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Asymptotic Approximations of Transient Behaviour for Day-to-Day

Traffic Models

David P. Watlinga, Martin L. Hazeltonb,∗
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bInstitute of Fundamental Sciences, Massey University, New Zealand

Abstract

We consider a wide class of stochastic process traffic assignment models that capture the day-
to-day evolving interaction between traffic congestion and drivers’ information acquisition and
choice processes. Such models provide a description of not only transient change and ‘steady’
behaviour, but also represent additional variability that occurs through probabilistic descrip-
tions. They are therefore highly suited to modelling both the disturbance and subsequent ‘drift’
of networks that are subject to some systematic change, be that a road closure or capacity re-
duction, new policy measure or general change in demand patterns. In this paper we derive
analytic results to probabilistically capture the nature of the transient effects following such a
systematic change. This can be thought of as understanding what happens as a system moves
from varying about one equilibrium state to varying about a new equilibrium state. The results
capture analytically the changes over time in descriptors of the system, in terms of link flow
means, variances and covariances. Formally, the analytic results hold asymptotically as approx-
imations, as we imagine demand increasing in tandem with capacities; however, our interest is
in general cases where such tandem increases do not occur, and so we provide conditions under
which our approximations are likely to work well. Numerical results of applying the methods
are reported on several examples. The quality of the approximations is assessed through com-
parisons with Monte Carlo simulations from the true underlying process.

Keywords: Markov process, network change, route choice, stochastic process, Stochastic User
Equilibrium, transportation network

1. Introduction1

There is substantial evidence that real-life transport networks are subject to considerable vari-2

ation, disturbance and change. Major efforts have been made in recent years to reflect such3

aspects in the models used to predict, control and analyse such networks. These efforts have4

advanced the standard practice of ‘comparative statics’, whereby static network equilibria are5

compared before and after some systematic change in the model inputs. In particular, we have6

seen substantial advances in modelling:7
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• Dynamic Traffic Assignment, in which a consistent treatment is made of time-varying8

flows and travel delays, aiming to reflect the typical within-day variations of demands9

and congestion patterns (e.g. Peeta and Ziliaskopoulos 2001, Szeto and Wong 2012).10

• Network Performance Variability, where elements of the transportation system are rep-11

resented through (steady state) random variables, aiming to capture phenomena such as12

between-day variations in demands, capacities and travel times (e.g. Castillo et al. 2014,13

Nakayama and Watling 2014).14

• Network Reliability, a broad field in which the risk-averse strategies of either travellers (e.g.15

in their route or departure time decisions) or planners (e.g. in their decisions regarding16

capacity allocation) are represented, in the face of unreliable performance on a route-,17

trip-, or network-level (e.g. Bell and Cassir 2000, Lam et al. 2014, Chen et al. 2011).18

• Dynamic Processes, in which the trip-to-trip learning process of drivers is explicitly mod-19

elled, allowing the study of the stability of point equilibrium solutions as well as other20

kinds of emergent behaviour, a rapidly growing field as evidenced by the literature in21

the recent reviews of deterministic Cantarella and Watling (2016) and stochastic process22

models Watling and Cantarella (2015).23

In the present paper we will be addressing the issue of network performance variability through24

the use of a dynamic process of drivers’ trip-to-trip learning, so in a sense we simultaneously25

address two of the research areas above. This is achieved by the use of a (day-to-day dy-26

namic) stochastic process model, for which there is now a growing literature (e.g. Cascetta27

1989, Cantarella and Cascetta 1995, Hazelton 2002, Hazelton and Watling 2004, Watling and28

Cantarella 2013, Parry et al. 2016). This focus on trip-to-trip learning and adaptation of route29

choice over days is distinctive from other models that consider the junction-by-junction adap-30

tation of travellers as they traverse a network on a particular day (e.g. Boyer et al. 2015), or31

models that represent stochastic queuing networks without route choice (e.g. Flötteröd and32

Osorio 2017), or models that represent route adaptation by a continuous-time adaptation (e.g.33

Zhang et al. 2015, Smith and Watling 2016).34

The particularly distinctive feature of our work is that we will focus on the transient stage of such35

a day-to-day dynamic process, as it adjusts between (stochastically) stable regimes, following36

some systematic network change to long-run capacities, tolls, demands or some policy measure.37

A particular practical motivation is the increased incidence of major innovations in mobility38

services (such as ride ride-sharing), typically implemented over a short time frame and leading39

to marked changes in patterns of traffic flow. While there has been an analysis of transient40

phenomena in other forms of traffic or queuing system (e.g. Huang et al. 2010, Jabari and Liu41

2013, Osorio and Yamani 2017), we are not aware of any theoretical work existing on transient42

stochastic processes of day-to-day dynamic route choice in the transportation literature.43

Although there is paucity of theoretical work on this issue of transience in a day-to-day dynamic44

context, there do exist a handful of empirical studies to stimulate our analysis. In particular45

Zhu et al. (2010) analysed several sources of data for evidence of the traffic and behavioural46

impacts of the I-35W bridge collapse in Minneapolis. Most pertinent to the present paper is47

their location-specific analysis of link flows at 24 locations. By computing the root mean square48

difference in flows between successive weeks, and comparing the trend for 2006 with that for49

2007 (the latter with the bridge collapse), they observed an apparent transient impact of the50

bridge collapse. They also showed there was no statistically-significant evidence of a difference51

in the pattern of flows in the period September–November 2007 (a period starting 6 weeks after52
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the bridge collapse), when compared with the corresponding period in 2006. They suggested53

that this was indicative of the length of a re-equilibration process in a conceptual sense.54

A second such empirical study is that reported in Watling et al. (2012). They analysed the55

impacts of two capacity interventions in the city of York, one a bridge closure and the other a56

capacity reduction for maintenance works. Through registration plate surveys conducted for a57

series of days before, during and after such interventions, the aim was to separate ambient daily58

variations from systematic changes, and they were indeed able to identify statistically significant59

impacts in this way. Calibrating an equilibrium model to the ‘before’ data only, for the case of60

the capacity reduction, the model was found to be broadly successful in predicting the impacts61

as seen in the ‘after’ data, with route choice in the neighbourhood of the intervention seemingly62

re-stabilising extremely quickly (i.e. the transience seemed very short).63

From these two empirical studies, it is relevant to ask to what extent the length and nature64

of a transient period may be specific to the typical network conditions, level of ambient vari-65

ation and the nature/level of the systematic change to the network. In principle day-to-day66

dynamic stochastic process models are very well suited to this task. However, the analysis of67

the properties of such models can present formidable challenges. A major breakthrough was68

provided by Davis and Nihan (1993), who focused on approximations derived (in essence) from69

an asymptotic regimen in which travel demand and network capacity increase in tandem. (This70

is of course just a mathematical device: in practice we will apply the results to general and non-71

asymptotic cases where such tandem increases do not occur). They showed that a vast range72

of stochastic day-to-day models can be approximated by a form of (discrete time) Gaussian73

autoregressive process.74

In theory these Gaussian processes can provide an excellent approximation to the properties75

of a more general stochastic model, both when the process is following its stationary distri-76

bution and also during transient periods. What is more, because the (multivariate) Gaussian77

distribution is specified by its mean vector and covariance matrix, the dynamics of the process78

are completely captured by the temporal variation of these quantities. Davis and Nihan (1993)79

described the evolution of the mean as a nonlinear process, and described the dynamics of80

the covariance matrix as an iterative updating scheme written in terms of Jacobians of cost81

and probability functions. However, these Jacobians need to be recalculated at every iteration.82

This will be computationally expensive for large networks, since the Jacobians are square ma-83

trices of dimension equal to the number of routes. Perhaps more importantly, the nonlinearity84

of the mean process and the temporal inhomogeneity of the Jacobians significantly reduces85

the mathematical tractability of the approximation model, and hence its utility for theoretical86

analyses.87

In order for the approximation to work over the entire space of feasible route flows, the need88

to update the Jacobians is unavoidable. However, we show that by using a single pair of time89

homogeneous Jacobian matrices, it is nevertheless possible to provide an accurate Gaussian90

process approximation that works within a relatively large neighbourhood of stochastic user91

equilibrium. It follows that our approximation has the capacity to describe transient properties92

of the underlying stochastic model over a range of states in a highly convenient manner. In93

essence our methodology works because the asymptotic order of the approximation error for the94

Jacobian matrices differs from the order of the purely stochastic variation. As a consequence,95

the fixed Jacobians continue to be applicable at flow patterns that differ from the mean of96

the stationary distribution by more than random variation; in other words, during transient97

periods.98
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To facilitate exposition we develop our results incrementally, beginning with simple types of99

network and route choice model. Section 2 introduces the notation and basic model elements,100

and then gives our main theoretical results (with proofs) for networks with a single origin-101

destination pair, and in which travellers’ route choices arise from a simple exponential learning102

model. Section 3 extends these results to general networks and learning mechanisms. Illustra-103

tive numerical results are presented in Section 4. Finally, section 5 contains conclusions and104

directions for future research.105

2. Modelling Framework and Initial Results106

Consider a transport network with m origin-destination (OD) pairs. The jth of these is serviced107

by nj routes. We model the flow on these routes over a sequence of disjoint time periods indexed108

by t, which we will often refer to as a ‘day’ although it need not correspond to a full 24 hour109

period. The total traffic volume on route j at day t is denote Xt
j , and the volumes on all routes110

is concatenated into the vector Xt. The traffic at time t generates a vector of route-specific111

travel costs c.112

At day t, travellers base their route choices on a disutility that is defined in terms of costs113

of route costs and disutilities over a history of τ earlier days. Let utj denote the (measured)114

disutility of route j at time t, and let ut be the corresponding vector of disutilities. Based115

on the disutilities ut, each traveller makes a route choice at time t. It is assumed that these116

choices are independent (conditional on the disutility), with the probability of selecting route117

j at time t being denoted ptj . These route choice probabilities are generated by a vector-valued118

route choice probability function p(ut).119

To facilitate exposition, we will focus initially on networks with a single origin-destination (OD)120

pair. We write ζ for the travel demand for that pair. This is assumed to be constant through121

time. However, our model can incorporate variable realized demand by introducing a dummy122

route that corresponds to the decision not to travel. If the number of potential travellers is123

large but the probability of travelling is relatively small, then our model can also approximate124

closely alternative models with Poisson demand.125

Define the vector of standardised route flows by xt = ζ−1Xt. In order to obtain tractable126

mathematical results using limiting theorems from probability and statistics, we follow Davis127

and Nihan (1993) and consider an asymptotic regimen in which ζ → ∞. Under such a process we128

can expect xt to converge to a finite deterministic limit courtesy of the Law of Large Numbers.129

In order to ensure that the route costs and disutilities remain finite as ζ → ∞, we assume that130

the former are function of the standardised flows. That is, c = c(x). This is equivalent to131

assuming that the capacity of the network increases in proportion to the travel demand.132

Consider for now a relatively simple exponential learning process, in which disutilities are133

updated each day based upon experience from the previous day according to134

ut = βc(xt−1) + (1− β)ut−1 . (1)

These disutilities then give rise to a vector of route choice probabilities pt = p(ut). This135

can be motivated in terms of each traveller minimizing his/her perceived disutility, where the136

perceptual variation is modelled by adding a vector of subject-specific random variables to137

ut. Assuming that each traveller at time t makes a route choice independent of the choices138

of the other travellers at that time, the random vector of unstandardized route flows follows a139
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multinomial distribution conditional on the current vector of disutilities. That is,140

Xt|ut ∼ Mn(ζ,p(ut)) .

The state st of the system at time t is defined by141

st =

(

ut

xt

)

.

Under our modelling assumptions, {st : t = 0, 1, 2, . . .} is a Markov process with initial state142

s0 (e.g. Davis and Nihan 1993). For a given demand parameter ζ we denote the state space143

by Sζ . To accommodate limiting behaviour as ζ → ∞, we define S = ∪∞
ζ=1Sζ . This space144

can be decomposed as S = Su × Sx, where Su and Sx denote subspaces corresponding to the145

coordinates of s indicated by the superscripts. The space Sx is compact, and so Su and hence146

S are likewise compact assuming (as we do henceforth) that the cost function c is continuous.147

The Markov chain process {st} will have a unique stationary distribution if it is regular. A148

sufficient condition for regularity is provided in Lemma 1 below, which is due to Davis and149

Nihan (1993) (Proposition 1). We note that this result also holds for the systems with multiple150

OD movements and more general utility specifications considered later in this paper.151

Lemma 1. [Davis and Nihan, 1993]152

Assume153

(A1) 0 < p(u) for all u ∈ Su.154

Then the process {st} is regular and hence has a unique stationary distribution.155

Remark 1: Assumption (A1) ensures that all routes retain a non-zero probability of being156

chosen, regardless of the variations in disutility. This property is common. For example, it157

applies to logit and Probit route choice models.158

We let s∗ denote the mean of the stationary distribution. This can be partitioned into means159

for the underlying route flow and disutility components according to s∗ =
[

u∗

x∗

]

. In developing160

our asymptotic approximations as ζ → ∞, we note that the pattern of route flows will become161

increasingly concentrated about the mean courtesy of the Law of Large Numbers. We therefore162

seek to linearize the dynamics of the process about s∗. Assuming that all second derivatives of163

the route cost function c and the probability function p are continuous, we have164

c(x) = c(x∗) +B(x− x∗) +O(||x− x∗||2)

where B is Jacobian matrix for c evaluated at x∗, and165

p(u) = p(u∗) +D(u− u∗) +O(||u− u∗||2)

where D is Jacobian matrix for p evaluated at u∗. In these equations and elsewhere in this166

paper, the O(·) order terms apply elementwise when added to vectors or matrices. For example,167

a vector v = O(a) indicates that lima→0 vi/a < ∞ for all coordinates vi. We define168

M =

(

(1− β)I βB
(1− β)D βDB

)

. (2)

We are now in a position to give our major results as they apply to a system with a single OD169

pair (assumed to be connected by two or more paths so as to avoid the trivial instance of a170

system with no route choice).171
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Theorem 1. Define ρ = ||s0 − s∗||. Assume (A1) and172

(A2) All eigenvalues of M have modulus less than one.173

(A3) All second derivatives of c and p are bounded on Sx and Su respectively.174

(A4) ρζ1/4 → 0 as ζ → ∞.175

Define µt = E[st]. Then as ζ → ∞,176

ζ1/2(st − µt)
L
→ N(0,Σt)

where
L
→ indicates convergence in law (i.e. distribution). The mean vector satisfies177

lim
ζ→∞

ζ1/2
{

(µt − s∗)−M(µt−1 − s∗)
}

= 0 (3)

and the covariance matrix evolves according to178

Σt = MΣt−1MT + V (4)

where179

V =

(

0 0

0 diag(x∗)− x∗x∗T

)

. (5)

Proof

Partition the mean as µt =

(

µt
u

µt
x

)

using the obvious subscript notation. Then

µt
x = E[xt] = E[E[xt|st−1]]

= E
[

p
(

βc(xt−1) + (1− β)ut−1
)]

= p
(

βc(µt−1
x ) + (1− β)µt−1

u

)

+O(ζ−1)

by a standard application of the delta method. Linearizing the functions p and c we obtain

µt
x = p(u∗) +D

(

βc(x∗) + βB(µt−1
x − x∗) + (1− β)µt−1

u − u∗
)

+O(ρ2 + ζ−1)

= p(u∗) + βDB(µt−1
x − x∗) + (1− β)D(µt−1

u − u∗) + β(c(x∗)− u∗) +O(ρ2 + ζ−1). (6)

The appearance of the additional O(ρ2) term in the remainder follows immediately when t = 1180

from the definition of ρ and the smoothness conditions. It also applies for t > 1 by iteration,181

noting that the eigenvalue condition on M avoids the remainder term blowing up as t becomes182

large.183

Turning to the disutility,

µt
u = E[ut] = E

[

E[ut|st−1]
]

= E
[

βc(xt−1) + (1− β)ut−1
]

= βc(µt−1
x ) + (1− β)µt−1

u +O(ζ−1) . (7)

Applying the same arguments as above, it follows that

µt
u = βc(x∗) + βB(µt−1

x − x∗) + (1− β)µt−1
u +O(ρ2 + ζ−1)

= c(x∗) + βB(µt−1
x − x∗) + (1− β)(µt−1

u − c(x∗)) +O(ρ2 + ζ−1). (8)
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When the process is stationary µt−1 = µt = s∗. It then follows from (7) that184

u∗ = c(x∗) + (1− β)(u∗ − c(x∗)) +O(ζ−1)

and hence185

u∗ = c(x∗) +O(ζ−1). (9)

Also,186

x∗ = p(u∗) +O(ζ−1) (10)

by another application of the delta method.187

Substituting equations (9) and (10) into (6) and subtracting x∗ from both sides gives188

µt
x − x∗ = βDB(µt−1

x − x∗) + (1− β)D(µt−1
u − u∗) +O(ρ2 + ζ−1).

Similarly, from equations (8), (9) and (10) we get189

µt
u − u∗ = βB(µt−1

x − x∗) + (1− β)(µt−1
u − u∗) +O(ρ2 + ζ−1).

Combining these two results gives190

(

µt
u − u∗

µt
x − x∗

)

=

(

(1− β)B βB
(1− β)DB βDB

)(

µt−1
u − u∗

µt−1
x − x∗

)

+O(ρ2 + ζ−1).

Collecting terms on the left-hand side and multiplying through by ζ1/2 gives191

ζ1/2
{

(µt − s∗)−M(µt−1 − s∗)
}

= O(ζ1/2ρ2 + ζ−1/2)

when equation (3) follows courtesy of assumption (A4).192

Turning to the covariance matrix,193

Var(st) = Var
(

E[st|st−1]
)

+ E
[

Var(st|st−1)
]

. (11)

The conditional expectation E[st|st−1] is a smooth function of st−1 and hence the first term on
the right-hand side is amenable to the delta method. In more detail,

E[st|st−1] =

(

βc(xt−1) + (1− β)ut−1

βp(c(xt−1) + (1− β)ut−1)

)

=

(

βBxt−1 + (1− β)ut−1

βDBxt−1 + (1− β)Dut−1

)

+O(ζ−1)

= Mst−1 +O(ζ−1).

Hence194

Var(E[st|st−1]) = MVar(st−1)MT +O(ζ−2) (12)

where the order of the remainder comes from noting that Var(st−1) = O(ζ−1).195

For the second term on the right-hand side of equation (11), observe that

Var(st|st−1) =

(

0 0
0 Var(xt|ut)

)

=

(

0 0
0 ζ−1diag(p(ut))− ζ−1p(ut)p(ut)T)

)

7



using the fact that ut is a deterministic function of st−1 and hence Var(ut|st−1) is the zero196

matrix. The form of the block corresponding to Var(xt|st−1) follows from the properties of the197

multinomial distribution.198

Now

E
[

Var(st|st−1)
]

= ζ−1

(

0 0
0 diag(E[p(ut)])− E[p(ut)p(ut)T])

)

= ζ−1

(

0 0
0 diag(p(µt

u))− p(µt
u)p(µ

t
u)

T)

)

+O(ζ−2)

by further applications of the delta method. Using earlier results on the evolution of µt
u, and

taking account of the continuity of p, this leads to

E
[

Var(st|st−1)
]

= ζ−1

(

0 0

0 diag(p(u∗))− p(u∗)p(u∗)T

)

+O(ζ−1ρ2 + ζ−2)

= ζ−1

(

0 0

0 diag(x∗)− x∗x∗T

)

+O(ζ−1ρ2 + ζ−2) .

Combining this result with equations (11) and (12) we get199

Var(st) = MVar(st−1)MT + ζ−1V +O(ζ−1ρ2 + ζ−2),

and therefore

Σt = ζVar(st) +O(ρ2 + ζ−1)

= MΣt−1MT +O(ρ2 + ζ−1).

Result (4) follows as ζ → ∞.200

Finally, a random variable following a Mn(ζ,p) for fixed p will converge in distribution to201

a (multivariate) Gaussian random variable as ζ → ∞. It hence follows that the conditional202

distribution of st|st−1 is normal in the limit. Moreover, for deterministic s0 it follows that s1203

has a marginal normal distribution as ζ → ∞, and hence the limiting distribution of st is also204

Gaussian by standard properties of the normal distribution, completing the proof.205

Remark 2: Assumption (A2) is also noted in Davis and Nihan (1993) as a requirement for206

the process {st} to be stationary when s0 = s∗. See Hazelton and Watling (2004) for further207

comments on the interpretation of this condition.208

In principle Theorem 1 can be used to describe the following approximation to the day-to-day209

model:210

st ∼ N(s∗ +M(µt−1 − s∗), ζ−1MΣt−1MT + ζ−1V ) . (13)

However, this is of limited practical utility because it requires knowledge of the stationary mean211

s∗ of the process. To counter this, in Corollary 1 below we show that the results in Theorem212

1 continue to hold when we replace x∗ and u∗ respectively by x† and u† = c(x†), where x† is213

Daganzo and Sheffi’s (1977) Stochastic User Equilibrium (SUE) flow pattern. This is important214

because the SUE flow pattern can be calculated using routine techniques, and so Corollary 1215

provides a computationally cheap way of approximating the properties of day-to-day traffic216

models.217

Corollary 1 follows directly from the following Lemma, which describes the proximity of x† to218

x∗.219
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Lemma 2. Assume (A1), (A3) and220

(A5) The equation x = p(c(x)) has a unique solution x†.221

Define s† =
[

u†

x†

]

. Then s† = s∗ +O(ζ−1).222

Proof223

Hazelton and Watling (2004) (Corollary 1) proved that x† = x∗ +O(ζ−1). Now u† = c(x†) by224

the definition of SUE. Then u† = c(x∗) + O(ζ−1) by an application of Taylor’s theorem, and225

hence u† = u∗ +O(ζ−1) courtesy of equation (9). This completes the proof.226

Remark 3: A discussion of sufficient conditions for the existence of a unique SUE flow pattern227

can be found in Cantarella and Cascetta (1995). In brief, monotonicity of the functions c and228

p is adequate.229

Corollary 1. Assume (A1), (A2), (A3), (A4) and (A5). Let B and D denote the Jacobian230

matrices for c and p evaluated at x† and u† respectively, and let M be define according to231

equation (2) in terms of these Jacobians. Then as ζ → ∞ the results of Theorem 1 continue to232

hold when x∗ and u∗ are replaced by x† and u† respectively, and M is defined as above.233

In comparison to Theorem 1 and Corollary 1, Davis and Nihan (1993) provide separate asymp-234

totic results for the cases (i) where the system is following its stationary distribution, and (ii)235

when it is displaying transient behaviour. Their work implies that the marginal distribution of236

st in its stationary state is N(s†, ζ−1Σ) where Σ is the fixed point for the recursion in equation237

(4). Under transient conditions the distribution of st is N(µt, ζ−1Σt) where the mean vector238

evolves according to the non-linear process239

µt = p(c(µt−1)) (14)

and Σt evolves according to equation (4), but where M is computed in terms of Jacobians B and240

D evaluated at µt−1
u and µt−1

x respectively. See the implications of Proposition 3 as discussed241

by Davis and Nihan (1993) for details.242

Davis and Nihan’s (1993) results for transient behaviour are more general than ours in that243

assumption (A4) is unnecessary. This means in principle their approximation can describe the244

evolution of the traffic flow pattern for any initial flow pattern s0 ∈ S. In order to achieve this,245

the evolution of the mean process cannot be specified in the linear manner of equation (3), and246

computation of the dispersion matrix requires new Jacobian matrices to be calculated at each247

time point.248

In contrast, Corollary 1 is based upon an asymptotic regimen in which s0 converges asymptoti-249

cally to s∗, so that (intuitively speaking) the process remains (with probability one) sufficiently250

close to s† for a fixed pair of Jacobian matrices to provide an adequate description of the dy-251

namics. Nonetheless, it is critical to note our linear approximation does cover cases in which252

the initial point is arbitrarily far from the stationary mean in a relative sense. To see this, note253

that E[||st−s∗||]/||s0−s∗|| = O(ρ−1ζ−1/2) when st follows its stationary distribution, with the254

same result holding when s∗ is replaced by s†. If we select an asymptotic regimen for which255

ρζ1/4 → 0 and ρζ1/2 → ∞ as ζ → ∞ then Theorem 1 and Corollary 1 hold but s0 is essentially256

inconsistent with the stationary distribution and is instead a state that one would only observe257

under non-stationary (transient) conditions. Setting ρ = ζ−1/3 is an example of an asymptotic258

scheme that captures this behaviour.259

It follows that Corollary 1 provides a convenient tool for examining transient behaviour without260

the computational expense required to implement Davis and Nihan’s (1993) approximation.261
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Furthermore, because we are able to describe the dynamics of the system (within a suitable262

neighbourhood of s†) using a single time-homogenous matrix M , our asymptotic approximation263

is very convenient for subsequent mathematical analysis. For instance, we are able to confirm264

that the system will settle down to its stationary distribution in a predictable manner so long265

as the eigenvalues of the matrix M (computed using Jacobians calculated at SUE) all have266

modulus less than one. We return to this point in the numerical experiments in Section 4.267

Finally, we observe that Theorem 1 and Corollary 1 assume a fixed (deterministic) initial value268

s0. However, it is straightforward to show that these results will also hold if s0 is normally269

distributed with covariance matrix of order O(ζ−1).270

3. Extension to General Networks and Learning Models271

In this section we first consider how to extend the previous results to networks with multiple272

OD movements. In order to do so, we need to first extend some of the notation presented273

earlier.274

Suppose now that there are m ≥ 1 origin-destination (OD) movements, and that in total there275

are n possible routes across all OD movements. Let ζ denote the total demand across all OD276

movements, and define the m-vector of weights w such that ζw is the vector of (integer) OD277

demands. Let the n×m matrix Γ denote the route-OD incidence matrix, equal to 1 if a given278

route serves a given OD pair and 0 otherwise. Then diag(ζΓw) is an n × n diagonal matrix,279

with diagonal entries equal to the relevant OD demand corresponding to each route.280

As before, Xt denotes the random route flow vector at time t, and xt = ζ−1Xt is the standard-281

ized version thereof. We now partition these vectors by OD pair as Xt = (Xt
1,X

t
2, ...,X

t
m)T282

and xt = (xt
1,x

t
2, ...,x

t
m)T respectively, so that xk is the vector of standardized route flows283

for OD pair k. The vectors of route costs c, disutilities u and route choice probabilities p are284

partitioned after the same fashion.285

Travellers select a route only from those connecting relevant OD pair. We continue to assume286

that route choices at time t are made independently (conditional on the past), so that287

Xt
k|u

t ∼ Mn(ζwk,pk(u
t))

for k = 1, . . . ,m. The conditional expectation of xt is therefore given by288

E[xt|ut] = diag(Γw)p(ut) .

Expanding asymptotically as ζ → ∞, we obtain289

E[xt|ut] = diag(Γw)D +O(ζ−1)

where D continues to denote the Jacobian matrix for p evaluated at the stationary mean290

disutility u∗.291

If we continue to work with the simple exponential learning model from (1), then the appropriate292

form of the matrix M for multiple OD pairs is293

M =

(

I
diag(Γw)D

)

(

(1− β)I βB
)

=

(

(1− β)I βB
(1− β)diag(Γw)D βdiag(Γw)DB

)

.
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The covariance matrix V is adapted for multiple OD pairs so that294

V =

(

0 0

0 Ṽ

)

. (15)

where Ṽ is a block diagonal matrix formed based on the OD-partitioned stationary mean vector295

x∗ = (x∗
1,x

∗
2, ...,x

∗
m) with its m diagonal blocks given by:296

Ṽk = wk
−1

(

diag(x∗
k)− x∗

kx
∗
k
T
)

(k = 1, 2, ...,m).

With these modifications to M and V , Theorem 1 applies to networks with multiple OD pairs.297

While the simple exponential learning model from (1) is popular for modelling day-to-day298

dynamics, far more flexibility is permitted through the disutility formulation299

ut = f(ut−1, c(xt−1),ut−2, c(xt−2), ...,ut−τ , c(xt−τ )) (16)

where f is a temporally homogeneous smooth function. See Davis and Nihan (1993). For such300

a learning model the appropriate state vector becomes301

st =























ut

xt

ut−1

xt−1

...
ut−τ+1

xt−τ+1























.

The process {st : t = 0, 1, 2, . . .} is once again a regular Markov chain under our standard302

assumptions on the functions c and p. It therefore has a unique stationary distribution, the303

mean of which is denoted s∗ as before.304

In order to extend our results the new general learning model we must linearize f about the305

stationary mean. To that end we define ∂f
∂ut−j to be the Jacobian matrix of f with respect to306

ut−j using the argument ordering from (16), evaluated at s∗. Similarly, ∂f
∂xt−j is the Jacobian307

matrix with respect to xt−j . We then form the matrices308

Fj =

(

I
diag(Γw)D

)

(

∂f
∂ut−j

∂f
∂xt−jB

)

(j = 1, 2, ..., τ) . (17)

Asymptotically, the dynamics of the moments of the process are now governed by the matrix309

M =









F1 F2 F3 ... Fτ−1 Fτ

I 0 0 ... 0 0
0 I 0 ... 0 0
0 0 0 ... I 0









. (18)

We are now in a position to generalize Theorem 1 and its corollary.310

Theorem 2. Consider a dynamic traffic model with a general pattern of travel demand, and a311

learning model specified by (16). Define ρ = ||s0 − s∗||. Assume (A1), (A2), (A3), (A4), (A5)312

above, and also313

(A6) All second derivatives of f are bounded on S.314
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Then the results (3) and (4) specified in Theorem 1 hold with M and V are defined according315

to (18) and (15) respectively.316

The proof is a straightforward extension of the proof of Theorem 1 and so is omitted. We note317

that Lemma 1 continues to hold for the more general networks and learning models, leading to318

the following corollary.319

Corollary 2. Assume (A1) to (A6). Let the matrices F1, . . . , Fτ be defined according to equa-320

tion (17), where all Jacobian matrices are evaluated at the appropriate coordinates of s†, and321

let M be as defined in equation (18). Then as ζ → ∞ the results of Theorem 2 continue to hold322

when x∗ and u∗ are replaced by x† and u† respectively.323

4. Numerical Studies324

We first illustrate our results using a numerical study on a simple network with a single OD
movement, three parallel links/routes and OD demand ζ = 40. The cost functions for the three
routes are respectively

c1(x) = 2 + 8x1

c2(x) = 3 + 10x22

c3(x) = 6 + 25x23

where x = X/ζ is the standardized traffic flow. The disutility updates according to the simple325

convex combination from (1), with β = 0.05. We employ a logit route choice model, so that326

the probability that a traveller takes route j at time t is327

pj(u
t) =

exp(−θutj)
∑

i∼j exp(−θuti)
(19)

where i ∼ j indicates that routes i and j serve the same OD pair.328

The ensuing numerical results were obtained using the software R version 3.4.3 (R Core Team329

2017) running under Windows 10 on a computer with 16 GB of memory. In all cases we330

implemented our linear approximations based on Corollary 2, so that st ∼ N(µt,Σt) with331

µt = s† +M(µt−1 − s†)

and332

Σt = MΣt−1MT + V,

where M and V are computed by evaluating the requisite matrices at the SUE vector s†.333

To begin with the logit parameter is set to θ = 0.3. The (unstandardized) SUE flow pattern334

is then X† = (15.15, 16.61, 8.24)T (to two decimal places). The matrix M has maximum335

eigenvalue 0.95, so condition (A1) holds and we may expect our asymptotic approximation to336

perform well. To assess this, we generated 1000 simulations of the model, each over a period337

of T = 30 days. These simulations were used to estimate the true mean of the process, and338

also provide limits for 95% prediction intervals for flows at each day. These results for the true339

process (plotted in red) are compared with our approximations (black line) in Figure 1. The340

95% prediction intervals are derived from the standard ‘mean ± 2 standard deviations’ courtesy341

of the limiting normal distribution, so their accuracy is a direct reflection of the quality of the342
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approximations of the corresponding variance terms. A more refined approximation for the343

mean using Davis and Nihan’s (1993) methodology (see equation 14) is plotted as a dotted line,344

and the associated prediction intervals are likewise plotted with dots. The time plots for the345

first 10 simulations are also plotted (in light purple) for comparison.346
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Figure 1: Three-route example with logit parameter θ = 0.3. The unbroken lines depict the true mean flow (red
line) and our linear approximation thereof (black line). The dotted central line is the mean approximation using
Davis and Nihan’s (1993) nonlinear methodology. The outer lines indicate limits of 95% prediction intervals for
flows, matched to the mean by plotting symbol and/or colour. The jagged light purple lines show the realized
time plots of traffic flows from 10 simulations of the model.

Clearly our approximations have worked well in Figure 1. This is true not just for the period347

after about time 20 when the process has settled down to its stationary distribution, but348

also during the transient period. The initial state of the system was obtained by perturbing349

the SUE disutility vector, so that u1 = u† + (4, 0, 4)T. Importantly, this means that the350

(understandardized) initial flow X1 = (7.72, 28.09, 4.20)T is outside the standard range of flows351

that we see when the process is stationary. For example, focusing on route 2, the initial flow352

X1
2 = 28.09 is well outside the stationary 95% prediction interval, (10.95, 23.49). Despite using353
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fixed Jacobian matrices, our approximations can provide useful guidance regarding transient354

behaviour, as foreseen in our discussion at the end of Section 2. Davis and Nihan’s (1993)355

nonlinear approximation is a only marginally more precise.356

For our second numerical illustration we work with exactly the same network and model, but357

use a far more extreme initial state. Specifically, we set u1 = u† + (12, 12, 0)T. This means358

that the initial utility is 3 times more extreme (in comparison to the stationary mean utility)359

than in the previous case. The results are displayed in Figure 2 in exactly the same manner as360

for Figure 1.361
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Figure 2: Three-route example with logit parameter θ = 0.3 and very extreme initial state. The unbroken lines
depict the true mean flow (red line) and our linear approximation thereof (black line). The dotted central line is
the mean approximation using Davis and Nihan’s (1993) nonlinear methodology. The outer lines indicate limits
of 95% prediction intervals for flows, matched to the mean by plotting symbol and/or colour. The jagged light
purple lines show the realized time plots of traffic flows from 10 simulations of the model.

Clearly our linear approximation works less well over the transient period in Figure 2 than in362

the previous case. In essence, condition (A4) is failing with the more extreme initial state. In363
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this second example, the Jacobian matrices for the cost and probability functions evaluated at364

SUE provide quite a poor description of rates of change at state s1. What is more, because365

of the form of the learning model and the relatively small value of β, travellers forget the366

initial disutilities rather slowly. The result is that the inaccuracy in the mean approximation367

(and prediction intervals) persists for several days. By contrast, Davis and Nihan’s (1993)368

approximation remains rather accurate.369

We continue with the same 3 route network for our third example, but we increase the logit370

parameter to θ = 1.1 and also increase the coefficient of xr in each cost function through371

multiplication by a factor of 5r. The latter change is equivalent to imposing a five-fold decrease372

in the nominal capacity of each link. The consequence of these modifications is a far more373

reactive system, with travellers sensitive to modest changes in disutilities, and route costs374

sensitive to relatively small changes in traffic volumes. The results for this example are displayed375

in Figure 3 in the usual manner.376

The initial state in this latest case is not far from SUE; it was generated by setting u1 = u† +377

(2, 2, 0)T. However, it is clear that our linear approximation method breaks down completely,378

with the approximate mean process (depicted by the black line) oscillating wildly at the later379

time points. The approximated variances degrade even more swiftly, as evidenced by the rapid380

divergence of the bounds of the 95% prediction intervals (depicted by the dashed black lines).381

The explanation for this behaviour is that the largest eigenvalue of the matrix M is λmax = 1.22,382

so that assumption (A1) fails and so Theorem 1 and Corollary 1 do not apply. We note that383

using Davis and Nihan’s (1993) nonlinear form for the evolution of the mean (equation 14), and384

iteratively updating the Jacobian matrices when computing the covariance matrices, does not385

provide a remedy. The corresponding dotted line approximations to the mean and prediction386

intervals are also hopelessly inaccurate.387

For our final pair of numerical examples we consider a section of the road network in the English388

city of Leicester, as abstracted in Figure 4. This network has 85 OD pairs, and a total of 123389

plausible routes. We use OD travel demands based on the analysis from Hazelton (2015). Link390

cost functions are quadratic, so that the cost function for route j can be written as391

cj =

50
∑

i=1

aijαi

[

1 +

(

yi
βi

)2
]

where aij = 1 if link i is part of route j, and aij = 0 otherwise. The flow on link i is denoted392

yi, and αi and βi are link specific parameters, with the latter representing the link capacity.393

The vector of link flows can be computed from route flows by y = Ax, where A = (aij) is the394

link-path incidence matrix. Disutilities are modelled using (1) with β = 0.05, and route choice395

probabilities are computed using the logit model (19) with parameter θ = 0.1.396

In our first test with this network, we simulate flows for a sequence of 50 days. On day 15 we397

impose a 50% reduction in the capacity of link 7; the capacity returns to normal the next day.398

This could represent the effects of minor road works or an accident, for example. We will now399

focus on travel between node 1 and node 20, which corresponds to journeys from the centre of400

the city to the University of Leicester. There are several plausible routes for this journey, of401

which two carry a significant amount of traffic. These are labelled routes 12 and 16 (from the402

total of 123 routes). Link 7 forms part of route 12, but is not part of route 16.403

We conducted 1000 simulations of the system using the Markov model. The results are plotted404

in the standard manner for routes 12 and 16 in Figure 5. As expected, the reduction in405

capacity of link 7 results in a temporary shift of travellers from route 12 to route 16. Clearly406
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Figure 3: Three-route example with logit parameter θ = 1.1 and greatly reduced link capacities. The unbroken
lines depict the true mean flow (red line) and our linear approximation thereof (black line). The dotted central
line is the mean approximation using Davis and Nihan’s (1993) nonlinear methodology. The outer lines indicate
limits of 95% prediction intervals for flows, matched to the mean by plotting symbol and/or colour. The jagged
light purple lines show the realized time plots of traffic flows from 10 simulations of the model.

our linear approximation methodology has provided an accurate representation of the transient407

behaviour of the system following the disruption. Naturally Davis and Nihan’s (1993) nonlinear408

approximation is also excellent. However, we note that it took more than ten times as long to409

run as our linear approximation (40.6 CPU seconds versus 3.8 CPU seconds).410

For our second test with the Leicester network, we simulate the system for 730 days (i.e. two411

years). On day 366 we reduce the capacity on link 7 by 20%, and then hold it therefore412

there for the entirety of the second year. Again we focus on the results for flows on routes413

12 and 16, which are plotted in the standard manner in Figure 6. We observe that Davis414

and Nihan’s (1993) nonlinear approximation is extremely accurate throughout the period. Our415

linear approximation for the evolution of the mean flows is also very accurate, but there is a416
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Figure 4: Abstraction of part of the road network in the English city of Leicester.

small inflation in the range of the prediction intervals. By the end of the two years the system417

has settled down to a new stationary distribution. It is interesting to note how well our linear418

methodology manages to describe this new distribution, given that the approximation is based419

on the initial SUE flow pattern. Clearly the means of the two stationary distributions are420

sufficiently close for assumption (A4) to be largely applicable.421

For this longer simulation experiment, our linear approximation took 12.4 CPU seconds to422

run. By comparison, Davis and Nihan’s (1993) nonlinear approximation required 575.8 CPU423

seconds.424

5. Conclusions425

Stochastic process models of transportation networks provide a rich description of both tran-426

sient dynamics and random variation within a self-consistent framework. They therefore seem427

highly suited to many contemporary opportunities and challenges, such as understanding the428

disruptive impacts of planned road maintenance or network changes, or quantifying the impacts429

of policies and changes in demand on network (un)reliability. They have already been shown430

to be particularly effective in assessing the effectiveness of measures designed to mitigate the431

impacts of unexpected variation, such as through pricing (Liu et al. 2017), information (Zhao et432

al. 2018), or traffic control (Liu et al. 2006). However, conventional Monte Carlo-based meth-433

ods of estimating such processes suffer from several difficulties, not only high computational434
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Figure 5: Routes 12 and 16 for the Leicester network, with an intervention applied at day t = 15 only. The
unbroken lines depict the true mean flow (red line) and our linear approximation thereof (black line). The dotted
central line is the mean approximation using Davis and Nihan’s (1993) nonlinear methodology. The outer lines
indicate limits of 95% prediction intervals for flows, matched to the mean by plotting symbol and/or colour. The
jagged light purple lines show the realized time plots of traffic flows from 10 simulations of the model.

demands but also the difficulty in interpreting model outputs, a key challenge being to separate435

systematic change in these outputs from random variation.436

In the present paper we have derived theoretical results and associated approximations that437

allow such problems to be circumvented, by allowing the transient evolution of the first two438

moments of the state variables to be modelled without the need for simulation, and with only439

knowledge of an equilibrium state. In numerical experiments, we have demonstrated how our440

theoretical results allow us to anticipate the circumstances in which such an approximation441

may work well, and where it may break down. For practical application with standard types of442

smooth, monotonic cost and probability functions, the user need only check assumptions (A2)443

and (A4). The former simply requires calculation of the eigenvalues of the matrix M (evaluated444

at SUE). Assumption (A4) concerns the distance of the initial flow pattern from SUE (or the445

stationary mean), and is more difficult to assess. Our numerical studies suggest that linear446

approximation works well for mean flows of order 100 when the initial flow pattern is up to 3447

standard deviations distant from SUE. More extreme initial states can be accommodated for448

higher levels of travel demand (i.e. larger values of ζ), based on the discussion at the end of449

Section 2.450

Our methods, and the earlier ones of Davis and Nihan (1993), are restricted to Markovian451

models, in which the state of the system at day t + 1 is independent of the state at day t − 1452

given the state at day t. This is a classical assumption in the literature, which is far less453

restrictive than it might at first appear. As we saw in Section 3, by defining the system state454
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Figure 6: Routes 12 and 16 for the Leicester network, with an intervention applied continuously from day 366.
The unbroken lines depict the true mean flow (red line) and our linear approximation thereof (black line). The
dotted central line is the mean approximation using Davis and Nihan’s (1993) nonlinear methodology. The outer
lines indicate limits of 95% prediction intervals for flows, matched to the mean by plotting symbol and/or colour.
The jagged light purple lines show the realized time plots of traffic flows from 10 simulations of the model.

in terms of the pattern of route flows over the previous m days, we retain the Markov structure455

even though travellers now have a longer memory on which to base decisions on choice of route.456

Moreover, inclusion of both route flows and disutilities in the state vector gives rise to a very457

rich class of models. Note that for the model in Section 2, the route flow process {xt} is not458

itself Markovian because it depends on the initial disutility u0 courtesy of equation (1), but {st}459

is a Markov process. In general, it is difficult to envisage a day-to-day traffic model based on a460

classical cost-updating and minimization framework which cannot be represented as a Markov461

process through suitable choice of state vector (cf. Watling and Cantarella 2015). Nevertheless,462

we acknowledge that the practicability of Davis and Nihan’s (1993) approximation in particular463

will lessen as the size of the state vector increases.464

There exist many natural, further applications of the work reported, whether the focus is on un-465

derstanding disruption and resilience, or on evaluating or designing robust control/pricing/information466

measures in a kind of stochastic process counterpart to the work of Cromvik and Patriksson467

(2010). A computationally-efficient approximation such as the one derived in the present paper468

might also be deployed in the same spirit that a metamodel has been shown to be useful in469

approximating complex model constraints in optimal control or parameter estimation problems470

(Osorio and Chong 2015).471

There is also significant potential in seeking future generalisations and extensions of the results472

presented in the present paper through relaxation and refinement of the model assumption.473

For example, in our present study we presumed quite conventional assumptions concerning474
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risk-neutral travel behaviour, yet the framework presented (in representing endogenous sources475

of variation) is clearly high suited to representing various kinds of risk-averse behaviour, as476

for example in Praksash and Srinivasan (2017). As an alternative direction to explore, it is477

notable that in our traffic model we have supposed steady state conditions as modelled by478

explicit functions between travel time and flow, and clearly this is rather conducive to an479

analysis based on Jacobians. However, analytical analyses of stochastic process models have480

been shown to be feasible with simple within-day dynamic network loading models (Balijepalli481

and Watling 2005), and we can draw confidence that these might be extended in the future,482

given the advances that have now been made in calculus for more complex dynamic network483

loading models (Shen et al. 2007, Osorio et al. 2011, Rinaldi et al. 2016, Song et al. 2018).484
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