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Fragility and Controllability Tradeoff in Complex Networks

Fabio Pasqualetti, Chiara Favaretto, Shiyu Zhao, and Sandro Zampieri

Abstract— Mathematical theories and empirical evidence
suggest that several complex natural and man-made systems are
fragile: as their size increases, arbitrarily small and localized
alterations of the system parameters may trigger system-wide
failures. Examples are abundant, from perturbation of the
population densities leading to extinction of species in ecological
networks [1], to structural changes in metabolic networks
preventing reactions [2], cascading failures in power networks
[3], and the onset of epileptic seizures following alterations of
structural connectivity among populations of neurons [4]. While
fragility of these systems has long been recognized [5], convinc-
ing theories of why natural evolution or technological advance
has failed, or avoided, to enhance robustness in complex systems
are still lacking. In this paper we propose a mechanistic
explanation of this phenomenon. We show that a fundamental
tradeoff exists between fragility of a complex network and its
controllability degree, that is, the control energy needed to drive
the network state to a desirable state. We provide analytical and
numerical evidence that easily controllable networks are fragile,
suggesting that natural and man-made systems can either be
resilient to parameters perturbation or efficient to adapt their
state in response to external excitations and controls.

I. INTRODUCTION

Across diverse scientific disciplines and application do-

mains, complex systems are commonly represented as dy-

namic networks, where the interaction pattern among dif-

ferent parts is itself complex and may evolve along with

the system dynamics. With this formalism, nodes and edges

correspond, for instance, to populations of neurons and their

functional relations in neural networks, or to different species

and their trophic interactions in ecological networks, or to

generators, loads and connection lines in power networks.

Nodes sets are typically large; interconnections sparse and

heterogeneous. Despite being able to accomplish a rich set

of dynamic functionalities through different nodal and inter-

connection dynamics, many complex networks exhibit fragile

behaviors against relatively small parameters variations. This

is the case in ecological systems, where fragility affects the

chance that species can coexist at a stable equilibrium, the

variability of population densities over time, and the persis-

tence of community composition [5]. In neuronal networks,

fragility implies that small variations in certain synaptic

weights can suddenly destabilize the network and cause
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seizures [4]. Small edge weights changes are also thought

responsible for increases in ocean acidity [6], cascading

failures in power systems [7], and traffic congestions [8].

Fragility of complex networks stands out as a negative

feature, which, surprisingly, neither natural evolution nor

engineering development have been able to remedy. Research

in network science and graph optimization focuses primarily

on static network models and diagnostics, e.g., see [9],

[10], [11], [12], [13], and falls short in explaining net-

work fragility. Only fewer and more recent work addresses

dynamic network features, such as stability, fragility, and

controllability [14], [15], [16], [17], [18]. Yet, to the best

of our knowledge, a detailed link between fragility and

controllability in networks has not been established yet. In

this article we leverage network- and control-theoretic tools

to form a mathematical explanation of why several natural

and man-made networks are fragile. In particular, we show

that a fundamental tradeoff exists between the fragility of a

network and its controllability degree from exogenous inputs,

and that certain systems may sacrifice their robustness in

favor of an increased controllability degree.

Several definitions of fragility and controllability of a

network have been proposed over the years and in different

contexts. In this work, fragility measures the sensitivity of a

network to variations of the edge weights. In particular, we

quantify fragility of a stable network by measuring the norm

of the smallest change in the network weights rendering the

network unstable. To quantify the controllability degree of a

system we use the control-theoretic notion of controllability

Gramian. The controllability Gramian describes how signals

propagate across a network, and its eigenvalues can be used

to quantify the minimum control energy needed to steer the

network state between different values. Optimized networks

should feature low fragility and high controllability, so as to

remain stable against accidental perturbations, yet allow for

efficient manipulation from legitimate controls. Yet, we show

that these properties cannot be optimized simultaneously.

The contributions of this work are as follows. First, we

derive an inequality involving the controllability and fragility

degrees of a network, as measured respectively by the

smallest eigenvalue of the Gramian and by the norm of the

smallest perturbation rendering the network unstable, and the

ratio of the number of control nodes to the total number

of nodes (Theorem 3.1). In particular, this inequality and

its refined version for symmetric networks (Theorem 3.2)

show that the controllability degree of a network decreases

linearly when the number of control nodes decreases and/or

the network becomes less fragile. Although our inequalities

provide a qualitative characterization of the fundamental
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tradeoff between controllability and fragility in networks, we

also show (Remark 1) that tighter exponential bounds can be

derived at the expenses of a more involved notation. Second,

we quantify how the spectral and geometric properties of the

network differentially determine controllability and fragility

(Theorem 3.3). In particular, we show that fragility depends

upon the non-normality degree of the network, as measured

by the condition number of the network eigenvectors matrix,

and the stability radius of the network matrix, that is, the

distance between the eigenvalues of the network matrix

and the right-half complex plane. Further, the ratio of the

condition number to the stability radius of the network

constitute an upper bound for the smallest eigenvalue of

the Gramian. This implies that (i) normal networks are

less fragile yet potentially less controllable, (ii) less stable

networks are more fragile yet potentially more controllable,

and (iii) normal and highly-stable networks are robust but

poorly controllable, as also highlighted in previous results,

e.g., see [15]. Finally, we validate our results with numerical

studies on a class of competitive predator-prey networks.

The rest of the paper is organized as follows. Section II

contains the problem setup and the necessary preliminary

notions. Section III presents our technical results showing

that controllability and fragility are competing features in

complex networks. Finally, Section IV contains our examples

and numerical studies, and Section V concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

Consider a network represented by the directed graph G =
(V, E), where V = {1, . . . , n} and E ⊆ V ×V are the vertex

and edge sets, respectively. Let A = [aij ] be the weighted

adjacency matrix of G, where aij ∈ R 6=0 if (i, j) ∈ E , and

aij = 0 otherwise. We assume that a subset of nc nodes

(drivers) can be controlled independently from one another

and, to simplify the notation, we let the drivers be the first nc

nodes. The network dynamics are described by the following

linear, continuous-time, and time-invariant model:

ẋ(t) = Ax(t) +Bu(t), (1)

where x : R → R
n is the time-dependent vector of the nodes

states, ei ∈ R
n is the i-th canonical vector, B = [e1, . . . , enc

]
is the input matrix, and u : R → R

nc is the time-dependent

vector containing the inputs injected into the driver nodes.

We assume that the network matrix A is Hurwitz stable [19].

To quantify the controllability properties of the network

(1) we resort to the controllability Gramian, which, for every

control horizon tf > 0, is defined as

Wtf
=

∫ tf

0

eAtBBTeA
Ttdt. (2)

The controllability Gramian Wtf
is positive definite if and

only if (1) is controllable, and positive semi-definite other-

wise [20]. Further, the eigenvalues of Wtf
quantify the energy

needed to control the state of the network (1) between any

two states. For instance, if x(0) = 0, the minimum input

energy required to control the network state to x(tf) = xf is

xT

f W
−1
tf

xf. Thus, the larger the eigenvalues of the Gramian,

the more controllable the network from the driver nodes [15].

The controllability Gramian can be computed in different

ways. For instance, when the control horizon satisfies tf =
∞, the controllability Gramian W = W∞ is the unique

solution to the following Lyapunov equation:

AW +WAT = −BBT. (3)

Equivalently [21], W can be computed explicitly as

W =
1

2πi

∫

Γ

(zI −A)−1(−BBT)(zI +AT)−1dz,

where Γ is any curve in the complex plane that encloses all

eigenvalues of A. By letting Γ be the semi-circle enclosing

the left-half complex plane and i the imaginary unit,

W =
1

2π

∫ +∞

−∞

(ωiI −A)−1BBT(ωiI −A)−Hdω, (4)

where AH denotes the conjugate transpose of A. The expres-

sion (4) will be fundamental in the derivation of our results.

We now introduce the concept of network fragility, which

measures the ability of a network to maintain a stable

behavior against perturbations of its weights. Specifically,

we define the stability radius of the network (1) as

r(A) = min{‖∆‖ : A+∆ ∈ C
n×n is Hurwitz unstable}.

When the stability radius r(A) is small, then the network is

fragile, because small changes in the network weights can

induce unstable dynamics. Conversely, when r(A) is large,

the network maintains a stable behavior even after large

perturbation of its weights, and is therefore robust. We will

use the following equivalent characterization of r(A) [22]:

r(A) = min
ω∈R

σmin(ωiI −A) =
1

maxω∈R ‖(ωiI −A)−1‖
.

(5)

Clearly, r(A) ≤ σmin(A), the smallest singular value of A.

III. FRAGILITY AND CONTROLLABILITY TRADEOFF IN

COMPLEX NETWORKS

In this section we derive inequalities to characterize a

tradeoff between the controllability degree of a network

and its fragility to perturbations. In particular, we show

that controllability and fragility are directly related, so that

networks that are easy to control tend to be fragile and non-

fragile networks are difficult to control, and quantify that

controllability and fragility are independently influenced by

the algebraic and geometric structure of the network. Besides

their theoretical value, our result constitute a first mathemat-

ical explanation of why several highly-optimized natural and

technological networks are fragile (see Section IV).

Let λmin(A), λ̄(A), and λmax(A) denote the smallest,

mean, and largest eigenvalue to the matrix A.

Theorem 3.1: (Controllability vs fragility) For the net-

work (1) and for every α ∈ [0, 1] it holds:

λmin(W ) ≤ λ̄(W ) ≤
nc

n

(

1

2α
+

1

π

‖A−AT‖

(1− α2)

1

r(A)

)

1

r(A)
.

(6)
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Proof: Notice that

λ̄(W ) ≤
1

n
λmax

(∫ ∞

0

eA
TteAtdt

)

Tr(BBT)

=
nc

n

∥

∥

∥

∥

∫ ∞

0

eA
TteAtdt

∥

∥

∥

∥

. (7)

Further, from (4) we obtain:
∫ ∞

0

eA
TteAtdt (8)

= −
1

2π

∫ +∞

−∞

(ωiI −AT)−1(ωiI +A)−1dω

= −
1

2π

∫ +∞

−∞

[(ωiI +A)(ωiI −AT)]−1dω

=
1

2π

∫ +∞

−∞

[ω2I +AAT + ωi(AT −A)]−1dω. (9)

We now determine the values of ω satisfying

ω2I + ωi(AT −A) ≥ α2ω2I (10)

or, equivalently,

(1− α2)ω2I + i(AT −A)ω ≥ 0. (11)

Observe that AT−A is skew symmetric, and that i(AT−A)
is a Hermitian matrix [19]. It follows that the eigenvalues of

i(AT−A) are real and symmetric with respect to the origin.

Namely, if µ is an eigenvalue of i(AT−A), so is −µ. Further,

i(AT−A) admits an orthogonal basis of eigenvectors, which

implies that the maximum and the minimum eigenvalues of

i(AT−A) are ‖AT−A‖ and −‖AT−A‖, respectively. This

reasoning allows us to conclude that (11) holds if and only if

|ω| ≥ ω̄ =
‖AT −A‖

1− α2
. (12)

We now rewrite the integral (9) as
∫ ∞

0

eA
TteAtdt = I1 + I2,

where

I1 =
1

2π

∫ ω̄

−ω̄

[ω2I +AAT + ωi(AT −A)]−1dω,

I2 =
1

2π

∫ −ω̄

−∞

[ω2I +AAT + ωi(AT −A)]−1dω

+
1

2π

∫ +∞

ω̄

[ω2I +AAT + ωi(AT −A)]−1dω.

From (8), (9) and (12) it follows that

I1 ≤
ω̄

π
max

ω∈[0,ω̄]
‖(ωiI −AT)−1‖2

≤
ω̄

π
max
ω∈R

‖(ωiI −AT)−1‖2

=
ω̄

π

1

r(AT)2
=

ω̄

π

1

r(A)2

=
1

π

‖A−AT‖

1− α2

1

r(A)2
.

Similarly, from (10) and (12) it follows that

I2 ≤
1

2π

∫ −ω̄

−∞

[α2ω2I +AAT]−1dω

+
1

2π

∫ +∞

ω̄

[α2ω2I +AAT]−1dω

≤
1

2π

∫ +∞

−∞

[α2ω2I +AAT]−1dω.

Because AAT is symmetric, we have

AAT = UH diag(σi(A)
2)U, (13)

where U is a unitary matrix, σi(A) are the singular values

of A, and diag(si) is the diagonal matrix of the elements si.
Then, the integral I2 can be upper bounded as

I2 ≤
1

2π
UH

∫ +∞

−∞

diag

(

1

α2ω2 + σi(A)2

)

dω U

=
1

2π
UH diag

(

[

1

ασi(A)
arctan

(

α

σi(A)
ω

)]∞

−∞

)

U

=
1

2π
UH diag

(

π

ασi(A)

)

U =
1

2α
UH diag

(

1

σi(A)

)

U.

Consequently, we have that

‖I2‖ ≤
1

2ασmin(A)

where σmin(A) is the smallest singular value of A. To

conclude, (5) implies that r(A) ≤ σmin(A), which leads to
∥

∥

∥

∥

∫ ∞

0

eA
TteAtdt

∥

∥

∥

∥

≤
1

π

‖A−AT ‖

1− α2

1

r(A)2
+

1

2α

1

r(A)
. (14)

Theorem 3.1 provides a family of inequalities that reveal a

number of fundamental tradeoffs between the controllability

degree of a network, its fragility, and the number of driver

nodes. First, the fewer the driver nodes, the smaller the

Gramian eigenvalue λmin and, consequently, the larger the

energy needed to control the network to certain states.

Second, the larger the stability radius r(A), the smaller the

Gramian eigenvalue λmin, thus proving that robust networks

cannot be easy to control. Third, when the network dimen-

sion n grows and the number of driver nodes nc remains

constant, the product λminr(A) decreases, proving a decrease

of controllability (small λmin) or a loss of robustness (small

r(A)). Theorem 3.1 can be refined in different ways. For

instance, by letting α = 0.5 we obtain

λmin(W ) ≤ λ̄(W ) ≤
nc

n

(

1 +
4‖A−AT‖

3π

1

r(A)

)

1

r(A)
.

(15)

In fact, an optimal bound can be computed by minimizing

the right-hand side of (15) over the parameter α. Moreover,

the result further simplifies when the matrix A is symmetric.

Theorem 3.2: (Controllability vs fragility in symmetric

networks) For the network (1), if A = AT, then

λmin(W ) ≤ λ̄(W ) ≤
nc

n

1

2r(A)
. (16)
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(a)

(b)

Fig. 1. Fig. (a) shows the fragility degree of the network A1 in Example
1. As predicted by our results, because the controllability degree of A1 is
independent of the network cardinality n, the network becomes more fragile
as n the network cardinality increases. Fig. (b) shows the mean eigenvalue
of the controllability Gramian of the network A2 in Example 1. As predicted
by our results, because the fragility of the network satisfies r(A2) = 0.5
independently of n, the network controllability degree as measured by the
mean eigenvalue of the Gramian decreases as the cardinality n increases.

Proof: Because A = AT, from (6) we obtain

λmin(W ) ≤ λ̄(W ) ≤
nc

n

1

2α

1

r(A)
.

The statement follows by selecting α = 1.

Example 1: (Example of fragile and easy to control

networks) To illustrate our results, consider a network with

n nodes, nc = 1, and adjacency matrix A1 = [aij ], where

aij =



















−1/2, if i = j = 1,

−1, if j = i+ 1,

1, if j = i− 1,

0, otherwise.

(17)

It can be verified that the controllability Gramian equals the

n-dimensional identity matrix, independently of the network

cardinality n. See also [23], [24]. Thus, the network A1 is

easy to control. Yet, as illustrated in Fig. 1(a), the fragility

of the network increases with the network cardinality.

Consider now the a network with n nodes, nc = 1, and

adjacency matrix A2 = [aij ], where

aij =



















−1/2, if i = j,

−1, if j = i+ 1,

1, if j = i− 1,

0, otherwise.

(18)

It can be verified that A2 is a normal matrix, and that

r(A2) = 0.5 independently of the network cardinality. Thus,

the network A2 is robust to perturbation. Yet, as illustrated in

Fig. 1(b), the mean eigenvalue of the Gramian decreases with

the network cardinality, showing that the network becomes

more difficult to control as the cardinality increases. �

To reveal the network properties that determine the con-

trollability and fragility degrees, we next restrict our analysis

to diagonalizable networks. That is, we now assume that

the matrix A can be written as A = V ΛV −1, where Λ
is a diagonal matrix containing the eigenvalues of A. Let

κ(V ) = σmax(V )/σmin(V ) be the condition number of V ,

and define the stability radius of A as

s(A) = − max
i∈{1,...,n}

ℜ(λi(A)),

where ℜ(λi(A)) denotes the real part of the eigenvalue

λi(A). Notice that s(A) > 0 when A is Hurwitz stable.

Theorem 3.3: (Properties that determine controllability

and fragility) For the network (1), if A is diagonalizable as

A = V ΛV −1, then

λmin(W ) ≤ λ̄(W ) ≤
nc

n

κ2(V )

2s(A)
. (19)

Proof: Notice that

σmax

(∫ ∞

0

eA
TteAtdt

)

= σmax

(∫ ∞

0

V −HeΛ
HtV HV eΛtV −1dt

)

≤ σ2
max(V )σ2

max(V
−1)σmax

(∫ ∞

0

eΛ
HteΛtdt

)

= κ2(V )max
i

1

−2ℜ(λi(A))
=

κ2(V )

2s(A)
.

The claimed statement follows from equation (7).

Theorem 3.3 quantifies how different algebraic and geo-

metric network properties influence the controllability and

fragility degrees of a network. In particular, the first cause

of fragility is related to the location of the eigenvalues of the

networks, which is an algebraic characteristic of A: because

s(A) describes the distance of the eigenvalues from the

instability region, a small s(A) implies that a small change

of the network parameters may relocate eigenvalues that

are close to the imaginary axis to the right-half complex

plane. The second cause of fragility is κ(V ), which is

determined by the geometric structure of the network and

is often referred to as non-normality degree [25] of A. The

importance of the non-normality degree of a network on

its fragility is due to its influence on the sensitivity of the

eigenvalues of A to perturbations: when the network is highly

non-normal, a small change of the parameters may induce a
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(a)

(b)

Fig. 2. This figure shows the mean and smallest eigenvalue of the
controllability Gramian of random geometric networks with 20 nodes and
connectivity radius 0.6. The network matrix is a weighted Laplacian,
where each edge weight equals the inverse of the distance between its
end nodes and where the diagonal elements equal the negative sum of the
off-diagonal entries minus 0.1. Thus, these network are Hurwitz stable.
Figs. (a) and (b) show the mean and smallest eigenvalues of the Gramian,
respectively, averaged over 100 network instances. It can be seen that the
mean eigenvalue depends linearly on the number of control nodes, while the
smallest eigenvalue depends exponentially on the number of control nodes.

significant change in the location of the network eigenvalues,

thus leading to instability even when the network eigenvalues

are located far away from the imaginary axis. Clearly, a

network can be fragile due to either of the two causes (small

s(A) and large κ(A)), or for a combination of the two.

The result in Theorem 3.3 simplifies for normal networks

(κ(V ) = 1) [19], and it becomes

λmin(W ) ≤ λ̄(W ) ≤
nc

n

1

2s(A)
.

To conclude this section, in the following remark we

discuss the tightness of the above inequalities.

Remark 1: (Linear and exponential eigenvalues decay)

The inequalities (6), (16), and (19) reveal a tradeoff be-

tween the controllability degree of a network, its fragility

to parameters perturbations, and the number of driver nodes.

However, while these inequalities suggest that the smallest

eigenvalue of the Gramian depends linearly on the ratio

nc/n, the relation is in fact exponential as for the case of

discrete-time network systems [15]. To see this, recall from

[26] that the eigenvalues of the Gramian satisfy the inequality

λnck+1(W ) ≤ κ2(V )ρkλmax(W ),

where ρ < 1 depends only on the eigenvalues of A and

nck + 1 ≤ n. Let k̄ = ⌊(n− 1)/nc⌋, and notice that

λmin ≤ λk̄ ≤ κ2(V )ρk̄λmax(W ) ≤ κ2(V )ρ
(n−1)

nc λmax(W ).

By the same argument as in the proof of Theorem 3.3,

we obtain λmax(W ) ≤ κ2(V )/(2s(A)), where V is an

eigenvector basis of A. We conclude that

λmin ≤
κ4(V )

2s(A)
ρ

(n−1)
nc ,

which proves that the smallest eigenvalue of the Gramian

depends exponentially on the ratio nc/n (assuming that ρ
remains upper bounded by a constant ρ̄ < 1 as n increases).

Although our inequalities are loose for λmin, they are

instead tight for the mean eigenvalue λ̄(W ). We do not

provide a proof of this statement here and, instead, we

provide numerical evidence that the mean eigenvalue of the

Gramian depends linearly on the ratio nc/n; see Fig. 2. �

IV. CONTROLLABILITY AND FRAGILITY IN COMPETITIVE

PREDATOR-PREY NETWORKS

To illustrate our results we focus on networks arising from

the linearization of Lotka-Volterra predator-prey systems,

which describe the dynamic interaction of various competing

and cooperating species in a restricted environment; e.g., see

[27]. For a system with n species, the population density xi

of the i-th specie is described by the differential equation

ẋi = xi



gi +

n
∑

j=1

aijxj



 , (20)

where gi ∈ R is the growth coefficient of specie i, and aij ∈
R specifies whether specie i benefits (aij > 0) or suffers

(aij < 0) from the presence of specie j in the community

[25, Chapter XI]. For our numerical study we assume that

gi > 0, aii < 0, and that aij = −aji for all indices i 6= j
(competitive interaction among species). Further, we assume

that the species are at equilibrium xeq, which can be obtained

by solving the equation g = −Axeq, where g is the vector

of growth rates and A = [aij ]. In a neighborhood of xeq, the

network dynamics are captured by the Jacobian matrix of

(20), which can be written in matrix form as J = diag(xeq)A.

To characterize how controllability and fragility are re-

lated in predator-prey networks, first we randomly generate

adjacency matrices A reflecting competitive interconnection

among n species and equilibrium vectors xeq, and compute

the associated Jacobian matrices J = diag(xeq)A. Then, for

all networks corresponding to stable equilibrium configu-

rations, we evaluate and plot the mean eigenvalue of the

network controllability Gramian versus the fragility index

r(J) for the best choice of nc control nodes. The results of

our numerical study are reported in Fig. 3, where we see that

controllability and robustness are indeed inversely related.

Lastly, for the class of predator-prey networks described

above, in Fig. 4 we compare the bound obtained in Theorem

3.1, particularly (15), with the inequality in Theorem 3.3.
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Fig. 3. This figure plots in logarithmic scales the mean eigenvalue of the
controllability Gramian versus the fragility degree r(J) of 1000 randomly
generated predator-prey networks of dimension 20 (see Section IV). The
controllability Gramian is obtained for the set of 5 control nodes that
maximizes its mean eigenvalue. As we show in Theorems 3.1 and 3.3,
controllability and robustness are inversely related network properties.

Fig. 4. This figure compares in a logarithmic scale the mean eigenvalue of
the Gramian (blue) with the bounds in (15) (red) and Theorem 3.3 (black)
for 100 randomly generated ecological networks. For this class of networks,
Theorem 3.1 seems to provide a tighter bound than Theorem 3.3.

V. CONCLUSION

In this paper we study controllability and fragility of

complex networks. Controllability measures the energetic

effort needed to steer the network state between desirable

configurations, and is quantified by the eigenvalues of the

network controllability Gramian. Fragility, instead, measures

the ability of a network to maintain stability against pertur-

bations of its edge weights, and is quantified by the norm

of the smallest perturbation rendering the network matrix

unstable. We provide analytical and numerical evidence that

controllability and robustness are inversely related, effec-

tively showing that, when the network cardinality increases

and the number of control nodes remains constant, a network

can either be easy to control or robust to perturbations.

Further, we characterize algebraic and geometric properties

of the network matrix contributing to controllability and

fragility. In particular, we show that fragility depends on the

non-normality degree and the stability radius of the network

matrix, and that their ratio constitutes an upper bound for

the mean eigenvalue of the Gramian. Finally, we numerically

investigate tightness of our bounds, and illustrate our theories

through a class of competitive predator-prey networks.
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