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A FINITE SEPARATING SET FOR DAIGLE AND

FREUDENBURG’S COUNTEREXAMPLE TO

HILBERT’S FOURTEENTH PROBLEM

EMILIE DUFRESNE AND MARTIN KOHLS

Abstract. This paper gives the first explicit example of a finite
separating set in an invariant ring which is not finitely generated,
namely, for Daigle and Freudenburg’s 5-dimensional counterexam-
ple to Hilbert’s Fourteenth Problem.

1. Introduction

Hilbert’s Fourteenth Problem asks if the ring of invariants of an al-
gebraic group action on an affine variety is always finitely generated.
The answer is negative in general: Nagata [11] gave the first counterex-
ample in 1959. In characteristic zero, the Maurer-Weitzenböck Theo-
rem [15] tells us that linear actions of the additive group have finitely
generated invariants, but nonlinear actions need not have finitely gener-
ated invariants. Indeed, there are several such examples, the smallest
being Daigle and Freudenburg’s 5-dimensional counterexample [1] to
Hilbert’s Fourteenth Problem.

Although rings of invariants are not always finitely generated, there
always exists a finite separating set [2, Theorem 2.3.15]. In other words,
if k is a field and if a group G acts on a finite dimensional k-vector
space V , then there always exists a finite subset E of the invariant
ring k[V ]G such that if, for two points x, y ∈ V , we have f(x) = f(y)
for all f ∈ E, then f(x) = f(y) for all f ∈ k[V ]G. This notion was
introduced by Derksen and Kemper [2, Section 2.3], and has gained a
lot of attention in the recent years, for example see [3, 4, 5, 6, 8, 12].

The proof of the existence of a finite separating set is not construc-
tive, and until now, no example was known for infinitely generated
invariant rings. The main result of this paper is to give the first exam-
ple: a finite separating set for Daigle and Freudenburg’s 5-dimensional
counterexample to Hilbert’s Fourteenth Problem.
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2 EMILIE DUFRESNE AND MARTIN KOHLS

2. Daigle and Freudenburg’s Counterexample

We now introduce the notation used throughout the paper, and set
up the example. We recommend the book of Freudenburg [7] as an
excellent reference for locally nilpotent derivations.

Let k be a field of characteristic zero, and let Ga be its additive
group. If V = k5 is a 5-dimensional vector space over k, then k[V ] =
k[x, s, t, u, v] is a polynomial ring in five variables. Daigle and Freuden-
burg [1] define a locally nilpotent k-derivation on k[V ]:

D = x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
+ x2 ∂

∂v
.

This derivation D induces an action of Ga on V . If r is an additional
indeterminate, then the corresponding map of k-algebras is

(1) µ : k[V ] → k[V ][r], f 7→ µ(f) = µr(f) =
∞
∑

k=0

Dk(f)

k!
rk,

where k[V ][r] ∼= k[V ]⊗k k[Ga]. The induced action of Ga on k[V ] is:

(−a) · f := µa(f) for all a ∈ Ga, f ∈ k[V ].

In particular, for a ∈ Ga, we have

(−a) · x = x, (−a) · s = s+ ax3, (−a) · t = t+ as+
a2

2
x3,

(−a) · u = u+ at+
a2

2
s+

a3

6
x3, (−a) · v = v + ax2.

The invariant ring k[V ]Ga coincides with the kernel of D. Define a
grading on k[V ] by assigning deg x = 1, deg s = deg t = deg u =
3, deg v = 2. As the action of Ga on k[V ] and the derivation D are
homogeneous with respect to this grading, the ring of invariants is a
graded subalgebra. We write k[V ]Ga

+ to denote the unique maximal

homogeneous ideal of k[V ]Ga . Daigle and Freudenburg [1] proved that

k[V ]Ga = kerD is not finitely generated as a k-algebra. The main
result of this paper is to exhibit a finite geometric separating set.

Theorem 2.1. Let Ga act on V as above. The following 6 homo-

geneous polynomials are invariants and form a separating set E in

k[V ]Ga:

f1 = x, f2 = 2x3t− s2, f3 = 3x6u− 3x3ts+ s3,

f4 = xv − s, f5 = x2ts− s2v + 2x3tv − 3x5u,

f6 = −18x3tsu+ 9x6u2 + 8x3t3 + 6s3u− 3t2s2.

Remark 2.2. In [16, Lemma 12], Winkelmann shows that these six
invariants separate orbits outside {p ∈ V : x(p) = s(p) = 0}, which as
we will see later, is the easy case. (Note that in [16] there is a typo in
the invariant we denoted by f6.)
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3. Proof of Theorem 2.1

In this section, we prove our main result. We start by establishing
some useful facts.

Lemma 3.1. k[V ]Ga ⊆ k[f1, f2, f3, f4,
1
x
].

Proof. As x is a constant, the derivation D extends naturally to k[V ]x
via D

(

f

xn

)

:= D(f)
xn

for all f ∈ k[V ], n ∈ N, and we have k[V ]Ga ⊆

(k[V ]x)
Ga. The element s

x3 ∈ k[V ]x satisfies D
(

s
x3

)

= 1, that is, it is a
slice. By the Slice Theorem (see [14, Proposition 2.1], or [7, Corollary

1.22]), we obtain a generating set of the invariant ring k[V ]Ga

x by ap-
plying µ to the generators of k[V ]x = k[x, s, t, u, v, 1

x
] and “evaluating”

at r = − s
x3 . Therefore, we have

k[V ]Ga

x = k

[

µ−
s

x
3
(x), µ−

s

x
3
(s), µ−

s

x
3
(t), µ−

s

x
3
(u), µ−

s

x
3
(v), µ−

s

x
3
( 1
x
)
]

= k

[

f1, 0,
f2
2x3

,
f3
3x6

,
f4
x
,
1

x

]

.

✷

Proof of Theorem 2.1. First, note that fi is invariant for i = 1, . . . , 6.
Let pi = (χi, σi, τi, ωi, νi), i = 1, 2, be two points in V such that fi(p1) =
fi(p2) for each i = 1, . . . , 6. We will show that f(p1) = f(p2) for all

f ∈ k[V ]Ga. Since f1 = x, we have χ1 = χ2. If χ1 = χ2 6= 0, then

Lemma 3.1 implies f(p1) = f(p2) for all f ∈ k[V ]Ga. Thus, we may
assume χ1 = χ2 = 0. It follows that σ1 = −f4(p1) = −f4(p2) = σ2.
Define a linear map

γ : k5 → k
4, (χ, σ, τ, ω, ν) 7→ (σ, τ, ω, ν),

and a k-algebra morphism

ρ : k[x, s, t, u, v] → k[s, t, u, v], f(x, s, t, u, v) 7→ f(0, s, t, u, v).

Define a k-linear locally nilpotent derivation on k[s, t, u, v] via

∆ = s
∂

∂t
+ t

∂

∂u
.

One easily verifies that ∆ ◦ ρ = ρ ◦D. In particular, ρ induces a map
kerD → ker∆. The kernel of ∆ is known (or can be computed with
van den Essen’s Algorithm [14]): it corresponds to the binary forms of
degree 2, that is,

(2) ker∆ = k[s, 2us− t2, v].

Since χi = 0, we have f(pi) = ρ(f)(γ(pi)) for i = 1, 2 and any f ∈ k[V ].
Thus, to show f(p1) = f(p2) for all f ∈ k[V ]Ga = kerD, it suffices to
show f(γ(p1)) = f(γ(p2)) for all f ∈ ρ(kerD) ⊆ k[s, 2us− t2, v].
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If σ1 = σ2 6= 0, then the values of s, 2us− t2, v on γ(pi) are uniquely
determined by the values of ρ(f4) = −s, ρ(f5) = −s2v, and ρ(f6) =
3s2(2us− t2) on γ(pi) for i = 1, 2. Since

ρ(fi)(γ(p1)) = fi(p1) = fi(p2) = ρ(fi)(γ(p2)) for all i = 1, . . . , 6,

the case σ1 = σ2 6= 0 is done. Assume χ1 = χ2 = σ1 = σ2 = 0, then by
Proposition 3.2, f(p1) = f(p2) = f(0, 0, 0, 0, 0) for all f ∈ k[V ]Ga . ✷

Proposition 3.2. We have k[V ]Ga ⊆ k⊕ (x, s)k[V ].

This proposition is the key to the proof of Theorem 2.1. It could be
obtained from a careful study of the generating set of k[V ]Ga given by
Tanimoto [13]. We give a more self-contained proof, which relies only
on the van den Essen-Maubach Kernel-check Algorithm (see [14], and
[10, p. 32]).

Proof of Proposition 3.2. It suffices to show that k[V ]Ga

+ ⊆ (x, s)k[V ].

By way of contradiction, suppose there exists f ∈ k[V ]Ga

+ of the form
f = xp+ sq + h(t, u, v), where p, q ∈ k[V ], and h(t, u, v) 6= 0.

Without loss of generality, we can assume f is homogeneous of pos-
itive degree. We apply the map ρ from the proof of Theorem 2.1.
By Equation (2), we have f(0, s, t, u, v) ∈ k[s, 2us− t2, v], so we have
f(0, 0, t, u, v) = h(t, u, v) ∈ k[0,−t2, v], and we set h(t, v) := h(t, u, v) ∈
k[t, v]. Since f is homogeneous, so is h, and there is a unique mono-
mial tdve in h such that the exponent e of v is maximal. Clearly,
D ◦ ∂

∂v
= ∂

∂v
◦D, and so, for all k, we have

∂kf

∂vk
= x

∂kp

∂vk
+ s

∂kq

∂vk
+

∂kh(t, v)

∂vk
∈ k[V ]Ga .

If d = 0, then taking k = e−1, implies v is the only monomial appearing

in ∂e−1h(t,v)
∂ve−1 (since v has degree 2, and t has degree 3, t cannot have

nonzero exponent). Thus, there is a homogeneous invariant of degree 2
of the form xp̃+sq̃+v ∈ k[V ]Ga , but as x2 spans the space of invariants
of degree 2, we have a contradiction.

Assume now that d > 0. If k = e, then td is the only monomial

appearing in ∂eh(t,v)
∂ve

. Thus, replacing f by ∂ef

∂ve
, and dividing by the

coefficient of td, we can assume f = xp+ sq+ td, where p, q ∈ k[V ] and
d > 0. Since f(x, s, t, u, v) ∈ kerD, Lemma 3.3 (a) implies the element

g(x, t, u, v) := f(x, xv, t, u, v)

= xp̃+ xvq̃ + td ∈ k[x, t, u, v](3)

lies in the kernel of the derivation ∆′ := x2 ∂
∂v

+ xv ∂
∂t
+ t ∂

∂u
defined on

k[x, t, u, v]. As no monomial of the form tk (with k > 0) appears in the
four generators of ker∆′ (by Lemma 3.3 (b)), the monomial td cannot
appear as a monomial in g ∈ ker∆′, and so we have a contradiction. ✷
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In the following Lemma, we write k[x, v, t, u] rather than k[x, t, u, v],
so that the derivation ∆′ is triangular.

Lemma 3.3. Define a k-algebra map

φ : k[x, s, t, u, v] → k[x, v, t, u],

f(x, s, t, u, v) 7→ φ(f)(x, v, t, u) := f(x, xv, t, u, v),

and a derivation ∆′ on k[x, v, t, u]:

∆′ = x2 ∂

∂v
+ xv

∂

∂t
+ t

∂

∂u
.

It follows that

(a) ∆′ ◦ φ = φ ◦D, in particular, φ maps kerD to ker∆′;

(b) ker∆′ = k[h1, h2, h3, h4], where

h1 = x, h2 = 2xt− v2, h3 = 3x3u− 3xvt+ v3,

h4 = 8xt3 + 9x4u2 − 18x2tuv − 3t2v2 + 6xuv3

= (h3
2 + h2

3)/x
2.

Proof. (a): For f = f(x, s, t, u, v) ∈ k[x, s, t, u, v], we have

(∆′ ◦ φ)(f) = (x2 ∂

∂v
+ xv

∂

∂t
+ t

∂

∂u
)f(x, xv, t, u, v)

= x3φ(
∂f

∂s
) + x2φ(

∂f

∂v
) + xvφ(

∂f

∂t
) + tφ(

∂f

∂u
)

= φ

(

x3∂f

∂s
+ x2∂f

∂v
+ s

∂f

∂t
+ t

∂f

∂u

)

= (φ ◦D)(f).

(b): Since ∆′ is a triangular monomial derivation of a four dimensional
polynomial ring, by Maubach [9], its kernel is generated by at most four
elements. In fact, [9, Theorem 3.2, Case 3] gives the same generators
for ker∆′, up to multiplication by a scalar (the formula for h4 contains
a typo).

Alternatively, one can use van den Essen’s Algorithm. As in the
proof of Lemma 3.1, the derivation ∆′ can be extended to k[x, v, t, u]x,
and as ∆′( v

x2 ) = 1, the Slice Theorem [14, Proposition 2] yields

(4) (ker∆′)x = µ−
v

x
2

(

k[x, v, t, u, 1
x
]
)

= k[h1, h2, h3,
1
x
],

where µ is defined similarly as in Equation (1). Consider the addi-
tional invariant h4 := (h3

2 + h2
3)/x

2 ∈ k[x, v, t, u]. We claim ker∆′ =
k[h1, h2, h3, h4] =: R. Equation (4) implies R ⊆ ker∆′ ⊆ Rx. Next, we
look at the ideal of relations modulo x between the generators of R,

I := {P ∈ k[X1, X2, X3, X4] | P (h1, h2, h3, h4) ∈ (x)k[x, v, t, u]}

= {P ∈ k[X1, X2, X3, X4] | P (0,−v2, v3,−3t2v2) = 0}

= (X1, X
3
2 +X2

3 )k[X1, X2, X3, X4].
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Since (h3
2 + h2

3)/x = xh4 ∈ R, we have that P (f1, f2, f3, f4)/x ∈ R for
every P ∈ I, and the Kernel-check algorithm implies ker∆′ = R (see
[7, p. 184]). ✷
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