
This is a repository copy of Scheduling of Smart Factories using Edge Computing and 
Clouds.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/138145/

Version: Accepted Version

Proceedings Paper:
Dziurzanski, Piotr, Swan, Jerry and Soares Indrusiak, Leandro orcid.org/0000-0002-9938-
2920 (Accepted: 2018) Scheduling of Smart Factories using Edge Computing and Clouds. 
In: 1st International Workshop on Trustworthy and Real-time Edge Computing for Cyber-
Physical Systems (TREC4CPS). International Workshop on Trustworthy and Real-time 
Edge Computing for Cyber-Physical Systems, 11 Dec 2018 , USA (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Scheduling of Smart Factories using Edge Computing and Clouds

Piotr Dziurzanski, Jerry Swan and Leandro Soares Indrusiak

Abstract— Reconfiguration-as-a-Service is an emerging trend
for dynamic smart factories. This approach exploits cloud-
based services to continuously optimise the performance of
manufacturing systems. The edge computing paradigm, on the
contrary, aims at performing the whole computation at the
edge of the network, close to the data sources. In this paper, a
trade-off between these two possibilities is analysed. A value-
based criterion is proposed for executing optimisation engine
either in a cloud or at the edge. Experimental results determine
the ranges for both the cloud computation cost and the edge
computer’s speed in which manufacturing scheduling leads to
higher profits.

I. INTRODUCTION

One of the emerging trends related to smart factories
is to migrate some computational tasks (e.g. scheduling of
manufacturing processes) from remote clouds in order to be
closer to devices that are the source and/or target of such
computing, i.e. to the edge between the IoT’s things and
the network [1]. One of the key predictions discussed in
the IDC report [2] was that in the near future almost half
of IoT-created data will be stored, processed, analysed and
acted upon at or close to the network edge. This migration
is expected to be beneficial in terms of response time, relia-
bility, security and cost effectiveness [3]. It may however be
argued that whether a certain computation is to be performed
in a cloud or at the network edge should be a dynamic
decision. That is, it should be based on the predicted gains
and costs of both situational alternatives, rather than decided
statically without any situational awareness. In Ismail et
al [4], Docker containers were proposed to be executed
at the edge. The same containers can be executed in a
cloud as well (e.g. by using IBM Cloud Functions1) even
in the case of different os/architecture combinations (thanks
to the experimental Docker feature named Docker manifest).
Therefore, the decision on where to execute a certain con-
tainer can be made dynamically considering the current edge
node utilisation or network bandwidth, and also taking into
account the urgency of the computation. In most cases, for
efficiency and security reasons it may be beneficial to start
computation at the edge, since it decreases network traffic
and avoids public/shared networks and servers. However, if
the computation performed at the edge progresses too slowly,
it can be migrated to a cloud. Such approach requires a
method to compare the predicted execution time in both edge
and cloud. In this paper we follow a method that predicts the
benefits of further manufacturing optimisation proposed in
ref. [5]. According to that method, each manufacturing order,
which requests the production of a particular commodity,
is equipped with a value curve, that models the value,

Department of Computer Science, University of York,
Deramore Lane, Heslington, YO10 5GH, York, UK
{piotr.dziurzanski,leandro.indrusiak}@york.ac.uk

1https://console.bluemix.net/openwhisk

DockerManager

DockerWorker (node N )1

DockerWorker (node N )k

DockerAgent

DockerDaemon

VFS Docker API 
REST command

Pseudofile R/W command

...

Public cloud

Edge

Public cloud
API

RESTful
 command

RESTful
 command

Fig. 1. General scheme of the proposed approach implementation

expressed in the monetary units, yielded by the manufac-
turing order over time. This value curve can influence the
optimisation process as follows: since further search-based
schedule optimisation is occupied with the cost of the cloud
nodes performing the computation, it has been shown in that
paper that it may be beneficial (grounded in terms of overall
monetary cost) to prematurely stop the optimisation and
apply the best results found so far. In this paper, we propose
to extend that model with the possibility of performing
the optimisation at the network edge. Using the proposed
technique, on obtaining a manufacturing order, an agent
decides not only when to finish the optimisation process,
but also whether the computation should be performed at
the edge or in a cloud, comparing the predicted monetary
gains for all these options.

II. PLATFORM AND APPLICATION MODEL

The class of scheduling problems analysed in this paper
concerns manufacturing in which the value gained by an end-
user depends on both optimisation solution quality and the
time taken by the optimisation process itself. The optimisa-
tion process is performed either at the network edge or in a
cloud. Suitable application and platform models are proposed
below.

A. Platform model

At the network edge, there is a set of k computing nodes
N = {N1, . . . , Nk} capable of executing one or more
containers (i.e. each node runs a typical Docker container
engine). The nodes are heterogeneous and their response time
difference is expressed with so-called calibration coefficient

ζx, x ∈ {1, . . . , k}. ζx denotes the ratio between empirically
measured response time of a set of container benchmarks
on node Nx and the averaged response time of the same
set of container benchmarks executed on a reference unit in



time t

value V

AT D
0

ET

Vmax

VC(t)

VC(ET)

Z

Fig. 2. An example value curve of manufacturing order O

a public cloud serving as an alternative execution platform,
as shown in Fig. 1 (the details of this figure are explained
later in this paper). The benchmarks’ response times on
a reference unit include the communication cost and the
container initialisation time.

In ref. [5], it was assumed that the schedule optimisation
engine was containerised and executed in a public cloud
using a function as a service facility, which significantly
reduced the initialisation time and monetary cost, in com-
parison with the more prevalent Containers as a Service
paradigm. However, such containers can also be executed
at the edge of the network, potentially decreasing the opti-
misation cost. Only when it is predicted that further local
optimisation at the edge is likely to be less beneficial than
remote execution, are the containers migrated and executed
in the cloud.

B. Application model

The application considered in this paper is related to
manufacturing scheduling optimisation in a smart factory.
At time instants not known a priori, manufacturing orders
are submitted. Each of these orders usually concerns the
production of several items of a certain product. The role
of optimisation is to allocate the manufacturing processes
(such as mixing powders, cutting parts etc.) to different
machines, select the most appropriate machine modes (e.g.
thereby trading production time against energy efficiency)
and schedule these processes in time, following the depen-
dency relation between these processes. As discussed for
example in ref. [5], such optimisation problems are NP-hard
and thus various search-based heuristics are usually applied
to find an approximate solution.

Each optimisation process is performed dynamically and
concurrently to the manufacturing of the previous orders.
Consequently, optimisation results must typically be pro-
vided within a limited time span. As long as the factory
is busy with the previous orders, the optimisation time does
not matter. However, in the case of an idle factory, the time
spent on optimisation incurs ongoing factory maintenance
costs due to idleness. This phenomenon is well illustrated
with the value curve presented in Fig. 2. At time instant AT
a manufacturing order is submitted. The maximal possible
profit from this order is equal to Vmax, defined as the excess
of revenue over cost and denoted in monetary units. As
the factory is busy up to time instant D, processing orders
submitted and scheduled earlier, the profit value does not
change in interval [AT,D). However, after D, the profit
value decreases up to a certain point Z, where it reaches
0. If the optimisation process ends at time ET , the maximal

Master Master Master ...

1st stage 2nd stage

Slave S1,1

Slave S1,2

Slave S1,p

Slave S2,1

Slave S2,1

Slave S2,p

... ...

1 2

Fig. 3. Stages of the optimisation process

potential profit cannot exceed the value of the curve at ET ,
namely V C(ET ).

III. OPTIMISATION TRADE-OFFS

The scheduling optimisation is performed in a master-
slave fashion as illustrated in Fig. 3, in sequential stages
indexed with i = 1, 2, . . .. At each i-th stage, a set of pi
containers is executed in parallel by slave nodes. The global
master coordinates the execution of containers submitted by
the users. The master is responsible for serving the incoming
requests and allocates the containers to nodes, for example
using the algorithms proposed in ref. [6].

All containers Si,y , y ∈ {1, . . . , pi}, are executed either
in a cloud or at the network edge. Each container gets the
encoded manufacturing order together with the best solutions
found so far as its input and after time ti,y returns the
minimal value found by the optimisation for the manufactur-
ing cost of that order, fi,y , together with the corresponding
solution.

If Si,y is executed on edge node Nx, its CPU time
slot is proportional to the so-called CPU shares ξi,y ∈
{1, . . . , 1024} (the value of the maximum share is taken
directly from the Docker’s –cpu-shares flag). Assuming that
the sum of all the CPU shares of containers executed on
node Nx equals Ξx, container Si,y gets ϑi,y,x = ξi,y/Ξx of
the CPU time of node Nx.

Initially, the execution time of the containers Si,y is diffi-
cult to be predict accurately. However, as all these containers
are constructed from the same container image and perform
optimisation of the same problem size, the workload inside
these containers is similar. Thus the response time ti,y of
each container Si,y can be measured and used by the master
node to predict the future response times at the following
stages, as described subsequently.

Due to the change of a potential maximal profit from a
certain manufacturing order over time as described by a value
curve, a clear trade-off between the optimisation time and
the optimisation quality can be identified. As a search-based
heuristic keeps the best result found so far and continuously
explores the search space up to the fulfilment of a certain
stopping criterion, it can provide a sub-optimal result at any
time. For example, ref. [5] proposed that for the master-
slave architecture introduced earlier (Fig. 3), after the i-
th stage the master node gathered the optimisation results
fi,y from containers Si,y and decided if the continuation of
the optimisation process, i.e. triggering the next optimisation
stage, was likely to be beneficial considering the given value
curve. A similar approach is applied in this paper.



t

i-th stage

slave Si,1

slave Si,2

slave Si,3

slave Si,pi

ti

ti,1

ti,2

ti,3

ti,p
i

Fig. 4. Stage execution time example

Performing the optimisation at the edge is assumed to cost
nothing in terms of money as the edge devices are owned
by the smart factory and their idle time can be viewed as
wasted. This is in contrast to the optimisation cost in a cloud,
which for any i-th stage is nonzero and upperbounded with
β · ti · pi, where β is the cost of a single container execution
per one time unit2, pi is the number of slaves executed at
the i-th stage and ti = maxy∈{1,...,pi}(ti,y) (see Fig. 4). The
execution cost in both these locations can be described with
equation

ci = ∆i · (β · ti · pi), (1)

where ∆i equals 1 if the i-th stage is executed in a cloud
or 0 otherwise. Using these notations, the manufacturing
profit yielded by the best solution found in the i-the stage is
described with equation

Pi = V C





i
∑

j=1

tj



−

i
∑

j=1

cj − fi, (2)

where fi = miny∈{1,...,pi}(fi,y).
After finishing the optimisation process at stage i, the

values of ti+1 and fi+1 can be predicted via extrapolation,
for example using the Bluirsch and Stoer algorithm [7]. For
history lengths of 3 or less, such extrapolation is either
undefined or else the result was empirically determined to
be inaccurate: the predicted value of fi is then given by the
best fitness found so far and that of ti by the last (actual)
processing time.

If the following, (i+1)-th stage is processed at the edge,

value t̂ei+1 predicts its execution time and f̂i+1 predicts the
lowest value returned by the slaves. Both these values can
be used to predict the profit generated at the edge after the
subsequent stage as follows

P̂ ei+1 = V C





i
∑

j=1

tj + t̂ei+1



− f̂i+1 −

i
∑

j=1

cj . (3)

Let us assume that at the i-th stage, executed at the edge,
the longest computation (lasting ti) has been performed by
the x-th node with calibration coefficient ζx and whose
fraction of CPU time for the related container equals ϑi,y,x.

This container is predicted to be executed for t̂ei+1 in the
following stage if executed at the edge. Then the execution
time in a cloud of the same container can be assessed with
formula

2For example β = 0.000017 USD per second of execution per GB of
memory allocated using IBM Functions in August 2018.

t̂ci+1 =
t̂ei+1

ζx · ϑi,y,x

(4)

Then the profit generated after the subsequent stage exe-
cuted in a cloud can be estimated with equation

P̂ ci+1 = V C





i
∑

j=1

tj + t̂ci+1



− f̂i+1−

i
∑

j=1

cj− ĉi+1. (5)

If the current, i-th stage is executed in a cloud, the
execution time of the following stage at the edge can be
assessed with equation

t̂ei+1 = t̂ci+1 · ζx · ϑi,y,x, (6)

and substituted to equation (3) to estimate the corresponding
profit. Value t̂ci+1 is also used to estimate ĉi+1 using
equation (1).

The stopping criteria are evaluated by the master node
after each stage i. The predicted profit criterion checks the
prediction if the execution of the subsequent stage is likely
to increase the profit generated by the optimised process or
not, regardless it is executed in a cloud or at the edge

Pi > max(P̂ ei+1, P̂ ci+1). (7)

Moreover, if P̂ ei+1 ≥ P̂ ci+1, the following stage should
be executed at the edge. Otherwise, the containers shall be
executed in a cloud.

The benefits of similar stopping criteria in a cloud envi-
ronment has previously been evaluated [5]. In the following
section, we apply this approach to a platform consisting of
both edge machines and a cloud.

IV. EXPERIMENTAL RESULTS

The edge execution platform described above has been im-
plemented and used together with the original Docker engine
in form of two software modules, namely DockerManager

and DockerWorker. The former one corresponds to the master
node and is run on a machine where Docker may or may not
be installed, whereas the latter, executing the slave nodes,
requires the presence of the Docker daemon. These modules
are depicted in Fig. 1.

In order to evaluate the technique described in this paper,
30 manufacturing orders considered in ref. [5] have been
selected to be scheduled in a certain factory. In that factory,
there are 8 machine types and each machine can operate in
different operating modes, influencing both the processing
time and the consumed energy, which in turn influences the
manufacturing cost. The number of manufacturing process
steps in these orders ranged from 18 to 59. Each of these
steps needs to be allocated to a machine operating in a certain
mode. The parameters for the associated value curve are
AT = 0, D = 250 s, Z = 500 s and Vmax = 5000 GBP,
which means that such amount of money would be gained
by a plant if both the production and the scheduling cost
nothing.

In the first experiment, the migration between cloud and
edge computation has been disabled and both these environ-
ments have been used for the first stage. The computation



0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

-10000

-8000

-6000

-4000

-2000

0

2000

4000

0.500000
0.062500

0.007813
0.000977

0.000122
0.000015

0.000002

Average calibration coefficient x

P
ro

fi
t 

d
if

fe
re

n
ce

 b
e

tw
e

e
n

 e
d

g
e

 a
n

d
 c

lo
u

d
 

e
xe

cu
ti

o
n

 [
G

B
P

]

Fig. 5. Profit difference between edge and cloud execution for various
average calibration coefficient values and container execution costs

is then performed using the same platform, edge or cloud,
from the first stage up to the computation completion. The
average calibration coefficient ζx ranges from 0.1 (response
time from the edge is 10 times longer than from cloud) to 2.0
(response time from the edge is two times faster than from
the cloud), and the container execution cost per second, β,
varied from 0.000001 GBP to 0.5 GBP. For each setting,
the experiment has been conducted 100 times, 400000 runs
in total. The difference between the total profit computed
in the edge and in the cloud are presented in Fig. 5. Not
surprisingly, the time needed for optimisation in case of slow
edge computers (i.e. with low average calibration coefficient
ζx) causes that the computation is usually finished at the
time when the associated value curve assumes low values.
For extreme case of edge machines with, on average, 10
times lower response time than a cloud (average ζx equals
0.1), even assuming the most expensive cloud computation
cost (β equals 0.5GBP) leads to high total differences in
profits (close to 10000 GBP for the considered set of
orders). However, with the increase of the edge machine
speed, this difference changes significantly. Assuming typical
cloud computation cost in 2018 β = 0.000015 GBP, edge
computations becomes slightly more beneficial (107 GBP
difference) for average ζx equal to 0.8. For the fastest edge
computers considered, with a response time twice as fast
as cloud computers, this difference is equal to almost 1600
GBP. As a similar value is achieved even for much cheaper
cloud computation (β = 0.000001 GBP), this proportion will
hold even after the forseeable significant decrease in cloud
computation cost. In total, processing in edge returned above
8% higher profit than computation in a cloud.

In the next experiment, the slave container migration
between edge and cloud is permitted. The computation starts
at the edge but migrates to a cloud if the predicted profit
of the next stage computed in a cloud is higher than its
equivalent predicted for the edge. In the analysed range,
the number of migrations from the edge to cloud depends
strongly on the ζx parameter and to a lower degree on β. For
the slowest cloud (ζx = 0.1), the migration from the edge to
the cloud has been performed in 51% of cases on average,
and then decreases almost linearly to 13% for ζx = 1.0,
i.e. when both the edge and cloud have the same response
time on average. For faster edge (ζx > 1.0), not a single
migration has been observed. For all the considered cases, the

possibility of migration to cloud improved the profit slightly,
yielding 1% above the execution in edge and 9% higher
profit than computation in a cloud. However, this option
is more beneficial in case of slow (or busy) edge. For the
slowest case (ζx = 0.1), computation performed solely at
the edge yields 22% worse result than a cloud, whereas the
possibility of migrations decreases this gap up to 14%. The
migration option may be then viewed as quite beneficial in
adverse situations, which remains unused in case of a higher
computational power available at the edge.

V. CONCLUSION

This article describes a distributed architecture that pro-
vides general and scalable support for the ‘Just in Time’
manufacturing process envisioned for smart factories. The
architecture is equipped with a novel adaptive stopping
criterion for optimising profit obtained from a set of man-
ufacturing orders which not only decides on the computa-
tion termination but also steers the computation migration
between the edge and cloud. As the optimisation engine
has been encapsulated into a stateless container, such mi-
gration is occupied with a minimal overhead. According
to the experimental results, optimisation at the edge leads
to a slightly better overall profit, and in case of slow or
busy edge computers, the possibility of container migration
to cloud decreases the computation speed gap between a
cloud and edge. Since using the proposed approach leads
to comparable if not better profits than optimisation solely
in a cloud, considering the additional benefits form edge
execution, such as reduction of outbound/inbound network
traffic, increased reliability and security, edge platform can
be viewed as a promising alternative to cloud computing even
for computationally costly tasks.

ACKNOWLEDGEMENT

The authors acknowledge the support of the EU H2020
SAFIRE project (Ref. 723634).

REFERENCES

[1] D. Tamburini. (2018) Enabling smart manufacturing with
edge computing. [Online]. Available: https://azure.microsoft.com/en-
gb/blog/enabling-smart-manufacturing-with-edge-computing/

[2] M. Carrie, V. Turner, R. Yesner, J. Feblowitz, K. Knickle, L. Lamy,
M. Xiang, A. Siviero, and M. Cansfield. (2016) Idc futurescape:
Worldwide internet of things 2016 predictions. [Online]. Available:
https://www.idc.com/research/viewtoc.jsp?containerId=259856

[3] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty,
and C. Lin, “Edge of things: The big picture on the integration of edge,
iot and the cloud in a distributed computing environment,” IEEE Access,
vol. 6, pp. 1706–1717, 2018.

[4] B. I. Ismail, E. M. Goortani, M. B. A. Karim, W. M. Tat, S. Setapa,
J. Y. Luke, and O. H. Hoe, “Evaluation of docker as edge computing
platform,” in 2015 IEEE Conference on Open Systems (ICOS), Aug
2015, pp. 130–135.

[5] P. Dziurzanski, J. Swan, and L. S. Indrusiak, “Value-based
manufacturing optimisation in serverless clouds for industry 4.0,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
ser. GECCO ’18. New York, NY, USA: ACM, 2018, pp. 1222–1229.
[Online]. Available: http://doi.acm.org/10.1145/3205455.3205501

[6] P. Dziurzanski and L. S. Indrusiak, “Value-based allocation of docker
containers,” in 2018 26th Euromicro International Conference on Par-
allel, Distributed and Network-based Processing (PDP), March 2018,
pp. 358–362.

[7] J. Stoer, R. Bartels, W. Gautschi, R. Bulirsch, and C. Witzgall, In-
troduction to Numerical Analysis, ser. Texts in Applied Mathematics.
Springer New York, 2002.


