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Abstract

Interventions used to improve air quality are often difficult to detect in air quality1

time series due to the complex nature of the atmosphere. Meteorological normalisation2

is a technique which controls for meteorology/weather over time in an air quality time3

series so intervention exploration (and trend analysis) can be assessed in a robust way.4

A meteorological normalisation technique, based on the random forest machine learning5

algorithm was applied to routinely collected observations from two locations where known6

interventions were imposed on transportation activities which were expected to change7

ambient pollutant concentrations. The application of progressively stringent limits on the8

content of sulfur in marine fuels was very clearly represented in ambient sulfur dioxide (SO2)9

monitoring data in Dover, a port city in the South East of England. When the technique was10

applied to the oxides of nitrogen (NOx and NO2) time series at London Marylebone Road (a11

Central London monitoring site located in a complex urban environment), the normalised12

time series highlighted clear changes in NO2 and NOx which were linked to changes in primary13

(directly emitted) NO2 emissions at the location. The clear features in the time series were14

illuminated by the meteorological normalisation procedure and were not observable in the15

raw concentration data alone. The lack of a need for specialised inputs, and the efficient16

handling of collinearity and interaction effects makes the technique flexible and suitable for a17

range of potential applications for air quality intervention exploration.18
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1. Introduction19

Across all spatial and temporal scales, weather influences concentrations of atmospheric20

pollutants and in turn ambient air quality (Stull, 1988; Monks et al., 2009). The effects21

of weather (or meteorology) on air quality are often much greater than intervention or22

management efforts to control air pollution and therefore intervention events can be very23

difficult to detect and quantify within an observational record (Anh et al., 1997). Similarly,24

when considering trends in ambient air pollution, it can be difficult to know whether a25

change in concentration is due to meteorology or a change in emission source strength.26

Meteorological variation can therefore frustrate the analysis of trends in different pollutant27

species. If meteorology is not controlled or accounted for, the changes in pollutant concentra-28

tions observed may be contaminated with meteorological variation rather than emission or29

chemically induced perturbations which can lead to erroneous conclusions concerning the30

efficacy of air quality management strategies (Libiseller et al., 2005; Wise and Comrie, 2005).31

This issue is often acknowledged, but infrequently addressed.32

Meteorological normalisation is one technique which can be used to control for meteorology33

over time in air quality time series. The central philosophy of meteorological normalisation34

is to reduce variability in an air quality time series with statistical modelling. The reduction35

of variability is achieved by training a model which can explain some of the variation of36

pollutant concentrations through a number of independent variables. The independent37

variables used are typically surface-based meteorological observations and time variables38

which act as proxies for regular emission patterns such as hour of day and season (Derwent39

et al., 1995). However, in practice, any independent variable which could explain variations40

in pollutant concentrations could be used. Once the model has been trained and it is found41

that it can explain an adequate amount of the dependent variable’s variation, the model can42

be used to remove the influence the independent variables have on the dependent variable43

by sampling and predicting. The time series which results can then be exposed to further44

exploratory data analysis (EDA) techniques such as formal trend analysis and/or intervention45
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exploration (Grange et al., 2018). The normalised time series is in the pollutant’s original46

units and can be thought of as concentrations in “average” or invariant weather conditions.47

There has been some air quality research conducted which uses the idea of change-point48

analysis to investigate changes in atmospheric pollutant concentrations (for example Carslaw49

et al., 2006; Carslaw and Carslaw, 2007). Methods such as these rely on regime changes50

where a time series abruptly shifts from one regime to another (Lyubchich et al., 2013).51

In the air quality domain, this rarely happens, since changes are usually nuanced and52

occur progressively with much variability which makes the generality of this approach for53

investigating intervention efforts poor. Meteorological normalisation is potentially a more54

general approach which enables its use in a greater range of applications.55

Atmospheric processes are complex, non-linear, and observations commonly record56

collinearity with other observations. These attributes make the process of statistical mod-57

elling very challenging, especially so with parametric methods (Barmpadimos et al., 2011).58

With the rise of machine learning algorithms, these attributes can be much more easily59

accommodated due to the non-parametric and robust nature of these techniques (Friedman60

et al., 2001). The meteorological normalisation technique used here uses random forest, an61

ensemble decision tree machine learning method as the modelling algorithm.62

Random forest has been described very well and in depth elsewhere (see Breiman, 2001;63

Friedman et al., 2001; Tong et al., 2003; Ziegler and König, 2013; Jones and Linder, 2015;64

Grange et al., 2018). However in brief, a single decision tree is formed from a series of65

binary splits which results in homologous or “pure” groups. The splitting process is recursive66

which means splitting occurs until purity is achieved if the tree is allowed to grow to its67

maximum depth. Decision trees make no assumptions on the input data structure (they68

are non-parametric), allow for interaction and collinearity among variables, and will ignore69

variables which are irrelevant to the dependant variable (Ziegler and König, 2013). Decision70

trees are fast to train, fast to make predictions, and are conceptually simple to understand.71

However, they suffer heavily from overfitting, an issue where the model represents the training72

set well, but does not generalise to sets which were not used for training (Jones and Linder,73

2015). Using a model which predicts pollutant concentrations and suffers from overfitting74
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would result in the model being contaminated with noise from the training set and unreliable75

predictions would impede analyses.76

Random forest is an algorithm which controls for the tendency of decision trees to overfit.77

The algorithm achieves this by sampling (with replacement) the training set with a process78

called bagging (bootstrap aggregation) (Breiman, 1996). In modern usage, sampling of the79

independent variables is usually done during bagging too. Bagging results in a new, sampled80

set called out-of-bag (OOB) data. A decision tree is then grown on the OOB data. The81

bagging-then-tree growth is repeated, generally a few hundred times. Because OOB data is82

sampled, all the decision trees are grown on differing observations and independent variables83

which leads to a “forest” of decorrelated trees. After training, all the individual trees within84

the forest are used to predict, but their predictions are aggregated as a mean (or the mode85

for categorical dependent variables) and that forms the single ensemble prediction for the86

model.87

The meteorological normalisation technique is pragmatic in respect to the input variables88

required for many common applications. Generally, routinely accessible surface meteorological89

variables are very effective for the process and specialised or obscure variables are generally90

not necessary for the technique to be applied. Although traffic counts, upper air data,91

and outputs from weather models will usually strengthen a model’s explanatory power, the92

existence or access to such variables is not a prerequisite, an attribute which is very useful93

for most situations where such inputs are not available. For pollutants which are primarily94

controlled by regional scale processes, most notably particulate matter (PM) and ozone95

(O3), additional variables such as boundary layer height, air mass cluster, or back trajectory96

information would however be beneficial to include if possible and examples can be found97

elsewhere, for example Grange et al. (2018).98

The temporal variables used as independent variables in the meteorological normalisation99

models: Julian day, weekday, and hour of year are included not for their direct influence on100

atmospheric concentrations, but because they act as proxies for cyclical emission patterns.101

Hour of day for example offers a term to explain emissions with a diurnal cycle such as102

traffic-related rush hour emissions or domestic heating phases, while Julian day is a seasonal103
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term which represents emissions or atmospheric chemistry which varies seasonally. These104

processes are generally strong drivers of concentrations of most atmospheric pollutants105

(Henneman et al., 2015). Random forest’s ability to handle collinearity and interaction106

between these and the other independent variables used and the lack of need of specialised107

or exotic inputs results in a flexible tool kit for probing the influences of interventions on air108

quality time series.109

1.1. Objectives110

The primary objective of this paper is to apply a meteorological normalisation technique111

based on random forest, a machine learning algorithm to detect interventions in air quality112

monitoring data. This is done to gain understanding of what physical and chemical processes113

are driving ambient pollutant concentrations and highlight the suitability and potential of114

the technique to other applications.115

Two case studies are presented using routine data sets in Dover, South East England116

where sulfur fuel limits of ships were imposed and changes in ambient sulfur dioxide (SO2)117

concentrations are expected and in Central London where congestion charging and local bus118

fleet management has perturbed oxides of nitrogen (NOx) emission sources. The changes in119

concentrations and emissions are then explained in respect to implementation of policy which120

would be difficult to detect with other EDA techniques where no meteorological normalisation121

is performed.122

2. Methods123

2.1. Data124

2.1.1. Port of Dover SO2125

Hourly SO2 concentrations were analysed from the Port of Dover, a major port located in126

Kent in the South East of England. Two air quality monitoring sites, Dover Docks and Dover127

Langdon Cliff’s SO2 data were queried from the Kent Air Quality database (Ricardo Energy128

& Environment, 2018). A nearby meteorological site, Langdon Bay located to the west of129

the port was used to provide surface meteorological observations and were accessed from130
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NOAA’s Integrated Surface Database (ISD) (NOAA, 2016) (Figure 1(a)). The monitoring131

sites had different commissioning and decommissioning dates and neither site is still operating132

(Table 1). SO2 observations are available between March 2001 and December 2012. The133

data capture rates for SO2 at Dover Langdon Cliff and Dover Docks for their online period134

were 92 and 82 % respectively. These monitoring sites are of interest because marine fuels135

in British and European waters have been subject to a series of sulfur content fuel limits.136

The introduction and continued enforcement of these sulfur fuel limits were expected to137

influence ambient SO2 concentrations. The details of these interventions are discussed further138

in Section 3.1.2.139

Table 1: Details of the air quality monitoring sites in Dover and London used in this analysis. Sites without

end dates are still operational.

Location Site name Site type Latitude Longitude Elevation Date start Date end

Dover Langdon Bay Meteorological 51.133 1.350 117 1973-03-08

Dover Dover Langdon Cliff Urban background 51.132 1.339 98 2001-03-17 2010-03-05

Dover Dover Docks Urban industrial 51.127 1.336 6 2006-11-17 2013-01-03

London London Heathrow Meteorological 51.478 -0.461 25 1948-12-01

London London Marylebone Road Traffic 51.523 -0.155 35 1997-01-01

2.1.2. London Marylebone Road NO2 and NOx140

Hourly NO2 and NOx data from London’s Marylebone Road air quality monitoring site141

were accessed from smonitor Europe, a European database containing the observations142

and metadata from the AirBase and Air Quality e-Reporting (AQER) repositories (Grange,143

2016, 2017). NOx concentrations have been monitored since July 1997 and the final year of144

reporting sourced from the European data repositories used was 2016. Data capture rates for145

NOx and NO2 for the analysis period were 97 %. London Heathrow, a large airport located146

at the far west of Greater London was used for surface meteorological observations sourced147

from NOAA’s ISD (Figure 1(b)). London Marylebone Road is situated in a complicated148

central urban environment. The site is located one metre south of the kerb on the A501149

trunk road and sits within an irregularly shaped street canyon. London Marylebone Road is150

a prominent and often analysed site due to its long observational record and diverse suite of151
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Figure 1: Maps of the study sites with a United Kingdom insert for country-scale context. The Port of Dover

complex is displayed in (a) and the internal lines indicate roads and Greater London is shown in (b), with

the London Boroughs and City of London indicated with internal polygons.
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pollutants which are monitored at the site (Jeanjean et al., 2017).152

NOx and NO2 concentrations across European cities are a significant issue and many153

member states are non-compliant to the legal European ambient air quality limits (Weiss154

et al., 2012; Grange et al., 2017). Almost all locations which are non-compliant are classified155

as roadside (or ‘traffic-influenced’) (European Environment Agency, 2016). London has some156

of the highest roadside concentrations of NOx and NO2 in Europe and London Marylebone157

Road (Figure 1(b)) is an often referenced monitoring site for its high concentrations.158

To combat the issue of traffic congestion, Greater London authorities imposed the159

Congestion Charge Zone (CCZ), which was first enforced in February 2003 (Atkinson160

et al., 2009). Since that time, the London Low Emission Zone (LEZ), and the Emissions161

Surcharge (better known as the T-Charge) have also been implemented to combat air pollution162

(Transport for London, 2018). The details and start dates of these various measures are163

displayed in Table 2. All these interventions are significant investments with large amounts164

of planning and resources to execute and maintain.165

Table 2: Details of interventions within Greater London to counter traffic congestion.

Name Abbreviation Start date Area covered Operation

Congestion Charge Zone CCZ 2003-02-17 Central London 07:00–18:00 Mo-Fr

London Low Emission Zone (first phase) LEZ 2008-02-04 Greater London 24/7

London Low Emission Zone (second phase) LEZ 2012-01-03 Greater London 24/7

Emissions Surcharge T-Charge 2017-10-23 Central London 07:00–18:00 Mo-Fr

Ultra Low Emission Zone (planned) ULEZ 2019-04-08 Central London 24/7

2.2. Modelling and the hyperparameters166

For both examples, the meteorological normalisation procedure was conducted in the167

same way and the rmweather R package (version 0.1.2) was used for this process (R Core168

Team, 2018; Grange, 2018). The number of trees for the random forest models was fixed at169

300, the minimal node size was five, and the number of variables split at each node was the170

default for regression mode: the rounded down square root of the number of independent171

variables which in these examples was three (rmweather’s function arguments n trees,172
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min node size, and mtry respectively). The independent variables used were: Unix date173

(number of seconds since 1970-01-01) as the trend term, Julian day as the seasonal term,174

weekday, hour of day, air temperature, relative humidity, wind direction, wind speed, and175

atmospheric pressure. Training was only conducted on observations which had non-missing176

wind speed and the pollutant being modelled. Three hundred predictions were used to177

calculate the meteorologically normalised trend. The normalised trends were aggregated178

to monthly resolution for presentation in Section 3. A conceptual representation of the179

meteorological normalisation processes is displayed in Figure A1.180

For the Dover SO2 examples, models were calculated using the full observational set, but181

after investigating the models (discussed in Section 3.1.1), the observations were filtered to182

wind directions which were sourced from the port and these models are the ones which were183

used for the time series analysis (Section 3.1.2). For observations at London Marylebone184

Road, no filtering was undertaken. In the case of London Marylebone Road, there are a large185

number of potential events which could influence pollutant concentrations and emissions.186

To objectively identify events, the meteorologically normalised time series were tested for187

breakpoints or changes in structure. The structural change algorithm is described in Zeileis188

et al. (2002); Zeileis et al. (2003) and was implemented with the strucchange R package.189

The random forest algorithm does not directly offer the ability to determine error or190

uncertainty of estimates. However, uncertainty is important to consider in many situations.191

To enable uncertainty to be evaluated for the case studies, 50 random forest models were192

grown for each example with the hyperparameters described above, but with randomly193

sampled (bootstrapped) input sets. The bootstrapping of the observational data ensured194

the models were grown on different training sets. The importance values (a measure of the195

variables’ strength or influence on prediction), partial dependencies, and predictions for each196

of the 50 models were then summarised. The summaries used from the “ensemble of the197

ensembles” were the mean, and the 2.5 % and 97.5 % quantiles of the 50 estimates i.e. a198

range that spans the 95 % confidence interval in the mean. The model performance statistics199

for the four sets of models are displayed in Table 3.200
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Table 3: Mean random forest model performance statistics four the four sets of models grown for the analysis.

Location Model n R
2

Dover Dover Docks SO2 34224 0.67

Dover Dover Langdon Cliff SO2 53535 0.63

London London Marylebone Road NO2 131677 0.82

London London Marylebone Road NOx 131677 0.83

3. Results and discussion201

3.1. Port of Dover SO2202

3.1.1. Models203

The random forest models grown for SO2 at the two Dover sites had R
2 values of 63 and204

67 % (Table 3), therefore, the models had moderate explanatory ability for Dover’s SO2205

concentrations. However, it should be noted that predicting concentrations over such short206

time periods with intermittent source strength is challenging and data capture was less than207

ideal for these monitoring sites. The moderate performance can be explained by SO2 at this208

location containing large amounts of variation due to ship movements and if winds were in a209

favourable direction to transport emissions from the port complex to the monitoring sites210

(southerlies). Indeed, wind direction was the most important variable for SO2 explanation211

for the random forest models (Figure 2).212

Partial dependence plots of decision tree models allow the learning process to be interpreted213

and a data user to examine how variables are being handled in the predictive model. Figure 3214

demonstrates a two-way partial dependence plot for SO2 concentrations at Dover Landon215

Cliff using wind direction and date (the trend term) as the independent variables. The216

feature which is most clear is the band of increased SO2 dependence between 150 and217

210 degrees. Outside of this band of southerly winds, there were low levels of dependence218

on SO2 concentrations. The Dover Landon Cliff monitoring site was located north of the219

Port of Dover docks and very slightly to the east (Figure 1(a)). The partial dependence220

on wind direction is consistent with this location and indicates that wind direction was221
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Figure 2: Variable importance plot for SO2 at Dover Langdon Cliff between 2001 and 2010 calculated by 50

random forest models.

handled sensibly in the random forest model. This observation can be confirmed further222

with a bivariate polar plot of mean SO2 concentrations by wind direction and speed at the223

monitoring site (Figure 4). The first sulfur content fuel change in mid-August 2006 can also224

be seen in the two-way partial dependence plot as a clear reduction in SO2 dependence when225

winds were sourced from the port (the south; discussed further in Section 3.1.2; Figure 3).226

Another clear feature isolated by the partial dependence plots was that SO2 concentrations227

increased with increasing air temperature at the Dover monitoring sites (Figure 5). This228

relationship was an unexpected outcome because generally, pollutant concentrations are229

inversely related to air temperature because emissions are more efficiently diluted during230

warmer periods owing to increased thermal turbulence. For some sources such as heating,231

emissions are greater at lower temperatures, but when considering shipping emissions,232

this would be negligible. At Dover, the SO2 relationship between concentrations and air233

temperatures was indicative of convective thermal mixing being an important physical process234

which resulted in SO2 emitted by ships to be mixed towards the measurement site at the235

cliff top. This turbulent mixing at high temperatures resulted in high SO2 concentrations at236
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Figure 4: Bivariate polar plot of mean hourly SO2 concentrations at Dover Landon Cliff between 2001 and

2010. The Dover Landon Cliff monitoring site was located north of the Port of Dover (for a location map,

see Figure 1(a)).

the surface and this feature cannot be easily observed in the hourly observational data. The237

illumination of such physical processes is a major advantage of the random forest algorithm238

compared to other machine learning methods such as support vector machines (SVM) or239

artificial neural networks (ANNs) because they do not offer the same amount of model240

legibility.241

3.1.2. Influence of sulfur fuel limits on SO2 concentrations242

Since the early 2000s, there has been a number of increasingly stringent sulfur based fuel243

limits imposed on ships operating in British and European Union (EU) waters due to their244

status as Sulfur Emission Control Areas (SECAs) or Emission Control Areas (ECAs). The245

most important events for sulfur control were implemented on August 11, 2006 and January246

1, 2010. In August 2006, the MARPOL Annex IV regulations were applied which introduced247

a 1.5 % sulfur limit on fuel oils used by vessels moving between EU ports (International248

Maritime Organization, 2005). The pre-August 2006 sulfur content for British vessels has249

been estimated at 2.7 % which represents a reduction in sulfur content of 44 % (Entec, 2010).250
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At the start of 2010 an additional limit was imposed for all vessels at berth where such251

vessels were required to be operated with maximum fuel sulfur content of 1 %. These changes252

should be evident in the SO2 time series of the nearby ambient monitoring sites. However, if253

a time series is plotted, the influence of these changes are subtle and not clear due to the254

high amounts of variation within SO2 concentrations (Figure 6).255
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Figure 6: Daily SO2 concentrations at two monitoring sites in Dover between 2001 and 2012.

The meteorologically normalised SO2 time series for the Dover sites are displayed in256

Figure 7, after the observations were filtered to wind directions which came for the port,257

hence the tight 95 % confidence intervals. The dates when changes in sulfur fuel content258

were implemented are displayed as vertical lines in Figure 7 and the influence of sulfur fuel259

changes are clear (compared with Figure 6).260

At Dover Langdon Cliff, the monitoring site which was online during the MARPOL261

1.5 % fuel sulfur limit transition during August 2001 shows the shift in ambient SO2 very262

clearly (Figure 7). The mean meteorologically normalised SO2 concentrations for the pre- and263
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Figure 7: Meteorologically normalised SO2 concentrations at two monitoring sites in Dover between 2001

and 2012 as calculated by 50 random forest models. The vertical lines show the start dates of when changes

in marine sulfur fuel content were implemented.
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post-fuel change periods were 48 and 26µgm−3 respectively. This difference represented in264

percentage change is 45 % and the corresponding estimated change in sulfur fuel content was265

44 %. This extremely good agreement between sulfur content fuel changes and normalised266

ambient SO2 concentrations suggests that the Port of Dover activities and ship movements267

remained constant during the transition phase and the source of SO2 at this location was268

almost exclusively from the port.269

The second sulfur fuel content change was implemented on January 1, 2010 and this270

intervention is also clearly displayed in the meteorologically normalised SO2 concentrations271

of the Dover Docks monitoring site (Figure 7). The percentage change in fuel sulfur content272

was 33 % and the percentage change in ambient SO2 concentrations was 32 %. Like the273

previous intervention, these two percentage changes match almost exactly, which is somewhat274

surprising because the intervention was applied only to berthed vessels which would only275

make up a component of the Port of Dover activities.276

3.2. London Marylebone Road NOx277

3.2.1. Models278

The random forest models of NOx and NO2 at London Marylebone Road performed well279

and had R
2 values of 82 and 83 % respectively (Table 3). This good performance can be280

explained by hour of day being a very good predictor for traffic flows and therefore emissions281

at this location for these (mostly) traffic-sourced pollutants (Figure 8). The performance of282

the random forest models would be rather difficult to achieve with dispersion or deterministic283

models in such a complicated location. For example, the dispersion models evaluated in284

Carslaw et al. (2013) struggled to represent the street canyon environment, even when traffic285

information was taken into account. The importance plots for the London Marylebone Road286

models also show that wind direction is the most important variable to predict NO2 and287

NOx concentrations. London Marylebone Road is located in a street canyon and is subjected288

to complex flows, including ventilation, vortices, and leeward accumulation of pollutants,289

(primarily) dependent on wind direction (Carslaw and Carslaw, 2007; Catalano et al., 2016).290

This complexity is demonstrated in the importance of wind direction in explaining NOx and291
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NO2 concentrations (Figure 8) and this has been noted before at this location (Charron and292

Harrison, 2005; Westmoreland et al., 2007).293
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Figure 8: Variable importance plot for 50 NO2 random forest models for London Marylebone Road. The

uncertainty among the importances of the 50 models was very small and therefore the quantiles are not

shown. The importances for the NOx models were very similar.

3.2.2. Changes in primary NO2294

Using the predictive models for meteorological normalisation results in very clear and295

almost noiseless meteorologically normalised trends shown in Figure 9. It is immediately296

clear that NOx and NO2 are not behaving the same way at this monitoring location. This is297

because of changes in vehicular primary (directly emitted) NO2 during the analysis period298

(1997–2016) (Carslaw, 2005; Carslaw et al., 2016; Grange et al., 2017). The vertical lines on299

Figure 9 show the breakpoints identified by structural change analysis after the meteorological300

normalisation procedure.301

NOx concentrations decreased after the introduction of a bus lane adjacent to the302

monitoring site in 2001 but have remained near constant since the introduction of the CCZ in303

February 2003 (Figure 9 and Table 2). Despite the progressively stringent vehicular emission304
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controls being applied across Europe between 2003 and 2016 (the last year of data in analysis),305

they have had little effect to NOx at London Marylebone Road. This observation could306

be, at least partly, explained by the disconnect between laboratory testing and real-world307

emissions of NOx which become a public issue after the diesel emission scandal in September308

2015 (Brand, 2016; Schmidt, 2016). However, heavy duty vehicles are also very important to309

consider alongside passenger vehicles at this Central London location (Laybourn-Langton310

et al., 2016; Greater London Authority, 2017).311
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Figure 9: Meteorologically normalised NOx and NO2 at London Marylebone Road between 1997 and 2016

as calculated by 50 random forest models (for each pollutant). The vertical lines on show the breakpoints

identified by structural change analysis.

NO2 concentrations at London Marylebone Road have increased since 1997 and were at312

their maximum between 2002 and 2008 (Figure 9). The changes observed can be explained313
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by changes to the vehicle fleet using the adjacent A501 road resulting from the introduction314

of congestion charging, London’s Low Emission Zone, and evolution of the local bus fleet.315

The rapid increase of NO2 concentrations was observed in the meteorologically normalised316

time series between July 2002 and July 2003 (Figure 9). The CCZ was introduced in mid-317

February 2002; right in the middle of the period of increasing NO2 and within six months318

of the suggested breakpoint (October 2012). The increase in NO2 concentrations was due319

to increased primary NO2 because no change in the meteorologically normalised NOx was320

observed at the same time.321

The implementation of the CCZ was accompanied with a retrofitting programme of322

Euro III local buses with continuously regenerating diesel particulate filters (CRDPF, also323

known by their commercial name: CRT filters). CRDPF are passive devices and have two324

components: an upstream oxidation catalyst and a particulate matter (PM) filter. The325

oxidation catalyst oxidises NO within the exhaust stream to NO2 and this NO2 is then used326

as a PM oxidant in the filter-proper. The observations show that these retrofitted passive327

devices were not optimised because much of the generated NO2 was not reduced within the328

PM filter and was therefore emitted into the roadside atmosphere and thus significantly329

increased ambient NO2 concentrations (Figure 9).330

NO2 concentrations remained approximately stable until February 2008 when London’s331

Low Emission Zone (LEZ) was introduced and NO2 concentrations began to decrease (Fig-332

ure 9). The second NO2 breakpoint was detected for February 2008 giving some evidence333

that the LEZ reduced NO2 concentrations at London Marylebone Road (although no corre-334

sponding change in NOx was observed). However, during this period the local bus fleets were335

also being progressively replaced with newer buses compliant to the later Euro IV, V, and336

VI heavy vehicle emission standards (Finn Coyle, Tom Cunnington, and Gabrielle Bowden337

(Transport for London), personal communication, March 2018) as well of natural vehicle338

turnover removing older and more polluting vehicles from the in-service fleet. The third NO2339

breakpoint identified coincided with route 18, the bus route with the highest peak vehicle340

requirements (PVR), shifting from Euro III to Euro V vehicles in late 2010 (Figure 9). After341

2011, NO2 concentrations continued to decline with the introduction of Euro VI and hybrid342
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buses servicing the 453, 27, and 205 routes. By the end of 2016, NO2 had declined to almost343

pre-CCZ concentrations. The features displayed in the normalised time series were not clear344

in the raw concentration data (displayed in Figure A2) and the breakpoints identified were345

unable to be resolved without the meteorological normalisation technique.346

The tandem use of the meteorological normalisation procedure and breakpoint analysis347

is powerful and can revel many changes, but in many cases there may not be sufficient348

information or metadata to help explain the changes observed. In this Central London349

example, many of the factors driving pollutant concentrations are known due to the site’s350

prominence.351

London Marylebone Road also monitors ozone (O3), something which is rare for roadside352

monitoring locations in Europe. The NO2, NOx, and O3 complement allows for the estimation353

of primary NO2 with an independent method by determining the total oxidant (OX; NO2354

+ O3) within NOx (Jenkin, 2004; Carslaw and Beevers, 2005). Figure 10 shows monthly355

estimates of the primary NO2 fraction at London Marylebone Road with robust linear356

regression. Figure 10 is consistent with Figure 9 with a rapid increase in primary NO2 during357

2002 and a reduction, but at a slower rate after 2008 thus further confirming and validating358

that the trends observed in Figure 9 are driven by changes in primary NO2 emissions. The359

reason why the trend is similar in Figure 10 and Figure 9 is that at this particular site360

increased emissions of primary NO2 were sufficient to have a measurable effect on ambient361

concentrations.362

4. Conclusions363

Controlling for changes of meteorology is an important component to consider when364

conducting air quality data analysis over time. A meteorological normalisation technique365

using random forest was used to investigate interventions in routine air quality monitoring366

data from two areas. The interventions applied to marine fuel content changes were explored367

in Dover, a port city in the South East of England and the interventions were represented in368

the meteorologically normalised time series almost exactly. The non-black box nature of the369

random forest models was used to investigate the dependence of pollutant concentrations370
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Figure 10: Monthly total oxidant (OX; NO2 + O3) at London Marylebone Road between 1997 and 2016.

Slope and errors were calculated with robust linear regression.

on meteorological variables such as air temperature and wind direction which highlighted371

the benefit of the technique where physical and chemical atmospheric processes can be372

illuminated, understood, and explained.373

In the example of the implementation of congestion charging in Central London, very clear374

changes in primary NO2 emissions were displayed in the meteorologically normalised time375

series. The performance of these roadside models was high due to the models’ ability to use376

wind direction and hour of day very effectively, something which dispersion or deterministic377

models struggle with when used for modelling street canyon environments. The case studies378

presented are both examples where there is significant ability to cross check the observed379

features with available information on changes in the sites’ local environments to validate380

the outputs.381

The meteorological normalisation technique is very relevant for exploring the influence382

of interventions or management activities on local air quality. The combination of a non-383

parametric method, the lack of need for specialised measurements, and the effective use of384
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proxy variables lends the technique to a wide range of air quality data analysis applications.385
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Highlights392

• Detecting the influence of air quality interventions is important393

• Changes in meteorology over time complicates air quality intervention analysis394

• Meteorological normalisation was applied in two locations to explore interventions395

• The changes detected in the normalised time series were associated to interventions396

• The non-black-box nature of the procedure allows for interpretation of results397
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Appendix552
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Figure A1: The framework for the meteorological normalisation technique. The training and validation phase

is iterative to ensure the model does not overfit and adequate performance is achieved. After the technique

has been completed, other analyses are conducted on the normalised time series.
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Figure A2: Daily NO2 and NOx concentrations at London Marylebone Road between 1997 and 2016.

30



Acquire and load 

observations
Model with

random forest

Clearly detect and 

explain interventions

Intervention 

detected

Pre-intervention

Post-intervention

Figure A3: Graphical abstract. Icons designed by freepik.com from Flaticon.
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