elution at the final wash. Elution was

done by heating beads to 70�C for 10 min in LDS loading buffer. The eluted IP was loaded across multiple adjacent lanes (25 ml per

lane) on 1mm, 10-well, 4–12% (w/v) Bis-Tris NuPage gels usingMES running buffer according tomanufacturer’s instructions but with

the addition of 25 mM triscarboxyethylphosphine, and 50 mM N-ethylmaleimide in the LDS sample buffer. After electrophoresis at

150 V for 45 min, SYPRO Ruby staining was performed as per manufacturer’s instructions (Invitrogen).

Protein bands of interest were excised and destained in 1 ml of 50% acetonitrile and 250 mM ammonium bicarbonate at room

temperature for 45 min with shaking. The gel slice was dehydrated by incubation in 1 ml of 100% acetonitrile for 10 min at room
Developmental Cell 42, 241–255.e1–e6, August 7, 2017 e2
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temperature. All solution was carefully removed prior to the addition of 50 ml MS-grade trypsin (Promega) (12.5 ng/ml) in 100 mM

NH4HCO3 and incubation overnight at 37�C. Peptides were extracted by the addition of 0.1 ml of 5% formic acid and incubation

at 37�C for 1 hr. Peptides were further extracted by the addition of 0.1 ml of 100% acetonitrile and incubation at 37�C for 1 hr.

The gel slice was completely dehydrated by the addition of 0.5 ml of 100% acetonitrile and incubation at 37 �C for 10 min. The entire

supernatant was then vacuum-dried.

LC-MS/MS and Analysis of Spectra
Using a Thermo Fisher Scientific Ultimate 3000 RSLCnano UHPLC, 15 ml of peptides in 5% (vol/vol) formic acid (final volume �10 ml)

were injected onto an Acclaim PepMapC18 nano-trap column. After washingwith 2% (vol/vol) acetonitrile, 0.1% (vol/vol) formic acid,

peptides were resolved on a 50 cm X 75 mm C18 EasySpray reverse phase analytical column with integrated emitter over a gradient

from 2% acetonitrile to 35% acetonitrile over 220 min with a flow rate of 200 nl/min. The peptides were ionized by electrospray ioni-

zation at +2.0 kV. Tandemmass spectrometry analysis was carried out on aQ-Exactivemass spectrometer (Thermo Fisher Scientific)

using HCD fragmentation. The data-dependent acquisition method used acquiredMS/MS spectra on the top 30most abundant ions

at any one point during the gradient. The RAW data produced by the mass spectrometer were analysed using the MaxQuant quan-

titative proteomics software package (Cox and Mann, 2008) (http://www.maxquant.org, version 1.3.0.5). The MaxQuant output has

also been uploaded to the ProteomeXchange Consortium under the same identifier given above. This version of MaxQuant includes

an integrated search engine, Andromeda. Peptide and Protein level identification were both set to a false discovery rate of 1%using a

target-decoy based strategy. The database supplied to the search engine for peptide identifications was the combined C. elegans

and E. coli Swissprot and Trembl databases downloaded on the 12th July 2012. The mass tolerance was set to 7 ppm for precursor

ions and MS/MS mass tolerance was set at 20 ppm. Enzyme was set to trypsin (cleavage C-terminal to lysine and arginine) with

up to 2 missed cleavages. Deamidation of Asn and Gln, oxidation of Met, pyro-Glu (with peptide N-term Gln), phosphorylation of

Ser/Thr/Tyr, and protein N-terminal acetylation were set as variable modifications. N-ethylmaleimide on Cys was searched as a fixed

modification. The output fromMaxQuant provided peptide level data as well as protein group level data. We used the protein groups

as defined by the Maxquant package (Cox and Mann, 2008).

HRDE-1 SILAC IP Experimental Design, Statistical Rationale, and Data Analysis
Three biological replicates were performed for SILAC-IP analysis of HRDE-1 and this level of replication was chosen based upon the

variance detected in previous experiments using SILAC-IP analysis (Larance et al., 2012). To avoid disregarding low affinity binders,

we used a low stringency cutoff such that a protein needed to have a H/MSILAC ratio >1 in two out of three biological replicates in our

data analysis with MaxQuant to eliminate non-specific binding proteins. This yields excellent removal of environmental contaminants

(keratins, trypsin, antibody, etc.) that do not incorporate stable isotopes.

HRDE-1/EMB-4 Co-immunoprecipitations and Western Blot Analysis
For HRDE-1 immunoprecipitations (Figures 1E, S1E, and S1F), animals were harvested 24 hours post-L4 stage in 30 mM HEPES,

100 mM potassium acetate, 2 mM magnesium acetate and 10% glycerol (DROSO buffer). To lyse the animals, samples were

snap-frozen in liquid nitrogen as droplets and grinded to powder. C. elegans powder was then re-suspended in DROSO buffer sup-

plemented with 0.1% NP-40 and further lysed by sonication. Lysates were subsequently cleared by centrifugation. 2 mg of proteins

were used per IP at 4 mg/ml. For RNase treatment, lysates were either incubated with RNaseA or buffer for 30min at room temper-

ature prior to addition of antibodies. 10 mg antibody (normal IgG: SantaCruz Biotech, sc-2027; anti-HRDE-1: Genomic Antibody Tech,

custom (Kamminga et al., 2012)) was added to the lysates and incubated overnight at 4�C with rotation. 30 ml of proteinA/G-agarose

beads (SantaCruz Biotech, sc-2003) were incubated for 2 hrs the next morning. Immunoprecipitates were washed 4 times with

DROSO buffer and boiled with 23 sample buffer for 5 min to elute. Samples were then analysed by western blotting (Anti-Ollas:

Novusbio, NMP1-06713).

For EMB-4 immunoprecipitations (Figure S1H), 750 ml of synchronized gravid adults were dounced using a metal wheaton dounce

in DROSO ‘complete’ buffer (30 mMHepes, 100 mMpotassium Acetate, 2 mMMagnesium Acetate, 0.1%NP-40/Igepal, 2 mMDTT,

1 tablet/5mls Protease inhibitor (Roche), 1:100 Sigma Phosphatase Inhibitor 2, 1:100 Sigma Phosphatase Inhibitor 3.) until the worms

and the embryos were no longer visible. Lysate was cleared by centrifugation for 10min at 13,000xg in a pre-cooled centrifuge (4�C).
The concentration of the supernatant (total wormprotein) was determined by Lowry assay using Bio-rad Lowry assay kit. Each IPwas

performed from 5 mg protein. Lysate was pre-cleared with 25 ml protein A/G agarose bead slurry (Santa Cruz Biotech, beads are

equilibrated in DROSO complete buffer prior to use) for one hour at 4�C on a rotator. 5 mg (anti-Flag, Sigma Aldrich) or 50 ml of

EMB-4 antibody (specificity of EMB-4 antibodies are shown in Figure S1E) or buffer alone (no antibody control) was added to

each IP sample and incubated for two hours on a rotator at 4�C. Immune complexes were recovered using 50ml of a 50% slurry

of Protein-A/G agarose beads (Santa Cruz Biotechnology) and washed 6x5min at 4�C with DROSO buffer. Protein was eluted

from beads and denatured by incubation in Thermofisher 2x LDS sample buffer for 10min at 70�C. Input samples were prepared

from the same lysate at a concentration of 2ug/ul using Thermofisher 2xLDS sample buffer and reducing agent. Proteins were

resolved by SDS-PAGE on Criterion Precast gradient gels (4-15%, Biorad) and transferred to Hybond-C membrane(Amersham

Biosciences). The membrane was incubated overnight at 4�C with either: (i) affinity purified anti-EMB-4 (1:200), or anti-FLAG

(Sigma Aldrich, 1:1000) in PBST-5% milk solution (137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl, pH 7.4, and 5% [w/v]

dried milk). The membrane was incubated 2 h at room temperature with anti-mouse HRP-conjugated secondary antibody (Jackson
e3 Developmental Cell 42, 241–255.e1–e6, August 7, 2017
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Immunoresearch) diluted 1:1,000 in PBST and then visualized by Luminata ForteWestern HRP substrate. Full blots of all IPs are avail-

able in Figure S6.

qRT-PCR Analysis of GFP Expression
cDNA was synthesised from purified and DNase treated total RNA (1mg) using the SuperScript II enzyme and random primers as

described in the manual. qRT-PCR reactions were performed using Applied Biosystem Power SYBR Green Master Mix using primer

sequences to amplify GFP sequence (primer 1: 50-TCTGTCAGTGGAGAGGGTGA-30, primer 2: 50-TTTAAACTTACCCATGGAA

CAGG-30) and the endogenous germline control gene cgh-1 for normalisation (primer 1: 50-CCACCCCAGGAAGAATTCTC-30,
primer 2: 50-GGTAAGTCTCGGCGTTTCTT-30).

qRT-PCR Analysis of emb-4 Expression
cDNAwasgenerated from1mgofC. elegans total RNAusing randomhexamerswith Superscript III Reverse Transcriptase (Invitrogen).

qRT-PCR was performed using Applied Biosystems SYBR Green PCR Master mix with primers for emb-4 (primer 1: 50-TTCG
TCCCCTGTTCCATATC-30, primer 2: 50-ATCGGCTTCTGGCCTAAAAT-30) and for act-3 (primer 1: 50-CCAAGAGAGGTATCCTT

ACCCTCAA-30, primer 2: 50-AAGCTCATTGTAGAAGGTGTGATGC-30).

Western Blot Analysis of EMB-4 Expression
Proteins were resolved by SDS-PAGE on Criterion Precast gradient gels (4-15%, Biorad). and transferred to Hybond-C membrane

(Amersham Biosciences). The membrane was incubated overnight at 4�C with either: (i) affinity purified anti-EMB-4, or anti alpha-

tubulin (Accurate Chemical) antibodies diluted to 1:2000, in PBST-5% milk solution (137 mM NaCl, 10 mM Phosphate, 2.7 mM

KCl, pH 7.4, and 5% [w/v] dried milk). The membrane was incubated 1 h at room temperature with HRP-conjugated secondary

antibodies (Jackson Immunoresearch) diluted to 1:5,000 in PBST and then visualized by Western Lightning ECL Kit from Perkin

Elmer. Images were collected on a LAS-3000 Intelligent Dark-Box (Fujifilm).

Immunostaining of C. elegans Gonads and Embryos
For Figures 2C and S2A, gonads were excised from gravid adult worms in 1x PBS on poly-L-lysine coated slides, frozen and cracked

on dry ice for longer than 10minutes, and fixed at –20�C for 5 min in each of the following (15minutes total) respectively; 100%meth-

anol, 50% methanol/50% acetone, and 100% acetone. All sample incubations were performed in a humid chamber. Samples were

washed 2x 5min with 1xPBS, then 2x 5 mins with 1xPBS / 0.1% Tween-20. Samples are then blocked for one hour in 1xPBS/0.1%

Tween-20 / 3%BSA (PBST+BSA) at room temperature, and then incubated with primary antibody (1:500) overnight at 4�C. Slides
were washed 3x for 10 minutes with PBST, and then incubated for 1 hour in PBST+BSA. Secondary antibodies were from Jackson

Immunoresearch and Molecular Probes. Incubations with anti-mouse secondary antibodies were performed for one hour in

PBST+BSA at room temperature. Slides were washed 3x for ten minutes in PBST, 3x for 5 minutes in PBS and then incubated

with DAPI (1:2500) for 10 minutes at room temperature. Finally, slides were washed in PBS 3x for 5 minutes then mounted in Vecta-

shield (Vector Labs). All images were collected using Nikon Ti-S inverted microscope with NIS Element and AR software.

For Figure S2B, gonad stainings were performed as described in (Hong et al., 2016). Adult animal gonads were dissected in dissec-

tion buffer (25mMHEPES pH7.4, 2mMMgCl2, 2mMCaCl2, 48mMKCl, 0.12MNaCl, 0.2%Tween-20, 4mM levamisole) on cover slips

and fixed 5min by equal volume of fixation buffer (25mM HEPES pH7.4, 2mM MgCl2, 2mM CaCl2, 48mM KCl, 0.12 M NaCl, 0.2%

Tween-20, 4% formaldehyde). Glass cover slip were placed on poly-L-lysine coated glass slides and snap frozen in liquid nitrogen.

Cover slips were removed to freeze crack the samples and glass slides were incubated in cold 50% aceton / 50% methanol for

10 min. Glass slides were washed 3X with 1% Triton-X100 PBS buffer, blocked with Image-enhancer (Lifesciences) for 20 min

and blocked with blocking solution (PBS, 0.1% Tween-20, 1% BSA) for 20min. Slides were incubated with primary antibodies in

blocking solution overnight at 4�C (a-EMB-4 5M19 1:100, a-HRDE-1 1:500), washed 3X with wash buffer (PBS, 0.1% Tween-20)

and incubated for 2 hrs with secondary antibodies (a-mouse Alexa 647 1:750 (Lifetech) and anti-rabbit Alexa 568 1:750 (Lifetech).

Slides were 3X with wash buffer and mounted using VectaShield DAPI mounting medium. Images were taken using a Leica SP8

confocal microscope using same laser settings between all slides imaged.

RNA Sequencing
Synchronised animals were grown to young adult stage at 20�C on HB101 seeded NGMplates. Animals were harvested and washed

3X in M9 buffer. Settled animals were mixed with Trisure reagent, bead beaten as described in proteomics experiments above and

total RNA was isolated by a chloroform extraction.

For total RNA sequencing, Illumina Ribozero kit was used to remove ribosomal RNA from 1 mg of total RNA prior to library prep-

aration. RNA sequencing libraries were prepared using NEB Next Ultra library preparation kit. Small RNA sequencing performed by

treating 5 mg of total RNA with Epicentre 50 polyphosphatase to remove the 50 triphosphate from 22G-RNAs. After treatment, RNA is

purified by phenol/chloroform extraction and 1 mg of RNA is used to prepare small RNA libraries using Illumina TruSeq small RNA

library preparation kit. Ribosomal depleted RNA and small RNA libraries are sequenced using Illumina HiSeq 1500 platform.
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RNA Sequence Analysis
The ce10/WS220 genome fasta file was obtained from the WormBase ftp server. Sequences for the piRNA sensor transgene and

the piRNA sensor transgene with one intron were added as separate chromosomes when required. A GTF file containing annotations

for genes and pseudogene for version ce10/WS220 of the C. elegans genome were downloaded from the UCSC table browser.

To prevent multiple counts per read in the case of overlapping features, only the longest isoform of each gene was included in the

analysis. A GTF file containing annotations for transposable elements was generated by running RepeatMasker (Smit et al., 2015)

version open-4.0.5 in sensitive mode, run with rmblastn version 2.2.27+ using RepeatMasker database version 20140131, against

the ce10/WS220 genome fasta file. ‘‘Simple_repeat’’ and ‘‘Low_complexity’’ annotations were excluded from the analysis. Raw

fastq small RNA sequencing files were processed by removing the Illumina TruSeq adaptor sequence using cutadapt v1.9

(Martin, 2011), with parameters ‘‘–minimum-length 18 –discard-untrimmed -a TGGAATTCTCGGGTGCCAAGG’’. Raw fastq RNA

sequencing fileswereprocessedby removing theNEBNext adaptor sequence using cutadapt v1.9,with parameters ‘‘-a AGATCGGAA

GAGCACACGTCTGAACTCCAGTCAC’’. Adaptor-trimmed small RNA sequencing reads were aligned to the ce10/WS220 C. elegans

genome using STAR v2.5.1b (Dobin et al., 2013), with parameters ‘‘–outFilterMultimapNmax 50 –winAnchorMultimapNmax

50 –outFilterMismatchNmax 0 –limitBAMsortRAM 31000000000 –alignIntronMax 1 –alignEndsType EndToEnd –outSAMtype

BAM SortedByCoordinate –runThreadN 6 –outBAMsortingThreadN 6 –readFilesCommand ’gunzip -c’’’. Adaptor-trimmed RNA

sequencing readswerealigned to thece10/WS220C.elegansgenomeusingSTARv2.5.1b,withparameters ‘‘–outFilterMultimapNmax

5000 –winAnchorMultimapNmax 10000 –outFilterMismatchNmax 2 –alignEndsType EndToEnd –outSAMtype BAM

Unsorted –runThreadN –readFilesCommand ’gunzip -c’’’. AlignedRNA sequencing readswere sorted and indexed using samtools

v1.3 (Li et al., 2009). Counts against the annotations in theGTF fileswere generatedwith featureCounts v1.5.0-p1 (Liao et al., 2014),

with parameters ‘‘-T 6 -M –fraction’’. Normalised counts, variance-stabilised counts, fold change values, and adjusted p-values

were obtained using DESeq2 v3.2.2 (Love et al., 2014), called through a custom script.

We also used exon-intron split analysis (EISA) (Gaidatzis et al., 2015) to characterize the gene expression changes detected

between hrde-1 or emb-4 null and wild-type strains. Both exonic and intronic read counts were quantified using FeatureCounts

(Liao et al., 2014). When using EISA, we processed the counts and the annotation files by following the procedures described by

(Gaidatzis et al., 2015).

We calculated the 22G-RNA density using previously published small RNA sequencing data obtained from HRDE-1 immunopre-

cipitations in wild-type and mutant animals normalised to library size (Sapetschnig et al., 2015). We used a cut-off of 22G-RNA reads

in wild-type / hrde-1mutant controlR 4 for filtering out 22G-RNA reads that were unspecifically binding to anti-HRDE-1 antibody.We

then used the following calculation 22G-RNA density=# of 22G-RNA reads in HRDE-1 IP of gene A / RPKM of the gene A.

We carried out exon level sRNA differential expression by filtering out genes that have zero mapped reads in all samples and

normalising the samples by sample size using the Median Ratio Method (Anders and Huber, 2010) implemented in the R package

DESeq2 to adjust for factors like the coverage and sampling depth. Next, we log transformed the exon read counts for each

gene, performed a two-sample t-test on each exon independently and adjusted the p-values of testing results by false discovery

rate using the Benjamini & Hochberg method (Benjamini and Hochberg, 1995).

Histone H3K9me3 Chipmentation
H3K9me3 Chipmentation for wild-type, hrde-1(tm1200) and emb-4(qm31) young adult animals was performed according to (Schmidl

et al., 2015) with slight modifications. Briefly, 50,000 animals were frozen and crushed in liquid nitrogen prior to 1% formaldehyde

(SIGMA) fixation in 1XPBS. After 10 minutes of fixation at room temperature, 125 mM Glycine was added to quench the formalde-

hyde. Excess formaldehydewaswashed twicewith 1XPBS and oncewith the lysis buffer (50mMHEPES pH:7.5, 150mMNaCl, 0.1%

TX100, 1 mM EDTA, protease and phosphatase inhibitors). The pelleted extract was resuspended in the lysis buffer and sonicated

with a Bioruptor (15 SEC On, 90 SEC OFF, 10 cycles) to get 200-700 bps genomic DNA fragments at 4�C. 3 g of anti-H3K9me3

(Abcam, Ab8898) and 30 l Dynabeads Protein A (ThermoFisher) beads were incubated with 1 ml extract (Lysis buffer + 1% sarkosyl)

for 12 hours on a rotating wheel at 4�C. The immunoprecipitated chromatin was washed with 150 mM, 500 mM and 1 M NaCl

containing lysis buffer followed by LiCl and 1XTE pH:8.0 buffers, consecutively. Magnetic beads were resuspended in 1X tagmen-

tation buffer with 1 ml Tn5 transposase Tagment DNA Enzyme (Illumina Nextera DNA Prep Kit). Tagmentation was performed at 37�C
for 10 minutes. Beads were then washed twice with 1xTE pH:8.0. Two rounds of elution buffer (150 mMNaCl, 10 mM Tris pH:80, 1%

SDS, 1 mM EDTA) was used to elute the immunoprecipitated DNA at 65�C. Eluted DNA was RNase and Proteinase K treated for

1 hour at 37�C and 12 hours at 65�C, respectively. De-crosslinked DNA was purified with Invitrogen PCR Cleaning Kit and DNA

concentration was determined with Qubit HS DNA. In addition to ChIP DNAs, input DNAs were prepared from 5 ng purified DNA after

sonication via ChIP-tagmentation (Illumina Nextera DNA Prep Kit).

Amplification and Sequencing of Chipmentation Libraries
1 ml of each library was amplified in a 20 ml qPCR reaction containing 0.2 M primers, 1X SyberGreen qPCR mix in StepOnePlus to

determine the optimum number of PCR cycles in library preparation. Final libraries were prepared according to Illumina Nextera

DNA Prep Kit with N cycles of PCR, where N is equal to the Ct value obtained from the qPCR analysis. Sequencing was performed

in HiSeq2500 with using single end 50 bp reads.
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Bioinformatic Analysis of H3K9me3 Chipmentation Data
Sequencing reads were aligned to theWS220/ce10 assembly of theC. elegans genome using Segemehl version 2.0 (Hoffmann et al.,

2009) with 80% sequence similarity. SAMtools was used to convert aligned reads to BAM format. After mapping, the genome

coverage was calculated for all individual sample replicates. Replicates were subsequently merged after normalisation by the library

size factor s = c/g (with c: number of covered bases, and g: the size of the genome). Images for histone H3K9me3 enrichment on the

piRNA sensor were prepared with SeqPlots (Stempor and Ahringer, 2016).

Transgenic Animals
ThemjIs588 allele was generated by removing the introns two and three from the GFP sequence in the plasmid pEM975 that is used

to generate the mjIs144 allele. New plasmid is inserted on Chr II using the previously described MosSCI method (Frøkjær-Jensen

et al., 2008) into the same location as in mjIs144 allele. mjSi92 allele is generated by CRISPR tagging of endogenous emb-4

N-term with the OLLAS epitope sequence using CRISPR gRNA (50-CAAGAAGCCGTGGTGACTCG-30) and the repair template

plasmid pEM2058 using Cas9 protein and RNA injections as described in Paix et al. (Paix et al., 2015).

Structural Alignment of AQR and EMB-4
EMB-4 structure was determined by PHYRE-2 online prediction tool. Images were generated in Pymol (The PyMOL Molecular

Graphics System, Version 1.8 Schrödinger, LLC) and mutagenesis was performed in Chimera (Yang et al., 2012).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis of RNA-Seq, sRNA-Seq and H3K9me3 data is explained in the sections on these methods.

Normalised counts, variance-stabilised counts, fold change values, and adjusted p-values were obtained using DESeq2 v3.2.2,

called through a custom script. DESeq uses the negative binomial distribution to perform differential expression analysis. For

exon level sRNA analysis, we log transformed the exon read counts for each gene, performed a two-sample t-test on each exon

independently and adjusted the p-values of testing results by false discovery rate using the Benjamini & Hochberg method. For

the analysis of H3K9me3 ChIP data, the genome coverage of reads was calculated for all individual sample replicates. Replicates

were subsequently merged after normalisation by the library size factor s = c/g (with c: number of covered bases, and g: the size

of the genome).

Number of animals used in microscopy experiments are indicated in relevant figure legends. Error bars indicate standard deviation

unless otherwise stated in figure legends.

DATA AND SOFTWARE AVAILABILITY

SILAC proteomics, RNA-Seq, sRNA-Seq and H3K9me2 ChIP data is deposited to public databases as indicated in the Key Re-

sources Table.

The accession number for the SILAC proteomics data is Proteinexchange: PXD004416, the accession number for the RNA-Seq

data is ArrayExpress: E-MTAB-4877, the accession number for the ChiP-Seq data is ArrayExpress: E-MTAB-5662.
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