
The International Journal of

Design Management
and Professional Practice

DESIGNPRINCIPLESANDPRACTICES.COM

VOLUME 10 ISSUE 3

__

The Lens of the Lab

Design Challenges in Scientific Software

FRANCISCO QUEIROZ AND REJANE SPITZ

THE INTERNATIONAL JOURNAL OF DESIGN
MANAGEMENT AND PROFESSIONAL PRACTICE
www.designprinciplesandpractices.com
ISSN: 2325-162X (Print)
ISSN: 2325-1638 (Online)
doi:10.18848/2325-162X/CGP (Journal)

First published by Common Ground Publishing in 2016
University of Illinois Research Park
2001 South First Street, Suite 202
Champaign, IL 61820 USA
Ph: +1-217-328-0405
www.commongroundpublishing.com

The International Journal of Design Management
and Professional Practice is a peer-reviewed, scholarly journal.

EDITORS
Lorenzo Imbesi, Sapienza University of Rome, Italy
Loredana Di Lucchio, University of Rome, Italy

COMMUNITY EDITOR
Jeremy Boehme, Common Ground Publishing, USA

ADVISORY BOARD
Genevieve Bell, Intel Corporation, USA
Michael Biggs, University of Hertfordshire, UK
Jeanette Blomberg, IBM Almaden Research Center, USA
Patrick Dillon, Exeter University, UK
Michael Gibson, University of North Texas, USA
Loredana Di Lucchio, Sapienza University of Rome, Italy
Jorge Frascara, Emily Carr University of Art and Design, Canada
Judith Gregory, Institute of Design, USA; University of Oslo, Norway
Christian Guellerin, L'École de design Nantes Atlantique, France
Tracy S. Harris, The American Institute of Architects, USA
Clive Holtham, City of London University, UK
Lorenzo Imbesi, Sapienza University of Rome, Italy
Hiroshi Ishii, MIT Media Lab, USA
Gianni Jacucci, University of Trento, Italy
Klaus Krippendorff , University of Pennsylvania, USA
Bill Lucas, MAYA Fellow, MAYA Design, Inc., USA
Ezio Manzini, Politecnico of Milano, Italy
Mario Minichiello, University of Newcastle, Australia
Guillermina Noël, Emily Carr University of Art and Design, Canada
Mahendra Patel, Leaf Design, India
Toni Robertson, University of Technology Sydney, Australia
Terry Rosenberg, Goldsmiths, University of London, UK
Keith Russell, University of Newcastle, Australia
Maria Cecilia Loschiavo dos Santos, University of São Paulo, Brazil
Louise St. Pierre, Emily Carr University of Art and Design, Canada

ASSOCIATE EDITORS
Articles published in The International Journal of Design Management
and Professional Practice are peer reviewed by scholars who are active
participants of the Design Principles and Practices Journal Collection
or a thematically related Knowledge Community. Reviewers are
acknowledged as Associate Editors in the corresponding volume of the
journal. For a full list, of past and current Associate Editors please visit
www.designprinciplesandpractices.com/journals/editors.

ARTICLE SUBMISSION
The International Journal of Design Management and Professional
Practice publishes quarterly (March, June, September, December).
To find out more about the submission process, please visit
http://www.designprinciplesandpractices.com/journals/call-for-papers.

ABSTRACTING AND INDEXING
For a full list of databases in which this journal is indexed, please visit
www.designprinciplesandpractices.com/journals/collection.

KNOWLEDGE COMMUNITY MEMBERSHIP
Authors in The International Journal of Design Management and
Professional Practice are members of the Design Principles and
Practices Journal Collection or a thematically related Knowledge
Community. Members receive access to journal content.
To find out more, visit
www.designprinciplesandpractices.com/about/become-a-member.

SUBSCRIPTIONS
The International Journal of Design Management and Professional
Practice is available in electronic and print formats. Subscribe to gain
access to content from the current year and the entire backlist.
Contact us at cg-support@commongroundpublishing.com.

ORDERING
Single articles and issues are available from the journal bookstore at
www.ijg.cgpublisher.com.

HYBRID OPEN ACCESS
The International Journal of Design Management and Professional
Practice is Hybrid Open Access, meaning authors can choose to make
their articles open access. This allows their work to reach an even
wider audience, broadening the dissemination of their research. To find
out more, please visit
www.designprinciplesandpractices.com/journals/hybrid-open-access.

DISCLAIMER
The authors, editors, and publisher will not accept any legal
responsibility for any errors or omissions that may have been made in
this publication. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

COPYRIGHT
© 2016 (individual papers), the author(s)

© 2016 (selection and editorial matter)

Common Ground Research Networks

Some Rights Reserved.

Public Licensed Material: Available under the terms and conditions of

the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International Public License (CC BY-NC-ND 4.0). The use of this

material is permitted for non-commercial use provided the creator(s)

and publisher receive attribution. No derivatives of this version are

permitted. Official terms of this public license apply as indicated here:

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Common Ground Research Networks, a member of Crossref

http://www.designprinciplesandpractices.com/
http://doi.org/10.18848/2325-162X/CGP
http://www.commongroundpublishing.com/
mailto:cg-support@commongroundpublishing.com
http://www.designprinciplesandpractices.com/journals/editors
http://www.designprinciplesandpractices.com/journals/call-for-papers
http://www.designprinciplesandpractices.com/journals/collection
http://www.designprinciplesandpractices.com/about/become-a-member
mailto:cg-support@commongroundpublishing.com
http://www.ijg.cgpublisher.com/
http://www.designprinciplesandpractices.com/journals/hybrid-open-access

The International Journal of Design Management and Professional Practice
Volume 10, Issue 3, 2016, www.designprinciplesandpractices.com
© Common Ground Publishing, Francisco Queiroz, Rejane Spitz,
Some Rights Reserved, (CC BY-NC-ND 4.0).
Permissions: support@cgnetworks.org
ISSN: 2325-162X (Print), ISSN: 2325-1638 (Online)

The Lens of the Lab:
Design Challenges in Scientific Software

Francisco Queiroz, PUC-Rio, Brazil
Rejane Spitz, PUC-Rio, Brazil

Abstract: Playful and gameful design could improve the quality of scientific software. However, literature about
gamification methods for that particular type of software is presently scarce. As an effort to fill that gap, this paper
introduces a set of design challenges and opportunities that should be informative to professionals approaching the area.
This research is based on literature review on scientific software development, also contemplating material on the
gamification of science, software, and work. From the gathered information, we identify, map, and discuss key aspects of
development and use of professional scientific software. Those findings are, then, formatted as a Design Lens—a set of
questions designers should ask themselves to gain insight, from a particular perspective, on their work. We propose the
Lens of the Lab as a design lens to support designers working in collaboration with scientists and software engineers in
professional scientific software initiatives.

Keywords: Specification, Gamification, Scientific Software

Introduction

t has been suggested that gamification should be applied to scientific software as a way to
improve user experience (Wolff 2015). This paper investigates scientific software
characteristics, focusing on usability, to propose a set of principles organized as a design

lens. Originally concerned about videogame-inspired experiences, the lens could be useful to
UI/UX designers approaching scientific software.

Definitions

Before proposing a design lens to facilitate gamification and playful design of scientific software,
we must introduce those terms. Scientific software is defined by three characteristics: (1) it is
developed to answer a scientific question; (2) it relies on the close involvement of an expert in its
scientific domain; and (3) it provides data to be examined by the person who will answer that
question (Kelly 2013). In the light of the recent trend of citizen science, we should clarify that
this paper is primarily concerned with software “developed by scientists for scientists” (Sletholt
et al. 2012, 24)—even if aware and informed by gamified citizen science.

Design lenses were first elaborated by Jesse Schell (2015) as a way of expressing principles
that should inform design decisions. They are usually constituted by a brief explanation of a
topic, followed by a set of questions. Originally developed for game design, they have been
expanded to user experience (Scott 2010) and gamification practices (Deterding 2013).

Gamification, “the use of game design elements in non-game contexts” (Deterding et al.
2011, 2), is typically associated with structured play (e.g., games) and gameful behavior
(McGonigal 2011). It is opposite and complimentary to playful design, based on unstructured
play (e.g., toys) (Deterding et al. 2011). For all practical purposes, this study embraces the whole
spectrum from games to toys, ludus to paidia (Caillois 2001), toyplay to goalplay (Madsen et al.
2007), focusing on videogames as inspiration for better software.

I

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Methodology

Throughout the next subsections, we describe the semi-systematic literature review (SSLR) on
which this study is based.

Issues and Concerns

Through this SSLR, we were interested in investigating:
 How is scientific software developed and used?
 How are user interfaces for scientific software designed?
 Which guidelines and case studies can be used as reference?
 How can scientific software be gamified?

Sources, Queries, and Search Results

We have selected the following databases for a thorough search: ACM Digital Library, IEEE
Explore, Scopus, AIS Electronic Library, and Web of Knowledge. Aiming for a comprehensive
result, searches for the following terms were performed:

(1) “scientific software” and “gamification”
(2) “citizen science” and “gamification”
(3) “scientific software” and “user experience”
(4) “scientific software” and “user interface”
(5) “scientific software” and “HCI”
(6) “scientific software development”

After excluding duplicates and unrelated material, we have reached the number of 270
references. The number of results for each query by database, followed by the number of selected
articles after screening and deduplication, are shown in Table 1.

Table 1: Search Results for Queries

 ACM
DL

IEEE
Exp. Scopus AIS

EL WoK Total

“scientific software” and “gamification” 0 1 0 1 0 1

“citizen science” and “gamification” 8 17 11 5 3 21

“scientific software” and “user experience” 0 17 4 9 1 6

“scientific software” and “user interface” 2 201 42 55 10 132

“scientific software” and “HCI” 2 11 0 7 0 5

“scientific software development” 13 140 81 62 54 105

Total 25 387 138 139 68 270
Source: Data updated from selected databases on December 4, 2015.

Further Refinement and Additional Material

We have included articles on related subjects, found through sources such as Science Direct,
Google Scholar, and gamification-research.org, as a way to acknowledge significant
contributions otherwise eluded by the initial databases. Also, we have refined our selection
through further screening, reaching the number of 221 unique references.

18

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Findings

Through the next subsections, we present the most relevant findings collected.

How Is Scientific Software Developed and Used?

Scientific software (SS) has gained importance in the last three decades, moving science “from
test tubes into silicon-based simulation” (Woollard et al. 2008, 38). SS is used for “processing,
analyzing, visualizing, managing, sharing, experimenting and […] generating new raw data”
(Ahmed and Zeeshan 2014, 55), and allows the conduction of research in otherwise impossible
conditions (Segal and Morris 2008). A testbed for new technologies (Mills et al. 1995), SS
connects “abstract theoretical and real industrial worlds” (Prego and Seisdedos 2011, 1). It can be
used to control field equipment (Mielke et al. 2005) or geographically distributed lab facilities
(Gertz, Stewart, and Khosla 1994). SS is diverse in scope and size: it could mean a single
software library, a plugin, or a fully-fledged software. It could be built from scratch or as a
module for third-party solutions (Frank et al. 2007).

A survey from 2009 claims that scientists who use SS spend on average 30 percent of their
working time developing and 40 percent using it. Developing their own software is important or
very important to 84.3 percent of those who use it. Additionally, SS developed by scientists
might be important to other researchers (Hannay et al. 2009). Recently, a poll indicated that
seven out of ten UK researchers consider research without software an impossibility (Hettrick
2014). Moreover, although only a minority uses SS, a vast majority benefits from the
advancements it brings (Kelly and Skordaki 2015). Very often, SS is built for the developer
himself or groups under ten people—although there is a significant number of projects intended
for larger groups (over 100 people), and cases of SS reaching over 5,000 users—mostly the case
for open-source or commercial packages (Hannay et al. 2009; Nguyen-Hoan, Flint, and
Sankaranarayana 2010). Reasons behind development are usually (1) first-hand research; (2)
training and education; (3) external decision support (Sanders 2008, 36). A survey from 2010
claims that most projects are developed within universities—followed by industry, research, and
government—often by small teams comprising one to six members (Nguyen-Hoan, Flint, and
Sankaranarayana 2010).

The scientific and academic nature of SS is responsible for its most pronounced
characteristics, needs, and challenges. First, there is motivation: unlike in most development
environments, the main goal is not making software, but science (Basili et al. 2008). As such,
professional reputation comes from publishing papers—and scientists can perceive software
exclusively as a means to that. This attitude could hurt software quality (Killcoyne and Boyle
2009), demotivate developers, and harm their collaboration with users/scientists (Howison and
Herbsleb 2011), who could fail to engage into the development process (Segal 2009). In fact,
collaboration is vital, yet potentially problematic, since it can be undermined by a personal sense
of authorship (Turk 2014). Team communication is essential (Morris and Segal 2012; Taweel et
al. 2009), as members might come from different backgrounds, work across the globe
(Marinovici, Kirkham, and Glass 2014) for extended periods of time, and hold particular visions
for the project (Spencer 2015). Ideally, the software itself should support collaboration,
facilitating data integration, content sharing, documentation, workflow, and knowledge
management (Pinto et al. 2002). Additionally, supporting collaborative communities for know-
how sharing can stimulate software use and adoption (De Roure and Goble 2009).

Communities for free and open SS resources have been fostering collaboration for a long
time, evolving from personal memberships in the 1950s to global communities, through e-mail,
Arpanet, and Internet servers, during the 1980s and 90s (Dongarra et al. 2008). In the last ten
years, new types of massively collaborative efforts, such as open data, crowd science, and citizen
science, have become a new paradigm (Vanschoren et al. 2014). Crowd science disrupts from

19

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

“traditional” science in two ways: openness to a wide base of contributors (up to hundreds of
thousands), and disclosure of sensitive information (e.g.: data, algorithms) normally restricted to
scientists undertaking the research. It defies the traditional model of closed research groups
competing for publication impact by suggesting new ways of collective authorship. As such, it
could influence how science is traditionally made regarding collaboration, motivation,
knowledge creation, openness, transparency, organization of teams, the embedding of scientific
processes, and rigor in software (Franzoni and Sauermann 2014). In many cases, crowd science
is gamified—a relationship we investigate in a further subsection.

SS often depends on the collaboration between scientists and software engineers (Holthouse
and Greenberg 1978). Often, scientists who are technically apt might develop software
themselves. Segal (2007) refers to them as the “professional end-user developer,” for whom
software development is a secondary activity, and who develops alone or along other scientists
and programmers, for himself or his community of practice. As a result, SS development culture
is often described as averse to software engineering best practices, informal, with no clear
requirements or design (Ahmed and Zeeshan 2014). This lack of planning could affect
development and commercialization (Sanders 2008, 40) and is inadequate to complex systems,
although sometimes sufficient for punctual research (Spencer 2015). Kelly (2007) identifies a
“chasm” between software engineering (SE) professionals (who lack domain-specific
knowledge) and scientific computing (SC) community members (who lack SE knowledge)
communities. Developers might downplay initiatives to improve development process, failing to
acknowledge room for improvement—in which case advocates for solutions might have to
demonstrate potential gain by joining the development process (Brebner 1998). Focus on SE
practices might be perceived as bureaucratic and demotivate scientists (Spencer 2015). On the
other hand, both SC and SE communities agree that SS quality could be increased by the
adoption of SE practices (Mohammad 2010); Heaton and Carver 2015), including well-specified
requirements, automated testing, and documentation (Koteska and Mishev 2013). Likewise, it
would be advisable for software engineers to gain knowledge on the scientific domain in
question (Marinovici, Kirkham and Glass 2014), and on how scientists work and report their
progress (Killcoyne and Boyle 2009).

The “professional end-user developer” mindset is not the only obstacle between SS and SE
practices: scientific computing offers specific challenges—starting with the difficulty in
establishing requirements. Brooks stated that “the hardest single part of building software is
deciding precisely what to build” (Brooks apud Ovaska, Rossi, and Smolander 2005, 32). That is
particularly true to SS, as scientific theories behind the software might change throughout
research, forcing requirements to change along development. Requirements are, then, understood
along the process (Segal 2007), “as the software and the concomitant understanding of the
domain progress” (Segal and Morris 2008, 18). Requirements are often undocumented, although
some fields require formal documentation—in some cases using UML (Daniluk 2012), low and
high-fidelity prototypes (Aragon et al. 2008), or interactive storyboards (Sanders 2008).
Informally asking users for requirements is often unproductive (Morris and Segal 2012) and,
ideally, requirements should be consolidated as technical, clear descriptions of specific features
(Marinovici, Kirkham, and Glass 2014). In some cases, requirements can be established through
the use of personas (Schneidewind et al. 2012).

Another challenge is longevity: SS can be developed, used, and maintained for a long time,
often decades (Basili et al. 2008; Sanders 2008; Kelly 2009). For that reason, it might require
refactoring (Heaton and Carver 2015; Spencer 2015), and should be planned for sustainability
(Morris and Segal 2012) and expandability, since it could grow beyond initially planned (Basili
et al. 2008). Keeping software simple and avoiding unnecessary features is advisable (Gorton
2013). In some cases, new features are better incorporated via “modules” added to the main
software (Sanders 2008). On the other hand, there are cases where software life is expected to be
short and the software itself, disposable (Segal and Morris 2011).

20

QUEIROZ AND SPITZ: THE LENS OF THE LAB

To face such challenges, SS is usually developed in an iterative fashion (Sanders 2008).
Performing incremental changes is a best practice for scientific computing (Ackroyd et al. 2008;
Wilson et al. 2014), since regular iterations and small releases “let users influence development
and form requirements” (Ackroyd et al. 2008, 46). From a design perspective, responding to
user’s needs and having a user-base in mind can be more effective than striving for a complete
solution (De Roure and Goble 2009). Adopting development methodologies can be problematic:
this iterative nature makes it somewhat incompatible with traditional Waterfall development
methodology (Holthouse and Greenberg 1978). Agile seems to be more appropriate (Crabtree et
al. 2009; Nantaamornphong et al. 2014; Ahalt et al. 2014). However, SS communities can be
selective in the adoption of Agile practices (Sletholt et al. 2012), some of which can be
unfeasible to apply to scientists (Kelly and Smith 2010). Instead of embracing an established
methodology, developers might adopt a “loose version(s)” (Basili et al. 2008, 35) or a few
selected practices (Nanthaamornphong and Carver 2015). Sometimes, developers decide for an
“amethodological” approach (Kelly 2015). Methodologies tailored to SS have been outlined a
number of times (Platz 1986; Pereira Junior 2007; Ahmed, Zeeshan, and Dandekar 2014), often
emphasizing neglected (or difficult) aspects such as requirements, testing, and design (Cort et al.
1985). As early as 1986, Platz (1986) observed the need to balance SE measures with creative
freedom.

SS has a number of scientific needs: Correctness, a “core value of science” (Howison and
Herbsleb 2010, 3), stands as its most important quality and primary concern, beyond usability
(Kelly and Sanders 2008a). Reproducibility is also essential for the scientific method (Cimiano
and Sagerer 2015), allowing for validation and peer review (Recio-Garcia, Diaz-Agudo, and
González-Calero 2013), and is often addressed through portability and process automation.
Additionally, SS must handle complex data (Keffe 2010, 8) at great levels of precision (Hatton
and Roberts 1994). This complexity often requires interoperability with third-party software and
external resources (Fdez-Riverola et al. 2012), from other scientific software, industrial, and
robotic systems (Picón et al. 2006), to productivity software such as spreadsheet editors (Trlica
1997; McKiney 2003). Finally, testing and validation can be challenging, since comparing results
to real-world data is unfeasible (Segal and Morris 2008; Heaton and Carver 2015) and code
testing requires scientific domain knowledge or the help of a scientist. (Kelly, Thorsteinson, and
Hook 2011).

SS can be developed for desktop computers, workstations (Hannay et al. 2009), and portable
devices (Hughes et al. 2004; Clark 2014). Sometimes, SS demands High Performance
Computing (HPC) achieved through resources such as supercomputers (Hatton and Roberts
1994; Hannay et al. 2009), mainframes (Chen and Fu 1996), clusters (Cohen et al. 2013), grids
(Choi et al. 2006; Frank et al. 2007), and cloud services (Hou et al. 2010; Church et al. 2012;
Mendez, Villamiazr, and Castro 2013). HPC resources can be structurally complex (Kovalchuk
et al. 2012), and are usually accessed through gateways via desktop or web tools (Ernst et al.
2003; Kolberg, Courivaud, and Özbek 2007; Gomes et al. 2015). Giving access to top
computational power to users of low-end systems has been a concern for decades, and ensuring
similar user experience for all users was once a much bigger challenge (Atkins and Phillips 1986;
Phillips et al. 1986). In that respect, web and cloud-based services democratize HPC (Afgan et al.
2015), allowing scientists to focus on scientific problems, not computational ones (Bastos,
Moreira, and Gomes 2013).

Skeptical on new technologies, SS developers are likely to adopt technologies that are
compatible with old ones and tend to start things from scratch instead of adopting preexisting
frameworks (Basili et al. 2008). Late adoption of technological trends could be attributed it to
“high complexity and narrowly defined market segments” (Clark 2014, 237). This tendency
reflects on how software is used: establishing new practices can be challenging due to preexisting
work culture (Morris and Segal 2012). In such case, benefits should be clear from the start, and
users should not be forced to change how they work (De Roure and Goble 2009). SS can be

21

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

developed in various languages such as Fortran, Binary, Assembler, C, C++, Java, Python, PHP,
MatLab, etc. (Nguyen-Hoan, Flint, and Sankaranarayana 2010); Ahmed and Zeeshan 2014). It
can be developed in multiple languages (Basili et al. 2008) or assisted by domain-specific
frameworks (Glez-Peña et al. 2010; Fdez-Riverola et al. 2012). Allowing scientists to do their
own programming can be necessary (Wang, Tran and Andrade 2010). In this case, visual
programming (VP) and domain-specific languages (DSLs) can be alternatives to low-level
programming (Jones and Scaffidi 2011). Simpler and less error-prone than low-level languages
(Hinsen 2013), DSLs are available as closed-source or open-source solutions (Papadimitriou et
al. 2009). VP, on the other hand, allows scientists to construct scientific models and equations by
dragging and connecting components as in a CAD/CAM environment resembling data flow
diagrams (Keller and Rimmon 1992; Rijnders, Spoelder and Groen 1993). An example of such
environment is LabVIEW, which enables lab automation and simulation combining data-flow,
building blocks, virtual instruments, and typed programming language, (Kodosky, MacCrisken,
and Rymar 1991; Wang, Tran and Andrade 2010). VP usability makes scientists more
productive—unless computational performance is affected (Chambers 2013). Eventually, loss of
performance can be overcome: visual elements could be rewritten in DSL or recompiled as
machine language (Bilmes 1996). Another possibility is teaching users to improve their
programming through the software itself (Chambers 2013). As an additional benefit, allowing
users to develop and incorporate their own solutions can add value to the software (De Roure and
Goble 2009).

Work in SS, especially when done through networked resources, can be divided in three
phases: modeling, simulation, and result analysis (Kovalchuk et al. 2012, 2)—which are not
necessarily attained through a single software. First, during the modeling phase, the scientific
problem is represented in mathematical terms (Li 2011, 42), designed, and coded to represent the
system during simulation (Daniluk 2012).

Once ready, models can be used in the simulation, where data is entered, submitted, and
processed by a series of computational tasks. Dependencies and connections between these
individual tasks, from start to finish, compose a workflow (Woollard et al. 2008). Workflows can
be automated through scripting, visual editors, or specialized frameworks (Vigder et al. 2008; De
Roure and Goble 2009; Silva 2010). They can involve complex processing, possibly requiring
data to go sequentially through a series of different software, possibly taking days to compute. To
minimize the risk of failure, it has been suggested that workflows should be broken down in
smaller steps and use checkpoints systems (Gross et al. 2008; Nguyên, Trifan, and Désidéri
2011). In some cases, workflows can be saved as templates, exported, and shared for reuse
(Bergmann, Demuth, and Sander 2011).

Finally, after simulation, output data should be ready for the result analysis phase. That is
the culmination of the work in SS, since “the purpose of computing is insight, not numbers”
(Hamming apud Kelly and Sanders 2008a, 3). Result analysis often relies on data visualization
and manipulation—topics which will be explored in the next subsection. Scientific findings
derived from analysis could be used to advance research further or disclosed in publications.

How Are User Interfaces for Scientific Software Designed?

HCI is often regarded as “the most ignored and unattended phase of scientific software solution
development” (Ahmed, Zeeshan, and Dandekar 2014, 6), in many ways reflecting the
“professional end-user developer” mindset. Developer’s proximity to the domain can be a
complication, as they assume that users with similar backgrounds or programming skills will
understand the software, thus neglecting testing or documentation (Kelly and Sanders 2008b;
Sanders 2008; Nguyen-Hoan, Flint, and Sankaranarayana 2010). Mainly concerned with the
computational engine (Sanders 2008), developers might believe that “almost any user interface
will be tolerated” (MacLeod, Johnson, and Matheson 1992, 415). Indeed, SS usability can be

22

QUEIROZ AND SPITZ: THE LENS OF THE LAB

challenging right from installation and setup (Geimer, Hoste, and McLay 2014), potentially
obfuscating functionalities (Papadimitriou et al. 2011). Additionally, creating GUIs requires
specialized skills, and is possibly “the last thing a scientist wants to deal with” (Lundstrom and
Klimeck 2006, 497). Developers are not the only responsible group for usability issues:
sometimes, stakeholders financing the software might misunderstand user’s needs (Morris and
Segal 2012), or resist investing in design research, since its influence on insight is difficult to
demonstrate (De Matos et al. 2013).

Neglecting usability presents a major risk, especially when software grows in complexity
(Kendall et al. 2007), or is developed for external use (Sanders 2008). Applications could be
rejected due to difficult user interfaces and lack of visual output (Ahmed and Zeeshan 2014).
Conversely, user-friendly interfaces can be a major reason for adoption (Joppa et al. 2013), even
overcoming “apparent lack of performance” (Manjunatha et al. 2011, 4). Sometimes,
documentation is seen as a substitute for usability. However, SS documentation is often
incomplete, generated based on user’s demand and feedback, or created by users themselves
(Pawlik et al. 2012). Also, it can be unpractical to access. Interestingly, a developer expressed his
desire of keeping his software’s manual “to the slim size of an average video game manual”
(Sanders 2008, 69).

Aware of such risks, some developers adopt good practices such as: continuously testing
user interfaces; elaborating storyboards; observing field work; testing software in controlled
environments; adding help systems (Sanders and Kelly 2008); and planning usability cases (La
Rue et al. 2014). The perceived importance of usability in SS seems to be increasing in some
areas (Eliceiri et al. 2012). Recent approaches to SS development put interface design as a
priority by valuing the interface designer’s perspective (Mohammad 2010). The Butterfly
development model, for instance, pays attention to interface design from early development
stages, aiming at ease of use and learning by understanding user psychology, scientific domains,
work environment, and HCI principles and patterns (Ahmed, Zeeshan, Dandekar 2014). The
recent proposition for a “tool science” discipline, dedicated to SS development and teaching,
recommends the improvement of usability through case study research, comparison of similar
tools, and gamification. It also advocates that software quality reflects development and usage
aspects combined, including basic functionality, good development practices, efficiency and
effectiveness, and fun in use (Wolff 2015).

In many cases, GUIs are not essential (Chen and Fu 1996; Jarvis et al. 2006): SS can start as
libraries accessed through command line and, later, receive a GUI—sometimes through third-
party software integration (Chancelier, Lapeyre, and Lelong 2014). In fact, users might find
convenient to bypass GUIs and use text-based interfaces (Joshi et al. 1997) or enter data
programmatically (Weerawarana et al. 1996). GUI code should be kept separate from scientific
calculations (Kelly, Hook, and Sanders 2009), allowing for easier customization and
reconfiguration (Bastos, Moreira, and Gomes 2013). Nevertheless, GUIs can make SS user-
friendly (Murphy 1996; Belsky et al. 2002), especially to users without computing background
(Cohen et al. 2013) or in the case of complex software (Versek 2013). GUIs can mediate user’s
“visual and cognitive processes and the computer’s numerous low-level calculations” (Foulser
and Gropp 1990, 22), providing “a high-level abstraction of the underlying computational
facilities” (Ramakrishnan and Rice 1996, 2). A particular class of SS that embraces the
importance of GUIs is the Problem Solving Environment (PSE). PSEs are “computer system[s]
that provides all the computational facilities to solve a target class of problems […] by
communicating in the user’s own terms” (Gallopoulos, Houstis, and Rice 1999, 7). In simpler
terms, “PSE = user interface + libraries + knowledge base + integration” (Rice and Boisvert
1996, 47). PSEs do not require specialized programming expertise by the user: problems are
formulated, simulated, solved, and displayed with the assistance of high-level user interfaces
(Houstis and Rice 2002).

23

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

SS offers specific HCI challenges depending on which stage of the scientific process is being
supported. The modeling phase, for instance, might require combined knowledge on scientific
domain, mathematical modeling, and programming—needs that can foster interesting solutions:
modeling could be constructed through flow-diagram interfaces (Julvez, Matcovschi, and
Pastravanu 2014; Bunus 2006) and informed by a display of domain-specific knowledge base
(Keller, Michal, and Das 1994). Additionally, GUIs could provide clearer understanding of
scientific concepts behind programming by reinterpreting selected sections of code as scientific
terms, along with an appropriate glossary (Stewart 2001).

The simulation phase could require tools for construction and execution of workflows,
which could be created, configured, submitted, and monitored through GUIs (Bergmann,
Demuth, and Sander 2011) for ease of use and increased productivity (Dong and Wild 2008;
Vigder et al. 2008); De Roure and Goble 2009). As with models, workflows are often edited
through data-flow diagrams—in this case, connecting sequences of computational tasks and
services through which data will be transformed.

The result analysis phase is often highly visual, demanding GUIs for visualization and
manipulation of output data. That could take shape as visual representations of the object under
study, such as crystal structures (Belsky et al. 2002), geographic terrain (Feibush, Gagvani, and
Williams 2000), or medical imaging (Bitter et al. 2007). In other cases, it could involve methods
for data visualization such as charts, 2D and 3D graphs (Willson, Whitham, and Anderson 1992;
Murali, Dutta, and Biswas 1993; Curtis, Kinnaird, and Xing 2011; Ellis et al. 2013). Finding
ways of representing knowledge is important (Ramakrishnan and Rice 1996): they can enhance
and facilitate insight (Kornbluh 1993), since “the human brain works better with pictures than
strings and characters” (Ntombela et al. 2005, 247). Occasionally, however, search commands
and formulas can be more effective and convenient than image-based approaches when analyzing
large datasets (Springmeyer 1993).

Result analysis depends on how data is viewed, navigated, and configured by the user.
Desirable features depend on context, and can include single or multiple views of data tables
(Fischer et al. 2010); descriptive text; 3D, 2D and mixed representations of the subject (Bitter et
al. 2007; Verigan 2007); static, dynamic, or interactive charts (Murali, Dutta, and Biswas 1993);
control schemes for 3D and 2D viewport navigation (Bitter et al. 2007); 3D object examination
and manipulation (Hu and Lill 2014); facilities for observing evolution over time (Springmeyer
1993, Bitter et al. 2007, Eliceiri et al. 2012, Terranova and Magni 2012); 3D scenes featuring
complex geometry and materials (Feibush, Gagvani, and Williams 2000); Rigged 3D humanoid
figures (Fourquet, Hue, and Chiron 2007); Image manipulation tools, access to 3D visualization
properties (MacLeod, Johnson and Matheson 1992; Fischer et al. 2010). The ability of exporting
images for the generation of reports can be an advantage (Springmeyer 1993).

Regarding the division of the scientific process (modeling, simulation, and analysis),
supporting multiple stages could influence GUI construction (Bunus 2006). The PN Toolbox, for
instance, is a Matlab extension featuring two GUI modes: drawing (for modeling) and exploring
(for simulation and analysis). A toggle switch triggers subtle changes to the GUI, enabling
appropriate tools to the selected phase, and disabling those which are not (Julvez, Matcovschi,
and Pastravanu 2014). Another illustrative case is “Biok,” a “programmable graphical application
for biologists” where graphs, protein sequences, and 3D visualizations can have their content and
methods modified, via programming, by users (Letondal 2006, 15).

SS can have specific HCI requirements derived from its scientific nature. Although having
an up-front design phase contemplating a user-friendly interface is considered a best practice
(Baxter et al. 2006), UI could have to adapt to emerging requirements, frequent changes in
source code (Lande 2008), and software growth. This need for flexibility can lead to creative
solutions for the quick addition of functionalities (MacLeod, Johnson and Matheson 1992). The
complexity of data in SS might require ways of entering and analyzing a high number of
parameters (Fdez-Riverola et al. 2012). The need for correctness could demand input methods

24

QUEIROZ AND SPITZ: THE LENS OF THE LAB

tailored for precision (MacLeod, Johnson and Matheson 1992). Also, the production of adequate
design artifacts could require collaboration between designers and scientists (Chen, Zhang, and
Vogeley 2009).

Professional needs might also influence HCI design: SS might allow for different work
modes depending on user specialization (Gertz, Stewart, and Khosla 1994; Javahery, Seffah and
Radhakrishnan 2006). It could feature a dedicated toolbar for frequently used commands (Julvez,
Matcovschi, and Pastravanu 2014). The use artificial intelligence to generate contextualized UI
seems to be unusual, although it has been an area of investigation for some time (Brouwer-Janse
1990). Depending on the nature of work, visualization should support critical analysis of data
under time pressure (Aragon et al. 2008), or provide clear indication of system malfunctioning
(Morais et al. 2014). In some cases, for the sake of familiarity, GUIs might attempt to emulate
functions and looks of physical instruments (Foster 1998).

Specialized frameworks can accelerate GUI development and help research groups to
achieve better usability (Glez-Peña et al. 2010; Fdez-Riverola et al. 2012). In some cases, GUI
solutions are designed with customization and expansion in mind, as a way to stimulate use and
further development by other researchers (La Rue et al. 2014). Conversely, the adoption of open
source solutions might allow the customization of preexisting UI to better suit requirements
(Gorton et al. 2012).

Since SS is more often used in personal computers (Hannay et al. 2009), GUIs are typically
based on the Windows-Icon-Mouse-Pointer (WIMP) paradigm—usually supporting simultaneous
windows display (McFaddin and Rice 1992) and drag-and-drop functionalities (Manjunatha et al.
2011). The web is also a popular platform: web-based GUIs have been used since, at least, two
decades ago (Chen and Fu 1996). In the past, transitioning from desktop to web applications
meant tradeoffs and compromises in UI (Takatsuka and Gahegan 2001). Today, web interfaces
can replicate environments as diverse as command line prompts (Choi et al. 2006), standalone
desktop software (Yamazaki et al. 2011), websites and wiki platforms (Gorton et al. 2012), and
“app stores” (Skidmore et al. 2011)—which helps developers to integrate different products
(Turk 2015). Web interfaces can be expandable (Brookes et al. 2015) and adaptable to different
screen sizes—allowing for better mobile experiences (Yamazaki et al. 2011). Web-based apps
can also eliminate installation and compatibility issues, since the software runs on a server.
Sometimes, web interfaces can be dynamically built (Wauer et al. 2004).

Finally, SS might demand particular technological devices and capabilities. High-quality
graphics could be necessary for readability and immersive visualization (Feibush, Gagvani, and
Williams 2000; Kovalchuk et al. 2012). In some cases, allowing users to balance visual quality
and performance is advisable (Fischer et al. 2010). The use of SS could require equipment
beyond traditional desktop computers, including joysticks, speech control, stereographic displays
(Feibush, Gagvani, and Williams 2000); multi-touch screens, mobile devices, motion capture
equipment (Fourquet, Hue, and Chiron 2007); real-time surveillance cameras (Gertz, Stewart,
and Khosla 1994); tablet PCs, trackballs, 3D force-feedback controllers (Keefe 2010) and so on.
Combining different platforms and technologies could be necessary: simulations could be
diagrammed in web tools, executed in HPC resources, and experienced through stereoscopic VR
(Kovalchuk et al. 2012). Hybrid interfaces, combining desktop PCs and immersive environments,
could allow for 2D or 3D operations, depending on context (De Carvalho et al. 2009).

Which Guidelines and Case Studies Can Be Used as Reference?

In spite of the lack of attention to HCI attributed to SS, we could identify a number of guidelines
and case studies that should be acknowledged for their informative research on usability design
and research methods. Cherri Pancake identifies ten usability objectives divided into four
dimensions: Ease of learning; Ease of use; Usefulness; and Throughput (efficiency). Her work
emphasizes the need for user-centered, consistent, intuitive, and minimalistic design capable of

25

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

preventing and fixing user errors, streamlining operations, and increasing productivity. She
suggests a four-step model for user-centered design consisting of: Identifying software
requirements based on user needs; Understanding how users work within their environment;
Designing incrementally; and Performing user testing (Pancake 1996).

Daniel Keefe (2010, 8) highlights two important HCI needs in SS: handling “complex data”
and “complex analysis tasks defined by specialized, motivated users.” Keefe also emphasizes the
importance of tool evaluation from scientific domain experts; the need to prioritize accuracy over
speed of use; and the presence of interaction requirements such as selection, navigation, and
annotation.

Ahmed, Zeeshan, and Dandekar (2014) argue that interface design should be guided by HCI
principles of experimentation, contextualization, iteration, and empirical measurement. Their
study proposes a comprehensive design process including the production of mockups,
brainstorming, and prototyping informed by HCI design patterns (Ahmed, Zeeshan, and
Dandekar 2014). Attention to scientific domain, work environment, and user’s IT background are
also emphasized.

Case studies unanimously stress the need for understanding the scientific work and its tasks.
Rebecca Springmeyer (1993) has applied the “designer-as-apprentice” methodology for
designing the MDC tool for data analysis. Her methods included field observation and user
interviews to design around the way scientists worked.

The need for ethnographic research was also reinforced by developers of “Making Tea,” a
pervasive, Tablet PC-based version of the lab book (Hughes et al. 2004). Their research
emphasizes the importance of consulting field experts for understanding their work best
practices. The end product was evaluated under the Process, Outcome, Affect model, in which
users describe their performance, results, and if they felt “empowered” by the new system
(Hughes et al. 2004). A separate study on electronic laboratory notebooks was performed by
Talbott et al. (2005), who stressed the need for collaboration, annotation, and access to metadata.

Methodologies and principles for user-centered design are also discussed by Javahery,
Seffah and Radhakrishnan (2006). Again, the need for understanding how scientists operate
(including field observation of work with other tools) is emphasized as a fundamental step,
followed by prototyping, usability studies, and heuristic evaluation.

Design research methods for the OMERO imaging software were extensively documented
(Macaulay et al. 2009; Sloan et al. 2009; Loynton et al. 2009) and included testing sessions,
design workshops, demonstrations, surveys, design research, heuristics evaluation, and training
material. The study also emphasizes the need to understand how scientists work and how labs
function, find ways of setting priorities and manage user’s expectations.

The Enzyme Portal (De Matos et al. 2013), developed through user-centered design,
employed the following methods: Requirements eliciting; personae creation; user interviews;
workflow analysis; workshops with experts; analysis of workshops; paper prototyping and
testing; technical specification; and interactive prototyping. Identified challenges included:
balancing needs of both computational and lab-based communities; measuring insight levels;
establishing standards; presenting data and metadata; and finding individuals with combined
knowledge on HCI, computing, and scientific domain. Overall, investigated material points out
the need for designing around how SS is developed and used, offering insight on how to identify
and address those needs through a careful design process.

26

QUEIROZ AND SPITZ: THE LENS OF THE LAB

How Can Scientific Software Be Gamified?

The idea of making scientific software more similar to games is hardly recent: back in 2000,
Houstis and Rice predicted that, by this current decade, PSEs would resemble simulators and
games (Houstis and Rice 2000), taking advantage of immersive environments, “abstract worlds
and spaces with new rules and topologies” (Rice 1996, 5). It has been reported, over a decade
ago, that new scientists and students were missing videogame-like features in SS (Javahery et al.
2004). Indeed, videogames should become a major influence on how interfaces are designed
(Isbister 2011). Paul Brown (1996) has calculated the necessary time for mainstream adoption of
new paradigms to be around forty years—approximately the amount of time since domestic
video game systems have been released. Over two decades ago, PSEs were already taking
advantage of multimedia and interactive tools for 3D visualization, also supporting simultaneous
users in collaborative mode (Anupam and Bajaj 1993). In the early 1990s, multimedia
capabilities for data visualization, such as 3D graphics, sound, and animation, were celebrated.
There was an anticipation for virtual reality environments where users could “step inside their
data” by using technologies “driven by mammoth commercial markets for games and
entertainment” (Kornbluh 1993, 74). According to Sloan, McCorkle, and Bryden (2013), the
evolution of the PSE is to become an Integrated Computational Environment featuring plug and
play interaction and customizable real-time visualization tools (Sloan, McCorkle, and Bryden
2013)—arguably, qualities present in games. Moreover, the experimental quality of SS gives it a
playful character—which can be illustrated by scientific applications named “playgrounds”
(Larkin et al. 2009), or by simulated spaces denominated “playboxes” (Feibush, Gagvani, and
Williams 2000, 38).

Gamification is frequently designed around motivational affordances characteristic of
games. These include points, leaderboards, goals, levels, challenges, etc. (Hamari, Koivisto, and
Sarsa 2014). This approach, combined with videogame-like virtual environment, has reportedly
increased enjoyment, perceived ease of use, and flow experience (Herzig, Strahringer and
Ameling 2012)—a mental state of optimal focus and engagement derived from ideal balance
between challenges and skills (Csikszentmihalyi 1997). Video games often elicit flow through
attention to feedback, contextual learning, and adjustment to player skills (Morris et al. 2013).

Beyond structural qualities and motivational affordances, games have a user-centric quality
of teaching necessary skills for users to achieve goals and engage with the system. This is
investigated by Sebastian Deterding (2013), who proposes a design lens and elaborates a
gamification method for “[translating] game design insights for interaction design” (Deterding
2015, 329). Drawing inspiration from games is also a central issue to Dana Maria Popa, who
argues that gamification of software should take advantage of “cross references from games and
game design process…for designing better emotional experiences” (Popa 2013a, 8). Popa’s
guidelines recommends that gamified software should “facilitate optimal user experience,” “give
clear feedback,” sustain “productivity or efficiency,” “provide a safe play space,” and “respect
ethical goals” (Popa 2013a, 18). To better understand user requirements, Popa has also developed
a variation of the persona method focused on emotional response to gamified experiences (Popa
2013b).

Regarding STEM applications, the state-of-the-art in gamification seems to be represented
by engineering software—especially CAD and BIM—where game mechanics, aesthetics, and
technologies have been applied to improve usability (Kosmadoudi et al. 2013). Such systems
draw inspiration from videogames to tailor experiences that are more responsive, intuitive, and
compelling than the ones made possible by conventional tools (Boeykens 2011). Such
experiences take advantage of aesthetical (Aydin and Schnabel 2014), four-dimensional,
immersive capabilities of game design and technologies (Moloney 2015). Parametric BIM
models have been transformed into gamified environments, in some cases featuring Virtual and
Augmented Reality technologies developed through videogame engines (Keenaghan and Horvath

27

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

2014). This immersive quality is not the only benefit: Autodesk Research team has applied a
sense of structured play to GamiCAD, a gamified tutorial system for AutoCAD, by adding clear
goals, feedback, sense of progression, guidance, time pressure, rewards, fictional setting, and
visual stimulation (Li, Grossman, and Fitzmaurice 2012). Researchers from the Chinese
University of Hong Kong developed ModRule, a software that explores collaborative aspects of
gamification to bring closer architects and inhabitants in mass housing production (Lo et al.
2014). Researchers from the University of Calgary have been investigating how games can be
used to teach and learn engineering. At a particular stage of their research, undergraduate
students have created fully functional games about circuit design techniques (Marasco, Behjat,
and Rosehart 2015). These games are, essentially, scientific software—as they allow for
simulations modeled around actual scientific requisites.

The use of games in science education has been increasing, either through gamified learning
or the use of scientifically themed games. These are considered useful practices, since games can
elicit motivation and cognitive skills, fostering scientific thinking and learning (Morris et al.
2013). In some cases, educational games can be supported by data obtained through scientific
software (Garcia Esquirol 2015).

There are propositions for gamifying SS development: Daniel Katz (2015) proposes
gamification as a means to stimulate the building of scientific software communities, which
could assist trends such as crowdsourced documentation (Pawlik et al. 2015). Other possible
applications include test case generation and software verification (Mao et al. 2015).
Requirement elicitation, critical in SS development, could benefit from approaches such as
IThink, a gamified application for that end (Fernandes et al. 2012).

Although usually not designed for specialists, Citizen Science (CS) has become a very
successful and prolific venue for gamified science, and could inform SS in many ways. Gamified
citizen science is part of an emerging culture of massive collaborative scientific initiatives that
make use of crowdsourced skills—ranging from common human skills to domain-specific
ones—to handle tasks. These tasks can vary regarding how well-structured and independent from
each other they are. In this context, gamification can transform monotonous tasks into
compelling activities (Franzoni and Sauermann 2014). CS has been used to enlighten, educate,
and collect scientific data from the general public (MacDonald et al. 2015) or, occasionally,
specialists (Good et al. 2012). Crowdsourced problem-solving skills can be used to replace
limited computational power (Cooper et al. 2010), or improve software accuracy (Mason,
Michalakidis, and Krause 2012). In that sense, Cooper observed that videogames serve well
citizen science by “combining what humans are good at with what computers are good at”
(Cooper 2015, 490). User motivation in CS games can be elicited by game design elements
(Bowser, Hansen, and Preece 2013), fictional settings (Prestopnik and Tang 2015), socialization
(Bowser, Hansen, and Preece 2013), fun and amusement (Greenhill et al. 2014), discovery and
education (Bowser et al. 2014), altruism (Schrope 2013), and previous interest in science
(Iacovides et al. 2013). Success in CS projects can be measured for its contribution to science—
e.g., publication rate, academic impact—and for its public engagement (Simmons et al. 2015).
Through CS games, players can learn advanced topics while generating data that will expand that
knowledge globally (Devlin et al. 2014).

Applying competitive point-based systems to CS is somewhat controversial: it could
motivate some users (Bowser, Hansen, and Preece 2013) while having a de-motivational effect in
others (Eveleigh et al. 2013). In this case, compelling experiences could be more effectively
created through fictional settings (Prestopnik and Tang 2015), refined and interesting aesthetics
(Kappen, Johannsmeier, and Nacke 2013), or explorative freeform play (Ponti, Hillman, and
Stankovic 2015). Some studies link the amount and quality of collected data to the level of
competitiveness (Preist, Massung, and Coyle 2014), while other sources claim that data quality is
not negatively affected by neither point-based or story-based approaches (Prestopnik, Crowston,

28

QUEIROZ AND SPITZ: THE LENS OF THE LAB

and Wang 2014). That is an important debate, as low quality of collected data is a risk in CS
(Sandbrook, Adams, and Monteferri 2015).

Guidelines and case studies from gamified CS raise points that can be relevant to SS.
Bowser, Hansen, and Preece (2013) state that gamified CS should support both casual and expert
users, and that data quality should not be compromised. Jennett and Cox enlist a series of
desirable attributes in CS projects: (1) clear presentation; (2) clear text (avoiding technicalities);
(3) supportive learning material; (4) functionalities that help users to complete tasks; (5) attention
to users level of expertise; (6) reminders of the importance of users contribution; (7) feedback on
progress; and (8) engage learning on the tasks, the science behind it, and the community around
it (Jennett and Cox 2014). Some of these guidelines could be applied to SS (especially numbers 4
and 7, but also 1, 3, and 5).

Cooper et al. (2010) discuss the design process behind Foldit, a game where hundreds of
thousands players contributed to solve a very complex problem regarding protein folding. For
this project, game designers were constantly informed by two groups: scientists who explained
the underlying science behind the game, and players who discussed gameplay. Their study
elaborates design challenges regarding visualization and interaction that could be pertinent to SS:
Visualizations should make rules of represented systems visible and clear, manage the
complexity of scientific models, and make the game approachable by non-experts (but
customizable for experts). Interactions should be intuitive and fun, respect constraints of the
scientific model, and allow for enough exploration. Moreover, scores should serve as feedback,
indicating that players are moving towards a valid solution, and introductory levels should teach
how the game works (Cooper et al. 2010). Arguably, the challenge of developing “an accessible
interface to complex structures and problems” (Cooper, Khatib, and Baker 2013) could be
transported to SS.

Lastly, since SS is used professionally, gamification should look at work-related gains and
challenges. Oprescu, Jones, and Katsikitis (2014) have delineated ten principles for gamifying
workplaces, listing expected benefits such as increased engagement; development of capabilities;
increased satisfaction; and enhanced productivity. Their work claims that younger generations
might value gamified workplaces more than older ones. A similar remark has been done two
decades before by Webster and Martocchio (1993), who observed that younger employees were
more receptive to playful approaches to work. Gamified work can raise objections: gamification
practices have been accused of being exploitative (Bogost 2015), especially when underlying
objectives of gamification proponents are not aligned with the workers’ (Bigham, Bernstein, and
Adar 2014). In that case, is recommended that workers do not lose the connection with the real
purpose of their work—as opposed to gamified motivational elements (Kim 2015).

Discussion

Structuring a design lens based on our findings requires such information to be condensed,
reorganized, and articulated as a brief introduction to the subject and a set of questions. To assist
with the process, we have gone through the findings, identifying challenges, issues, and
opportunities, to organize them as shown in Table 2.

29

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Table 2: Identified Challenges, Issues, and Opportunities
Development Project size; team size; development methodologies; timescale; software

lifecycle; technologies; expandability; team collaboration.

User-base User-base size and necessities; multiple types and levels of user
specialization; computer literacy; user expectations; empowerment through
participation in development; community building.

Professional Work practices, conditions, culture, ethics, safety norms, conventions, and
best practices; evaluation from science-domain expert.

Scientific/Academic Correctness; reproducible; data complexity and quality; changeable
requirements; rigor.

Software Expandable; incremental; portable; configurable; performance-oriented;
easy to install; interoperability; automatable; target system requirements.

General UI User-friendly; easy to learn; customizable; adequate to platform; consistent;
flexible; minimalistic; incremental.

Specialized Usability Complex data input/output and monitoring; precision; annotation tools;
access to programming and knowledge-base; prevention and recovery from
errors; report generation; metadata; GUI bypassing.

Modeling, Simulation
and Result Analysis

Productive modeling and workflow composition; insightful result analysis
through visualizations, navigation, and manipulation of data in two, three or
four dimensions. Adequate contextualization and integration between
modeling, simulation, and result analysis phases.

Gamification and Playful
Design

Games as source of inspiration; better presentation and aesthetics;
interactivity; technologies; game-like structures; goals; feedback; guidance;
progression; flow; fun; exploration; adequate motivational design elements
(score, points, etc.).

Table 3: Formatted Lens

The Lens of the Lab

Scientific software should augment insight, productivity, and knowledge. It should facilitate and integrate
supported stages of scientific work (modeling, simulation and result analysis), and generate output for
publication, sharing, or further research. When designing for scientific software, consider the questions:

How can the interface represent the scientific matter, reinforce the way it works and
support the theory behind it? How can it present and explore complex data at high levels of
precision? How can it prevent and fix errors?

Is the user interface intuitive, consistent and uncluttered? Is it flexible enough to allow for
incremental expansion and customization? Is it adequate to the platforms it was designed
for, and to other software it should be integrated to?

How do scientists work? How is the work environment, culture, ethics, conventions,
current practices and best practices? What do users need and expect? How can design
embrace different levels of scientific specialization, computer literacy, and programming
skills? How can it promote and attract collaboration or community building?

How can games inform and inspire the software aesthetics and interactivity? Which game
design elements could provide structure, goals, feedback, guidance, progression, flow, fun
and experimentation? Would competition and point-based systems motivate or demotivate?

Is implementation feasible regarding scope, planning, timescale, technologies, human
resources, and software lifecycle?

30

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Finally, we adapt that content to the design lens formatting, as shown in Table 3. Applying
the lens to a project should be a straightforward process, basically consisting of either (a)
reflecting upon the questions during design stage or (b) consulting appropriate stakeholders about
the issues at hand.

Conclusion

Development and use of scientific software are very particular, often intertwined, activities,
influenced by diverse technical, professional, and scientific needs. Usability in SS is,
comprehensibly, regarded as deficient. However, it has also been approached very professionally
by designers and researchers—a trend that should be increased by efficient development
methodologies. The visual, interactive, structured, and experimental qualities of SS seem to
qualify it as an opportune and natural venue for gamification and playful design—widely and
successfully applied to citizen science, from which design lessons could be taken. By
restructuring our literature review findings, we proposed a design lens to support gamification
and usability design for SS. This lens should be further examined and tested as an extension of
the current work, as well as complimented by additional research on game design applied to
scientific software.

Acknowledgement

The authors would like to thank Marcelo Gattass, Alberto Raposo, Eduardo Thadeu Courseuil,
Felipe de Carvalho, and Pablo Carneiro Elias, from Tecgraf/PUC-Rio, for their comments and
remarks on scientific software usage, development, and trends. This study is part of a PhD
research made possible by PUC-Rio.

REFERENCES

Ackroyd, Karen S., Steve H. Kinder, Geoff R. Mant, Mike C. Miller, Christine A. Ramsdale, and
Paul C. Stephenson. 2008. “Scientific Software Development at a Research Facility.”
IEEE Software 25 (4): 44–51. doi:10.1109/MS.2008.93.

Afgan, Enis, Konstantinos Krampis, Nuwan Goonasekera, Karolj Skala, and James Taylor. 2015.
“Building and Provisioning Bioinformatics Environments on Public and Private
Clouds.” In 2015 38th International Convention on Information and Communication
Technology, Electronics, and Microelectronics (MIPRO), 223–28. Piscataway: IEEE.

Ahalt, Stan, Larry Band, Laura Christopherson, Ray Idaszak, Chris Lenhardt, Barbara Minsker,
Margaret Palmer, Mary Shelley, Michael Tiemann, and Ann Zimmerman. 2014. “Water
Science Software Institute: Agile and Open Source Scientific Software Development.”
Computing in Science and Engineering 16 (3): 18–26.

Ahmed, Zeeshan, and Saman Zeeshan. 2014. “Cultivating Software Solutions Development in
the Scientific Academia.” Recent Patents on Computer Science 7 (1): 54–66.

Ahmed, Zeeshan, Saman Zeeshan, and Thomas Dandekar. 2014. “Developing Sustainable
Software Solutions for Bioinformatics by the ‘Butterfly’ Paradigm.” [version 2;
referees: 2 approved]. F1000Research 2014, 3:71 (doi: 10.12688/f1000research.3681.2)
Anupam, Vinod, and Chandrajit L. Bajaj. 1993. “Collaborative Multimedia Scientific
Design in SHASTRA.” In Proceedings of the First ACM International Conference on
Multimedia, 447–56. New York: ACM.

Aragon, Cecilia R., Sarah S. Poon, Gregory S. Aldering, Rollin C. Thomas, and Robert Quimby.
2008. “Using Visual Analytics to Maintain Situation Awareness in Astrophysics.” In

31

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

IEEE Symposium on Visual Analytics Science and Technology, 27–34. Piscataway:
IEEE.

Atkins, Daniel E., and Richard L. Phillips. 1986. “A User Perspective on Computer Workstation
Integration.” IEEE Circuits and Devices Magazine 2 (4): 22–31.

Aydin, Serdar, and Marc Aurel Schnabel. 2014. “A Survey on the Visual Communication Skills
of BIM Tools.” In Rethinking Comprehensive Design: Speculative Counterculture,
Proceedings of the 19th International Conference on Computer-aided Architectural
Design Research in Asia CAADRIA 2014, edited by N. Gu, S. Watanabe, H. Erhan, M.
Hank Haeusler, W. Huang, and R. Sosa, 337–46. Kyoto: Kyoto Institute of Technology.

Basili, Victor R., Jeffrey C. Carver, Daniela Cruzes, Lorin M. Hochstein, Jeffrey K.
Hollingsworth, Forrest Shull, and Marvin V. Zelkowitz. 2008. “Understanding the
High-performance-computing Community: A Software Engineer’s Perspective.” IEEE
Software 4: 29–36.

Bastos, Bruno F., Vinicius Macedo Moreira, and Antônio Tadeu A. Gomes. 2013. “Rapid
Prototyping of Science Gateways in the Brazilian National HPC Network.” In
Proceedings of the International Workshop on Science Gateways, Zurich, Switzerland,
2013. Accessed 21 July, 2016. http://ceur-ws.org/Vol-993/paper8.pdf.

Baxter, Susan M., Steven W. Day, Jacquelyn S. Fetrow, and Stephanie J. Reisinger. 2006.
“Scientific Software Development Is Not an Oxymoron.” PLoS Computational Biology
2 (9): e87.

Belsky, Alec, Mariette Hellenbrandt, Vicky Lynn Karen, and Peter Luksch. 2002. “New
Developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in
Support of Materials Research and Design.” Acta Crystallographica Section B:
Structural Science 58 (3): 364–69.

Bergmann, Sandra, Bastian Demuth, and Volker Sander. 2011. “A Web Framework for
Workflow Submission and Monitoring via UNICORE 6 Based on Distributable
Scientific Workflow Templates.” Schriften Des Forschungszentrums Jülich IAS Series
9: 45.

Bigham, Jeffrey P., Michael S. Bernstein, and Eytan Adar. 2014. Human-computer Interaction
and Collective Intelligence. Cambridge: MIT Press.

Bilmes, Jeff. 1996. “User-friendly Neural-net Design.” IEEE Spectrum 33 (2): 63.
Bitter, Ingmar, Robert Van Uitert, Ivo Wolf, Luis Ibanez, and J-M Kuhnigk. 2007. “Comparison

of Four Freely Available Frameworks for Image Processing and Visualization That Use
ITK.” IEEE Transactions on Visualization and Computer Graphics 13 (3): 483–93.

Boeykens, Stefan. 2011. “Using 3D Design Software, BIM, and Game Engines for Architectural
Historical Reconstruction.” Liege: CAADFutures.

Bogost, Ian. 2015. “Why Gamification Is Bullshit 2.” In The Gameful World: Approaches,
Issues, Applications, edited by Steffen P. Walz and Sebastian Deterding, 65. Cambridge:
MIT Press.

Bowser, A., D. Hansen, and J. Preece. 2013. “Gamifying Citizen Science: Lessons and Future
Directions.” Paper presented at CHI 2013 Conference, Paris, France, April 28.

Bowser, Anne, Derek Hansen, Yurong He, Carol Boston, Matthew Reid, Logan Gunnell, and
Jennifer Preece. 2013. “Using Gamification to Inspire New Citizen Science
Volunteers.” In Gamification 2013: Proceedings of the First International Conference
on Gameful Design, Research, and Applications, 18–25. New York: ACM.

Bowser, Anne, Derek Hansen, Jennifer Preece, Yurong He, Carol Boston, and Jen Hammock.
2014. “Gamifying Citizen Science: A Study of Two User Groups.” In Proceedings of
the Companion Publication of the 17th ACM Conference on Computer Supported
Cooperative Work and Social Computing, 137–40. New York: ACM.

32

https://mitpress.mit.edu/authors/steffen-p-walz
https://mitpress.mit.edu/authors/sebastian-deterding

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Brebner, Paul C. 1998. “Software Process Improvement by Example (SPIE).” In Software
Engineering: Education and Practice, 1998. Proceedings. 1998 International
Conference, 88–95. Piscataway: IEEE.

Brookes, Emre H., Nadeem Anjum, Joseph E. Curtis, Suresh Marru, Raminder Singh, and
Marlon Pierce. 2015. “The GenApp Framework Integrated with Airavata for Managed
Compute Resource Submissions.” Concurrency and Computation: Practice and
Experience 27 (16): 4292–4303. doi:10.1002/cpe.3519.

Brouwer-Janse, Maddy D. 1990. “AI Technologies for User Interfaces: Knowledge-based Front-
ends.” In IEE Colloquium on AI in the User Interface, 2/1–2/3. Stevenage : IET.

Brown, Paul. 1996. “New Media: An Emergent Paradigm.” Periphery 29: 13–15.
Bunus, Peter. 2006. “A Simulation and Decision Framework for Selection of Numerical Solvers

in Scientific Computing.” In Proceedings of the 39th Annual Symposium on Simulation,
178–87. Washington, DC: IEEE Computer Society.

Caillois, Roger. 2001. Man, Play, and Games. Urbana: University of Illinois Press.
Chambers, Christopher. 2013. “Helping End Users Find and Fix Performance Issues in Visual

Dataflow Code.” In 2013 IEEE Symposium on Visual Languages and Human-centric
Computing, 169–70. Piscataway: IEEE.

Chancelier, Jean-Philippe, Bernard Lapeyre, and Jérôme Lelong. 2014. “Using Premia and Nsp
for Constructing a Risk Management Benchmark for Testing Parallel Architecture.”
Concurrency and Computation: Practice and Experience 26 (9): 1654–65. doi:
10.1002/cpe.2893.

Chen, Chaomei, Jian Zhang, and Michael S Vogeley. 2009. “Reflections on the Interdisciplinary
Collaborative Design of Mapping the Universe.” In Human-computer Interaction.
Interacting in Various Application Domains: 13th International Conference, HCI
International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings, Part IV, edited
by Julie A. Jacko, 693–702. Berlin: Springer.

Chen, Y. W., and T. Y. Fu. 1996. “The Use of World Wide Web Browsers to Create Graphical
User Interfaces (GUIs) for Crystallographic Software: A GUI Implementation for X-
PLOR.” Journal of Applied Crystallography 29 (2): 202–03.

Choi, Young Jun, Takashige Oroguchi, Yoshinori Kato, Makoto Takeda, and Yoshio Tago. 2006.
“Labgrid: Integrated Problem Solving Environment System for High Throughput
Computing.” In 2006 Second IEEE International Conference on E-Science and Grid
Computing, 103–103. Piscataway: IEEE.

Church, Philip, Adam Wong, Michael Brock, and Andrzej Goscinski. 2012. “Toward Exposing
and Accessing HPC Applications in a SaaS Cloud.” In 2012 IEEE 19th International
Conference on Web Services (ICWS), 692–99. Piscataway: IEEE.

Cimiano, Philipp, and Ing Gerhard Sagerer. 2015. “Continuous Quality Control for Research
Data to Ensure Reproducibility: An Institutional Approach.”

Clark, Alex M. 2014. “Cheminformatics: Mobile Workflows and Data Sources” In The Future of
the History of Chemical Information, edited by Leah R McEwen and Robert E.
Buntrock, 237–53. Washington, DC: American Chemical Society.

Cohen, Johanne, David Moxey, Chris Cantwell, Pavel Burovskiy, John Darlington, and Spencer
J Sherwin. 2013. “Nekkloud: A Software Environment for High-order Finite Element
Analysis on Clusters and Clouds.” In 2013 IEEE International Conference on Cluster
Computing (CLUSTER), 1–5. Piscataway: IEEE.

Cooper, Seth. 2015. “Massively Multiplayer Research: Gamification And (Citizen) Science” In
The Gameful World: Approaches, Issues, Applications, edited by Steffen P.
Walz and Sebastian Deterding, 487-500. Cambridge: MIT Press.

Cooper, Seth, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen Tuite, Firas Khatib,
Alex Cho Snyder, Michael Beenen, David Salesin, David Baker, and Zoran Popović.
2010. “The Challenge of Designing Scientific Discovery Games.” In Proceedings of the

33

https://mitpress.mit.edu/authors/steffen-p-walz
https://mitpress.mit.edu/authors/steffen-p-walz
https://mitpress.mit.edu/authors/sebastian-deterding
http://dl.acm.org/author_page.cfm?id=81100620346&coll=DL&dl=ACM&trk=0&cfid=812734258&cftoken=59194511

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Fifth International Conference on the Foundations of Digital Games, 40–47. New York:
ACM.

Cooper, Seth, Firas Khatib, and David Baker. 2013. “Increasing Public Involvement in Structural
Biology.” Structure 21 (9): 1482–84. doi:10.1016/j.str.2013.08.009.

Cort, G, J. A. Goldstone, R. O. Nelson, R. V. Poore, L. Miller, and D. M. Barrus. 1985. “A
Development Methodology for Scientific Software.” IEEE Transactions on Nuclear
Science 32 (4): 1439–43.

Crabtree, Carlton, A. Gunes Koru, Carolyn Seaman, and Hakan Erdogmus. 2009. “An Empirical
Characterization of Scientific Software Development Projects According to the Boehm
and Turner Model: A Progress Report.” In 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering, 22–27. Washington, DC:
IEEE.

Csikszentmihalyi, Mihaly. 1997. Finding Flow: The Psychology of Engagement with Everyday
Life. New York: Basic Books.

Curtis, Ross E., Peter Kinnaird, and Eric P. Xing. 2011. “GenAMap: Visualization Strategies for
Structured Association Mapping.” In 2011 IEEE Symposium on Biological Data
Visualization, 87–94. Piscataway: IEEE.

Daniluk, Andrzej. 2012. “Visual Modeling for Scientific Software Architecture Design: A
Practical Approach.” Computer Physics Communications 183 (2): 213–30.

De Carvalho, Felipe Gomes, Alberto Raposo, and Marcelo Gattass. 2009. “Designing a Hybrid
User Interface: A Case Study on an Oil and Gas Application.” In Proceedings of the 8th
International Conference on Virtual Reality Continuum and Its Applications in Industry,
191–96. New York: ACM.

De Matos, Paula, Jennifer A. Cham, Hong Cao, Rafael Alcántara, Francis Rowland, Rodrigo
Lopez, and Christoph Steinbeck. 2013. “The Enzyme Portal: A Case Study in Applying
User-centered Design Methods in Bioinformatics.” BMC Bioinformatics 14 (1): 103.

De Roure, David, and Carole Goble. 2009. “Software Design for Empowering Scientists.” IEEE
Software 26 (1): 88–95.

Deterding, Sebastian. 2013. “Skill Atoms as Design Lenses for User-centered Gameful Design.”
In Workshop Papers CHI 2013. New York: ACM.

———. 2015. “The Lens of Intrinsic Skill Atoms: A Method for Gameful Design.” Human-
computer Interaction 30 (3–4): 294–335.

Deterding, Sebastian, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. “From Game Design
Elements to Gamefulness: Defining Gamification.” In Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media
Environments, 9–15. New York: ACM.

Devlin, Sam, Peter Cowling, Daniel Kudenko, Nikolaos Goumagias, Alberto Nucciareli, Ignazio
Cabras, Kiran Jude Fernandes, and Feng Li. 2014. “Game Intelligence.” In 2014 IEEE
Conference on Computational Intelligence and Games, 1–8. Piscataway: IEEE.

Dong, Xiao, and David Wild. 2008. “An Automatic Drug Discovery Workflow Generation Tool
Using Semantic Web Technologies.” In IEEE Fourth International Conference on
eScience, 2008, 652–57.

Dongarra, Jack, Gene H. Golub, Eric Grosse, Cleve Moler, and Keith Moore. 2008. “Netlib and
NA-Net: Building a Scientific Computing Community.” IEEE Annals of the History of
Computing 1 (2): 30–41.

Eliceiri, Kevin W, Michael R Berthold, Ilya G Goldberg, Luis Ibáñez, Bangalore S Manjunath,
Maryann E Martone, Robert F Murphy, et al. 2012. “Biological Imaging Software
Tools.” Nature Methods 9 (7). Nature Publishing Group: 697–710.

Ellis, Heidi J. C., Gerard Weatherby, Ronald J. Nowling, Jay Vyas, Matt Fenwick, and Michael
Gryk. 2013. “A Pipeline Software Architecture for NMR Spectrum Data Translation.”
Computing in Science and Engineering 15 (1): 76–83.

34

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Ernst, Thilo, Tom Rother, Franz Schreier, L. Wauer, and Wolfgang Balzer. 2003. “DLR’s
VirtualLab: Scientific Software Just a Mouse Click Away.” Computing in Science and
Engineering 5 (1): 70–79.

Eveleigh, Alexandra, Charlene Jennett, Stuart Lynn, and Anna L. Cox. 2013. “I Want to Be a
Captain! I Want to Be a Captain!: Gamification in the Old Weather Citizen Science
Project.” In Gamification 2013: Proceedings of the First International Conference on
Gameful Design, Research, and Applications, 79–82. New York: ACM.

Fdez-Riverola, F., D. Glez-Peña, H. López-Fernández, M. Reboiro-Jato, and J. R. Méndez. 2012.
“A JAVA Application Framework for Scientific Software Development.” Software:
Practice and Experience 42 (8): 1015–36. doi:10.1002/spe.1108.

Feibush, Eliot, Nikhil Gagvani, and Daniel Williams. 2000. “Visualization for Situational
Awareness.” IEEE Computer Graphics and Applications 20 (5): 38–45.

Fernandes, João, Diogo Duarte, Claudia Ribeiro, Carla Farinha, João Madeiras Pereira, and
Miguel Mira da Silva. 2012. “iThink: A Game-based Approach Towards Improving
Collaboration and Participation in Requirement Elicitation.” Procedia Computer
Science 15: 66–77.

Fischer, Felix, M. Alper Selver, Walter Hillen, and Cüneyt Güzeli\cs. 2010. “Integrating
Segmentation Methods from Different Tools into a Visualization Program Using an
Object-based Plug-in Interface.” IEEE Transaction on Information Technology in
Biomedicine 14 (4): 923–34.

Foster, Kenneth R. 1998. “Software Tools [Technology 1998 Analysis and Forecast].” IEEE
Spectrum 35 (1): 52–56.

Foulser, David E., and William D. Gropp. 1990. “CLAM and CLAMShell: A System for
Building User Interfaces.” In The Second International Conference on Expert Systems
for Numerical Computing, edited by John R. Rice, Robert Vichnevetsky and Elias N.
Houstis, 22–25.Report no. 90-963. Department of Computer Science, Purdue
University. Accessed July 20, 2016. http://docs.lib.purdue.edu/cstech/817/.

Fourquet, J-Y, V. Hue, and P. Chiron. 2007. “Olarge: On Kinematic Schemes and Regularization
for Automatic Generation of Human Motion and Ergonomic Evaluation of
Workplaces.” In IECON 2007 33rd Annual Conference of IEEE Industrial Electronics,
2835–40. Piscataway: IEEE.

Frank, Alexander, Rainer Stotzka, Thomas Jejkal, Volker Hartmann, Michael Sutter, and
Hartmut Gemmeke. 2007. “GridIJ-a Dynamic Grid Service Architecture for Scientific
Image Processing.” In 2007 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications, 375–84. Piscataway: IEEE.

Franzoni, Chiara, and Henry Sauermann. 2014. “Crowd Science: The Organization of Scientific
Research in Open Collaborative Projects.” Research Policy 43 (1): 1–20.

Gallopoulos, Stratis, Elias N. Houstis, and John R. Rice. 1992. “Future Research Directions in
Problem Solving Environments for Computational Science.” Paper presented at a
Workshop on Research Directions in Integrating Numerical Analysis, Symbolic
Computing, Computational Geometry, and Artificial Intelligence for Computational
Science, Washington, DC, April 11–12.

Garcia Esquirol, Óscar. 2015. “Futuro de La Enseñanza Médica: Inteligencia Artificial Y Big
Data.” FEM: Revista de La Fundación Educación Médica 18: s60–s61.

Geimer, Markus, Kenneth Hoste, and Robert McLay. 2014. “Modern Scientific Software
Management Using EasyBuild and Lmod.” In Proceedings of the First International
Workshop on HPC User Support Tools, 41–51. Piscataway: IEEE.

Gertz, Mathew E., David B. Stewart, and Pradeep K. Khosla. 1994. “A Human Machine
Interface for Distributed Virtual Laboratories.” IEEE Robotics and Automation
Magazine 1 (4): 5–13.

35

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Glez-Peña, Daniel, Miguel Reboiro-Jato, Paulo Maia, Miguel Rocha, Fernando Díaz, and
Florentino Fdez-Riverola. 2010. “AIBench: A Rapid Application Development
Framework for Translational Research in Biomedicine.” Computer Methods and
Programs in Biomedicine 98 (2): 191–203.

Gomes, Antonio Tadeu A., Bruno F. Bastos, Vivian Medeiros, and Vinicius M. Moreira. 2015.
“Experiences of the Brazilian National High-performance Computing Network on the
Rapid Prototyping of Science Gateways.” Concurrency and Computation: Practice and
Experience 27 (2): 271–89. doi:10.1002/cpe.3258.

Good, Benjamin M., Salvatore Loguercio, Max Nanis, and Andrew Su,. 2012. “Genegames. Org:
High-throughput Access to Biological Knowledge and Reasoning through Online
Games.” In 2012 IEEE Second International Conference on Healthcare Informatics,
Imaging and Systems Biology, 145. Piscataway: IEEE.

Gorton, Ian. 2013. “Cyberinfrastructures: Bridging the Divide between Scientific Research and
Software Engineering.” In Computer 47 (8): 48–55. Piscataway: IEEE.

Gorton, Ian, Chandrika Sivaramakrishnan, Gary Black, Signe White, Sumit Purohit, Carina
Lansing, Michael Madison, Karen Schuchardt, and Yan Liu. 2012. “Velo: A
Knowledge-management Framework for Modeling and Simulation.” Computing in
Science and Engineering 14 (2): 12–23.

Greenhill, Anita, Kate Holmes, Chris Lintott, Brooke Simmons, Karen Masters, Joe Cox, and
Gary Graham. 2014. “Playing with Science: Gamised Aspects of Gamification Found
on the Online Citizen Science Project—Zooniverse.” In GAMEON 2014, 15–24.
London: EUROSIS.

Gross, Lutz, Hans Mühlhaus, Elspeth Thorne, and Ken Steube. 2008. “A New Design of
Scientific Software Using Python and XML.” Pure and Applied Geophysics 165 (3–4):
653–70.

Hamari, Juho, Jonna Koivisto, and Harri Sarsa. 2014. “Does Gamification Work?—A Literature
Review of Empirical Studies on Gamification.” In 2014 47th Hawaii International
Conference on System Sciences, 3025–34. Piscataway: IEEE.

Hannay, Jo Erskine, Carolyn MacLeod, Janice Singer, Hans Petter Langtangen, Dietmar Pfahl,
and Greg Wilson. 2009. “How Do Scientists Develop and Use Scientific Software?” In
Proceedings of the 2009 ICSE Workshop on Software Engineering for Computational
Science and Engineering, 1–8. Piscataway: IEEE. doi:10.1109/SECSE.2009.5069155.

Hatton, L., and A. Roberts. 1994. “How Accurate Is Scientific Software?” IEEE Transactions on
Software Engineering 20 (10): 785–97. doi:10.1109/32.328993.

Heaton, Dustin, and Jeffrey C. Carver. 2015. “Claims about the Use of Software Engineering
Practices in Science: A Systematic Literature Review.” Information and Software
Technology 67: 207–19.

Herzig, Philipp, Susanne Strahringer, and Michael Ameling. 2012. “Gamification of ERP
Systems—Exploring Gamification Effects on User Acceptance Constructs.” In
Proceedings of the 2012 MKWI Multikonferenz Wirtschaftsinformatik, edited by Dirk
Christian Mattfield and Susanne Robra-Bissantz, 793–804. Braunschweig: Institut für
Wirtschaftsinformatik.

Hettrick, Simon. 2014. “It’s Impossible to Conduct Research without Software, Say 7 out of 10
UK Researchers..” Accessed July 20, 2016. www.software.ac.uk/blog/2014-12-04-its-
impossible-conduct-research-without-software-say-7-out-10-uk-researchers.

Hinsen, Konrad. 2013. “A Glimpse of the Future of Scientific Programming.” Computing in
Science and Engineering 15 (1): 84–88.

Holthouse, Mark, and Stuart G. Greenberg. 1978. “Software Technology for Scientific and
Engineering Applications.” In 1978 IEEE Computer Society’s Second International
Computer Software and Applications Conference, 814–18. Piscataway: IEEE.

36

http://www.ncbi.nlm.nih.gov/pubmed/?term=D%C3%ADaz%20F%5BAuthor%5D&cauthor=true&cauthor_uid=20047774

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Hou, Zhengxiong, Xingshe Zhou, Jianhua Gu, Yunlan Wang, and Tianhai Zhao. 2010. “ASAAS:
Application Software as a Service for High Performance Cloud Computing.” In 2010
12th IEEE International Conference on High Performance Computing and
Communications, 156–63. Piscataway: IEEE.

Houstis, Elias N., and John R. Rice. 2002. “On the Future of Problem Solving Environments.”
Computational Science, Mathematics, and Software. Report no. 00-009. Department of
Computer Science, Purdue University. Accessed July 20, 2016.
http://docs.lib.purdue.edu/cstech/1487/.

Howison, James, and James Herbsleb. 2010. “Socio-technical Logics of Correctness in the
Scientific Software Development Ecosystem.” Paper presented at the 2010 ACM
Conference on Computer Supported Cooperative Work, Savannah, Georgia, February
6–10.

———. 2011. “Scientific Software Production: Incentives and Collaboration.” In Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work, 513–22. New
York: ACM.

Hughes, Gareth V., Hugo R. Mills, Graham Smith, Terry R. Payne, and Jeremy Frey. 2004.
“Breaking the Book: Translating the Chemistry Lab Book into a Pervasive Computing
Lab Environment.” In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 25–32. New York: ACM.

Hu, Bingjie, and Markus A. Lill. 2014. “PharmDock: A Pharmacophore-based Docking
Program.” Journal of Cheminformatics 6 (1): 14.

Iacovides, Ioanna, Charlene Jennett, Cassandra Cornish-Trestrail, and Anna L. Cox. 2013. “Do
Games Attract or Sustain Engagement in Citizen Science?: A Study of Volunteer
Motivations.” In CHI’13 Extended Abstracts on Human Factors in Computing Systems,
1101–6. New York: ACM.

Isbister, Katherine. 2011. “Emotion and Motion: Games as Inspiration for Shaping the Future of
Interface.” Interactions 18 (5): 24–27.

Jarvis, Roger M., David Broadhurst, Helen Johnson, Noel M. O’Boyle, and Royston Goodacre.
2006. “PYCHEM: A Multivariate Analysis Package for Python.” Bioinformatics 22
(20): 2565–66.

Javahery, Homa, Ahmed Seffah, and Thiruvengadam Radhakrishnan. 2004. “Beyond Power:
Making Bioinformatics Tools User-centered.” Communications of the ACM 47 (11):
58–63.

Jennett, Charlene, and Anna L. Cox. 2014. “Eight Guidelines for Designing Virtual Citizen
Science Projects.” In Citizen + X: Volunteer-Based Crowdsourcing in Science, Public
Health, and Government: Papers from the 2014 HCOMP Workshop , 16-17. Palo Alto,
CA: The AAAI Press.

Jones, Michael, and Christopher Scaffidi. 2011. “Obstacles and Opportunities with Using Visual
and Domain-Specific Languages in Scientific Programming.” In 2011 IEEE Symposium
on Visual Languages and Human-centric Computing, 9–16. Piscataway: IEEE.

Joppa, Lucas N., Greg McInerny, Richard Harper, Lara Salido, Kenji Takeda, Kenton O’Hara,
David Gavaghan, and Stephen Emmott. 2013. “Troubling Trends in Scientific Software
Use.” Science 340 (6134): 814–15.

Joshi, Anupam, Naren Ramakrishnan, Tzvetan Drashansky, Elias N. Houstis, John R. Rice,
Sanjiva Weerawarana, and L. H. Tsoukalas. 1997. “Agent Based Systems to Support
Multi-disciplinary Problem Solving Environments.” Report no. 97-031. Department of
Computer Science, Purdue University. Accessed July 20, 2016.
http://docs.lib.purdue.edu/cstech/1368/.

Julvez, Jorge, Mihaela H. Matcovschi, and Octavian Pastravanu. 2014. “MATLAB Tools for the
Analysis of Petri Net Models.” In 2014 IEEE Emerging Technology and Factory
Automation, 1–12. Piscataway: IEEE.

37

http://docs.lib.purdue.edu/cstech/1487/

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Kappen, Dennis L., Jens Johannsmeier, and Lennart E. Nacke. 2013. “Deconstructing ‘Gamified’
Task-management Applications.” In Gamification 2013: Proceedings of the First
International Conference on Gameful Design, Research, and Applications, 139–42.
New York: ACM.

Katz, Daniel S. 2015. “Building Scientific Software Communities.” Presentation at HEP
Software Foundation Workshop, Menlo Park, CA, January 20-22, 2015. Accessed July
27, 2016. http://pt.slideshare.net/danielskatz/software-communities

Keefe, Daniel F. 2010. “Integrating Visualization and Interaction Research to Improve Scientific
Workflows.” IEEE Computer Graphics and Applications 30 (2): 8–13.

Keenaghan, Garrett, and Imre Horvath. 2014. “State of the Art of Using Virtual Reality
Technologies in Built Environment Education.” In TMCE 2014: Proceedings of the 10th
International Symposium on Tools and Methods of Competitive Engineering, edited
by I. Horváth, Z. Rusák, 935-948. Delft: Delft University of Technology .

Keller, Richard M, and Michal Rimon. 1992. “A Knowledge-based Software Development
Environment for Scientific Model-building.” In Proceedings of the Seventh Knowledge-
based Software Engineering Conference, 192–201. Piscataway: IEEE.

Keller, Richard M., Michal Rimon, and Aseem Das. 1994. “A Knowledge-based Prototyping
Environment for Construction of Scientific Modeling Software.” Automated Software
Engineering 1 (1): 79–128.

Kelly, Diane. 2007. “A Software Chasm: Software Engineering and Scientific Computing.” IEEE
Software 24 (6): 120–119. doi:10.1109/MS.2007.155.

———. 2009. “Determining Factors That Affect Long-Term Evolution in Scientific Application
Software.” Journal of Systems and Software 82 (5): 851–61.

———. 2013. “An Analysis of Process Characteristics for Developing Scientific Software.” In
Innovative Strategies and Approaches for End-User Computing Advancements, edited
by Ashish Dwivedi and Steve Clarke. Hershey: IGI Global. services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2059-9.

———. 2015. “Scientific Software Development Viewed as Knowledge Acquisition: Towards
Understanding the Development of Risk-averse Scientific Software.” Journal of Systems
and Software 109: 50–61.

Kelly, Diane , and E. M. Skordaki. 2015. “A Medical Computing Lab and a Model of Learning.”
In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering,
1561–66. Piscataway: IEEE.

Kelly, Diane, Daniel Hook, and Rebecca Sanders. 2009. “Five Recommended Practices for
Computational Scientists Who Write Software.” Computing in Science and Engineering
11 (5): 48–53.

Kelly, Diane, and Rebecca Sanders. 2008a. “Assessing the Quality of Scientific Software.” In
First International Workshop on Software Engineering for Computational Science and
Engineering, Leipzig, Germany, May 2008. Accessed on July 21 2016.
http://www.se4science.org/workshops/secse08/Papers/Kelly.pdf.

———. 2008b. “The Challenge of Testing Scientific Software.” Paper presented at CAST 2008:
Beyond the Boundaries, Toronto, Canada, July 14–16.

Kelly, Diane, and Spencer, Smith. 2010. “3rd CASCON Workshop on Software Engineering for
Science.” In Proceedings of the 2010 Conference of the Center for Advanced Studies on
Collaborative Research, 420–22. Indianapolis: IBM.

Kelly, Diane, Stefan Thorsteinson, and Daniel Hook. 2011. “Scientific Software Testing:
Analysis with Four Dimensions.” IEEE Software 28 (3): 84–90.

Kendall, Richard P., Douglass E. Post, Jeffrey C. Carver, Dale B. Henderson, and David A.
Fisher. 2007. A Proposed Taxonomy for Software Development Risks for High-
performance Computing (HPC) Scientific/Engineering Applications (CMU/SEI-2006-

38

QUEIROZ AND SPITZ: THE LENS OF THE LAB

TN-039). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2007. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8013

Killcoyne, Sarah, and John Boyle. 2009. “Managing Chaos: Lessons Learned Developing
Software in the Life Sciences.” Computing in Science and Engineering 11 (6): 20–29.

Kim, Tae Wan. 2015. “Gamification Ethics: Exploitation and Manipulation.” Paper presented at
CHI 2015, Seoul, South Korea, April 18–23.

Kodosky, Jeffrey, Jack MacCrisken, and Gary Rymar. 1991. “Visual Programming Using
Structured Data Flow.” In Proceedings of the 1991 IEEE Workshop on Visual
Languages, 34–39. Piscataway: IEEE.

Kolberg, Sigbjørn, Daniel Courivaud, and Mehmet Efe Özbek. 2007. “LMS and Interactivity-
technical Issues for Remote Laboratories.” In IEEE 18th International Symposium on
Personal, Indoor, and Mobile Radio Communications, 1–4. Piscataway: IEEE.

Kornbluh, Ken. 1993. “Engineering Software-Seeing Data in Action.” IEEE Spectrum 30 (11):
60–64.

Kosmadoudi, Zoe, Theodore Lim, James Ritchie, Sandy Louchart, Ying Liu, and Raymond
Sung. 2013. “Engineering Design Using Game-enhanced CAD: The Potential to
Augment the User Experience with Game Elements.” Computer-aided Design 45 (3):
777–95.

Koteska, Bojana, and Anastas Mishev. 2013. “Software Engineering Practices and Principles to
Increase Quality of Scientific Applications.” In ICT Innovations 2012, 245–54. City of
publication: Springer.

Kovalchuk, Sergey V., Pavel A. Smirnov, Sergey S. Kosukhin, and Alexander V. Boukhanovsky.
2012. “Virtual Simulation Objects Concept as a Framework for System-level
Simulation.” In Proceedings of 2012 IEEE e-Science Conference, 1–8. Piscataway:
IEEE. doi:10.1109/eScience.2012.6404413.

La Rue, Megan, Chi Shen, Alan Doizer, and Mathew Beck. 2014. “Ehanced GUI Environment
for Pymatgen in Material Science.” In 2014 5th IEEE International Conference on
Software Engineering and Service Science, 1186–90. Piscataway: IEEE.

Lande, Daniel Ross. 2008. “Implementation of an XML-based User Interface with Applications
in Ice Sheet Modeling.” Master’s thesis, University of Montana.

Larkin, Narasimhan K., Sean Raffuse, Daniel Pryden, Alan Healy, Kevin Unger, Tara Strand,
and Robert Solomon. 2009. Conversion of the BlueSky Framework into Collaborative
Web Service Architecture and Creation of a Smoke Modeling Application. Research
Project Reports, Paper no. 143. U.S. Joint Fire Science Program. Accessed July 21,
2016. http://digitalcommons.unl.edu/jfspresearch/143.

Letondal, Catherine. 2006. “Participatory Programming: Developing Programmable
Bioinformatics Tools for End-users.” In End User Development, edited by Henry
Lieberman, Fabio Paternò, and Volker Wulf, 207–42. Dordrecht: Springer.

Li, Wei, Tovi Grossman, and George Fitzmaurice. 2012. “Gamicad: A Gamified Tutorial System
for First Time Autocad Users.” In Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology, 103–12. New York: ACM.

Li, Yang. 2011. “Reengineering a Scientific Software and Lessons Learned.” In Proceedings of
the 4th International Workshop on Software Engineering for Computational Science
and Engineering, 41–45. New York: ACM.

Lo, Tian Tian, Marc Aurel Schnabel, Serdar Aydin, and Kaixia Shi. 2014. “ModRule: Using
Gamification for Collaborative Mass-housing Design Process.” In Across: Architectural
Research through to Practice: 48th International Conference of the Architectural Science
Association, edited by F. Madeo and M. A. Schnabel, 733–43. Genova: Genova
University Press.

Loynton, Scott, David Sloan, Jean-Marie Burel, and Catriona Macaulay. 2009. “Towards a
Project Community Approach to Academic Scientific Software Development.” In 2009

39

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

5th IEEE International Conference on e-Science Workshops, 120–24. Piscataway:
IEEE.

Lundstrom, Mark, and Gerhard Klimeck. 2006. “The NCN: Science, Simulation, and Cyber
Services.” In 2006 IEEE Conference on Emerging Technologies-nanoelectronics, 496–
500. Piscataway: IEEE.

Macaulay, Catriona, David Sloan, Xinyi Jiang, Paula Forbes, Scott Loynton, Jason R. Swedlow,
and Peter Gregor. 2009. “Usability and User-centered Design in Scientific Software
Development.” IEEE Software 26 (1): 96–102. doi:10.1109/MS.2009.27.

MacDonald, E. A., N. A. Case, J. H. Clayton, M. K. Hall, Matt Heavner, Nicolas Lalone, K. G.
Patel, and Andrea Tapia. 2015. “Aurorasaurus: A Citizen Science Platform for Viewing
and Reporting the Aurora.” Space Weather 13 (9): 548–59.
doi:10.1002/2015SW001214.

MacLeod, Robert S., Christopher R. Johnson, and Mike A. Matheson. 1992. “Visualization of
Cardiac Bioelectricity: A Case Study.” In Proceedings of the 1992 IEEE Conference on
Visualization, 411–18. Piscataway: IEEE.

Madsen, Astrid, Morten Svendsen, Rasmus Harr, and Ulrik Hauen-Limkilde. 2007. “Toyplay and
Goalplay.” Master’s thesis, IT University.
raum.pbworks.com/f/Toyplay+&+Goalplay+MSc+Thesis.pdf.

Manjunatha, Ashwin, Ajith H. Ranabahu, Paul E. Anderson, and Amit P. Sheth. 2011.
“Identifying and Implementing the Underlying Operators for Nuclear Magnetic
Resonance Based Metabolomics Data Analysis.” Paper presented at the Third
International Conference on Bioinformatics and Computational Biology, New Orleans,
Louisiana, March 23–25.

Mao, Ke, Licia Capra, Mark Harman, and Yue Jia. 2015. “A Survey of the Use of
Crowdsourcing in Software Engineering.” Technical Report RN/15/01, Department of
Computer Science, University College London, Accessed July 21, 2016.
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn_15_01.pdf.

Marasco, Emily Ann, Laleh Behjat, and William Rosehart. 2015. “Integration of Gamification
and Creativity in Engineering Design.” Paper presented at 122nd ASEE Annual
Conference and Exposition, Seattle, Washington, June 14–17.
www.asee.org/file_server/papers/attachment/file/0005/7389/Marasco_ASEE2015_Final
.pdf.

Marinovici, Cristina, Harold Kirkham, and Kevin Glass. 2014. “The Hidden Job Requirements
for a Software Engineer.” In 2014 47th Hawaii International Conference on System
Sciences, 4979–84. Piscataway: IEEE.

Mason, Aaron D., Georgios Michalakidis, and Paul J. Krause. 2012. “Tiger Nation: Empowering
Citizen Scientists.” In 2012 6th IEEE International Conference on Digital Ecosystems
Technologies, 1–5. Piscataway: IEEE.

McFaddin, H. Scott, and John R. Rice. 1992. “Architecture of the RELAX Problem Solving
Environment.” Report no. 92-081. Department of Computer Science, Purdue University.
Accessed July 21, 2016. http://docs.lib.purdue.edu/cstech/1001/.

McGonigal, Jane. 2011. Reality Is Broken: Why Games Make Us Better and How They Can
Change the World. New York: Penguin Group.

McKiney, K. M. 2003. “Thinking Inside the Box.” Scientific Computing and Instrumentation.
Accessed July 21, 2016. https://www.scientificcomputing.com/article/2003/05/thinking-
inside-box

Mendez, Diego, Mario Villamiazr, and Hector Castro. 2013. “e-Clouds: Scientific Computing as
a Service.” In 2013 Seventh International Conference on Complex, Intelligent, and
Software Intensive Systems, 481–86. Piscataway: IEEE.

40

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Mielke, Angela M., Sean M. Brennan, Mark C. Smith, David C. Torney, Arthur B. Maccabe, and
Josh F. Karlin. 2005. “Independent Sensor Networks.” IEEE Instrumentation and
Measurement Magazine 8 (2): 33–37.

Mills, James K, Phillip Baines, Thomas Chang, Steven Chew, Trevor Jones, Stephen Lam, and
Adi Rabadi. 1995. “Development of a Robot Control Test Platform.” IEEE Robotics
and Automation Magazine 2 (4): 21–28.

Mohammad, Atif Farid. 2010. “A New Perspective in Scientific Software Development.” In
Innovations and Advances in Computer Sciences and Engineering, 129–34. Springer.

Moloney, Jules. 2015. “Videogame Technology Re-purposed: Towards Interdisciplinary Design
Environments for Engineering and Architecture.” Procedia Technology 20: 212–18.

Morais, Hugo, Pieter Vancraeyveld, Birger Pedersen, Allan Henning, Morten Lind, H.
Johannsson, and Jacob Ostergaard. 2014. “SOSPO-SP: Secure Operation of Sustainable
Power Systems Simulation Platform for Real-time System State Evaluation and
Control.” IEEE Transactions on Industrial Informatics 10 (4): 2318–29.

Morris, Bradley J., Steve Croker, Corinne Zimmerman, Devin Gill, and Connie Romig. 2013.
“Gaming Science: The ‘Gamification’ of Scientific Thinking.” Frontiers in Psychology
4. doi:10.3389/fpsyg.2013.00607.

Morris, Chris, and Judith Segal. 2012. “Lessons Learned from a Scientific Software
Development Project.” IEEE Software 29 (4): 9–12.

Murali, P., D. Dutta, and R. N. Biswas. 1993. “An Integrated Framework for Quality Scientific
Software Development.” In ACM SIGPLAN Fortran Forum 12: 19–25.

Murphy, Michael J. 1996. “Utility of Coupling Nonlinear Optimization Methods with Numerical
Modeling Software.” Paper presented at the International Conference on Shock Waves
in Condensed Matter, St. Petersburg, Russia, September 2–6.

Nanthaamornphong, Aziz, and Jeffrey C. Carver. 2015. “Test-driven Development in Scientific
Software: A Survey.” Software Quality Journal: 1–30.

Nguyên, Toàn, Laurentiu Trifan, and Jean-Antoine Désidéri. 2011. “Resilient Workflows for
Cooperative Design.” In 2011 15th International Conference on Computer Supported
Cooperative Work in Design, 69–75. Piscataway: IEEE.

Nguyen-Hoan, Luke, Shayne Flint, and Ramesh Sankaranarayana. 2010. “A Survey of Scientific
Software Development.” In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, 1. New York: ACM.
doi:10.1145/1852786.1852802.

Ntombela, M., K. K. Kaberere, K. A. Folly, and A. I. Petroianu. 2005. “An Investigation into the
Capabilities of MATLAB Power System Toolbox for Small Signal Stability Analysis in
Power Systems.” In 2005 IEEE Power Engineering Society Inaugural Conference and
Exposition in Africa, 242–48. Piscataway: IEEE.

Oprescu, Florin, Christian Jones, and Mary Katsikitis. 2014. “I PLAY AT WORK—Ten
Principles for Transforming Work Processes through Gamification.” Frontiers in
Psychology 5. doi: 10.3389/fpsyg.2014.00014.

Ovaska, Päivi, Matti Rossi, and Kari Smolander. 2005. “Filtering, Negotiating and Shifting in the
Understanding of Information System Requirements.” Scandinavian Journal of
Information Systems 17 (1): 7.

Pancake, Cherri M. 1996. “‘Improving the Usability of Numerical Software through User-
centered Design.” Technical Report 96-60-11, Oregon State University, Corvallis, OR,
USA. Accessed July 21, 2016.
https://web.engr.oregonstate.edu/~pancake/papers/ImpUsab.pdf

Papadimitriou, Spiros, K. Terzidis, Seferina Mavroudi, and S. Likothanassis. 2011. “Exploiting
Java Scientific Libraries with the Scala Language within the ScalaLab Environment.”
IET Software 5 (6): 543–51.

41

http://dx.doi.org/10.3389%2Ffpsyg.2014.00014

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Papadimitriou, Stergios, Konstantinos Terzidis, Seferina Mavroudi, and Spiridon Likothanassis.
2009. “Scientific Scripting for the Java Platform with jLab.” Computing in Science and
Engineering 11 (4): 50–60.

Pawlik, Aleksandra, Judith Segal, and Marian Petre. 2012. “Documentation Practices in
Scientific Software Development.” In 2012 5th International Workshop on Cooperative
and Human Aspects of Software Engineering, 113–19. Piscataway: IEEE.

Pawlik, Aleksandra, Judith Segal, Helen Sharp, and Marian Petre. 2015. “Crowdsourcing
Scientific Software Documentation: A Case Study of the NumPy Documentation
Project.” Computing in Science and Engineering 17 (1): 28–36.

Pereira Junior, Manoel. 2007. “Concepção de Um Processo de Desenvolvimenro Específico Para
Software Científico.” PhD diss., Centro Federal de Educação Tecnológica de Minas
Gerais. www.mmc.cefetmg.br/info/downloads/D027-ManoelPereiraJunior.pdf.

Phillips, Richard L., Daniel E. Atkins, Nancy Benovich, and Brian D. Schipper. 1986. “A Bridge
from Full-function to Reduced-function Workstations.” IEEE Computer Graphics and
Applications 6 (5): 53–57.

Picón, Artzai, Arantza Bereciartua, José Angel Gutiérrez, and José Pérez. 2006. “3D High
Precision Tube Bevel Measurement Using Laser Based Rotating Scanner.” In 2006
IEEE Conference on Emerging Technologies and Factory Automation, 1190–97.
Piscataway: IEEE.

Pinto, Gustavo Da Rocha B., Júlia Célia Mercedes Strauch, Jano Moreira De Souza, Jonice
Oliveira, Leonardo F. Cardoso, Lúcio Rogério Botelho, Lutieta Guerreiro Martorano,
Emerson Cordeiro Morais, Manuel Antonio de Castro Jr., and Sergio Palma da Justa
Medeiros. 2002. “A Framework to Support Scientific Knowledge Management: A Case
Study in Agro-meteorology.” In 7th International Conference on Computer Supported
Cooperative Work in Design, 320–24. Piscataway: IEEE.

Platz, Jochen. 1986. “Project Management in the Development of Scientific Software.”
Computer Physics Communications 41 (2): 217–25.

Ponti, Marisa, Thomas Hillman, and Igor Stankovic. 2015. “Science and Gamification: The Odd
Couple?” In Proceedings of the 2015 Annual Symposium on Computer-human
Interaction in Play, 679–84. New York: ACM.

Popa, Dana Maria. 2013a. “Design Case: Gamification of ERP—A User Centered Design
Approach.” Paper presented at the CHI 2013 Workshop: Designing Gamification:
Creating Gameful and Playful experiences. Paris, France, April 28. Accessed July 21,
2016. http://gamification-research.org/wp-content/uploads/2013/03/Popa.pdf.

———. 2013b. “Industry Design Case: Introducing Gamification Persona Tool.” In Proceedings
of the CHI 2013 Workshop: Designing Gamification: Creating Gameful and Playful
experiences, 50-55. Accessed July 21, 2016. http://gamification-research.org/wp-
content/uploads/2013/03/CHI2013_Designing_Gamification_Workshop.pdf.

Prego, Juan José Gude, and Luis Vázquez Seisdedos. 2011. “Tailor-made Small Simulator for a
Drum Boiler Control Based on Linear Techniques.” In 2011 IEEE 16th Conference on
Emerging Technologies and Factory Automation, 1–4. Piscataway: IEEE.

Preist, Chris, Elaine Massung, and David Coyle. 2014. “Competing or Aiming to Be Average?:
Normification as a Means of Engaging Digital Volunteers.” In Proceedings of the 17th
ACM Conference on Computer Supported Cooperative Work and Social Computing,
1222–33. New York: ACM.

Prestopnik, Nathan, Kevin Crowston, and Jun Wang. 2014. “Exploring Data Quality in Games
with a Purpose.” In iConference 2014 Proceedings, 213–228. Illinois: iSchools.
doi:10.9776/14010 .

Prestopnik, Nathan R., and Jian Tang. 2015. “Points, Stories, Worlds, and Diegesis: Comparing
Player Experiences in Two Citizen Science Games.” Computers in Human Behavior 52:
492–506.

42

http://gamification-research.org/wp-content/uploads/2013/03/Popa.pdf

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Ramakrishnan, N., and John R. Rice. 1996. “Knowledge Discovery in Computational Science: A
Case Study in Algorithm Selection.” Report no. 96-081. Department of Computer
Science, Purdue University. Accessed July 21, 2016.
http://docs.lib.purdue.edu/cstech/1335/.

Recio-Garcia, Juan A., Belén Diaz-Agudo, and Pedro Antonio González-Calero. 2013. “The
COLIBRI Open Platform for the Reproducibility of CBR Applications.” In Case-based
Reasoning Research and Development, 255–69. Berlin: Springer.

Rice, John R. 1996. “Scalable Scientific Software Libraries and Problem Solving Environments.”
Report no. 96-001. Department of Computer Science, Purdue University. Accessed July
21, 2016. http://docs.lib.purdue.edu/cstech/1257/.

Rice, John R., and Ronald F. Boisvert. 1996. “From Scientific Software Libraries to Problem-
solving Environments.” Computing in Science and Engineering 3: 44–53.

Rijnders, Frank M., Hans J. W. Spoelder, and Frans C. A. Groen. 1993. “Distributed Visual
Programming Environment: Applications within Data-acquisition.” In 1993
Instrumentation and Measurement Technology Conference, Conference Record., 690–
93. Piscataway: IEEE.

Sandbrook, Chris, William M. Adams, and Bruno Monteferri. 2015. “Digital Games and
Biodiversity Conservation.” Conservation Letters 8 (2): 118–24.
doi:10.1111/conl.12113.

Sanders, Rebecca. 2008. “The Development and Use of Scientific Software.” Master’s thesis,
Queen’s University of Kingston.

Sanders, Rebecca, and Diane Kelly. 2008. “Dealing with Risk in Scientific Software
Development.” IEEE Software 25 (4): 21–28. doi:10.1109/MS.2008.84.

Schell, Jesse. 2015. The Art of Game Design: A Book of Lenses. 2nd ed. Boca Raton: CRC Press.
Schneidewind, Lydia, Stephan Hӧrold, Cindy Mayas, Heidi Krӧmker, Sascha Falke, and Tony

Pucklitsch. 2012. “How Personas Support Requirements Engineering.” In Proceedings
of the First International Workshop on Usability and Accessibility Focused
Requirements Engineering, 1–5. Piscataway: IEEE.

Schrope, Mark. 2013. “Solving Tough Problems with Games.” Proceedings of the National
Academy of Sciences 110 (18): 7104–6.

Scott, B. 2010. “Designing with Lenses.” Accessed July 21, 2016.
http://www.uxbooth.com/articles/designing-with-lenses/.

Segal, Judith. 2007. “Some Problems of Professional End User Developers.” In IEEE Symposium
on Visual Languages and Human-Centric Computing, 111–18. Piscataway: IEEE.
doi:10.1109/VLHCC.2007.17.

———. 2009. “Some Challenges Facing Software Engineers Developing Software for
Scientists.” In Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, 9–14. Washington, DC: IEEE Computer
Sociey.

Segal, Judith, and Chris Morris. 2008. “Developing Scientific Software.” IEEE Software 25 (4):
18–20. doi:10.1109/MS.2008.85.

———. 2011. “Developing Software for a Scientific Community: Some Challenges and
Solutions.” In Handbook of Research on Computational Science and Engineering:
Theory and Practice, edited by Joanna Leng and Wes Sharrock, 177–96. Hershey: IGI
Global.

Silva, Laryssa Aparecida Machado da. 2010. “Composer-science: Um Framework Para a
Composição de Workflows Científicos.” Master’s thesis, Federal University of Juiz de
Fora.

Simmons, Brooke, Chris Lintott, Karen Masters, Anita Greenhill, Gary Graham, and Kate
Holmes. 2015. “Defining and Measuring Success in Online Citizen Science: A Case
Study.” Computing in Science and Engineering 17: 28.

43

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4351306
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4351306

THE INTERNATIONAL JOURNAL OF DESIGN MANAGEMENT AND PROFESSIONAL PRACTICE

Skidmore, Edwin, Seung-jin Kim, Sangeeta Kuchimanchi, Sriramu Singaram, Nirav Merchant,
and Dan Stanzione. 2011. “iPlant Atmosphere: A Gateway to Cloud Infrastructure for
the Plant Sciences.” In Proceedings of the 2011 ACM Workshop on Gateway Computing
Environments, 59–64. New York: ACM.

Sletholt, Magnus Thorstein, Jo Erskine Hannay, Dietmar Pfahl, and Hans Petter Langtangen.
2012. “What Do We Know about Scientific Software Development’s Agile Practices?”
Computing in Science and Engineering 14 (2): 24–37.

Sloan, Benjamin M., Douglas S. McCorkle, and Kenneth M. Bryden. 2013. “An Overview of
Computational Environments for Engineering.” In 51st AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition, 285. Reston:
American Institute of Aeronautics and Astronautics.

Sloan, David, Catriona Macaulay, Paula Forbes, and Scott Loynton. 2009. “User Research in a
Scientific Software Development Project.” In Proceedings of the 23rd British HCI
Group Annual Conference on People and Computers: Celebrating People and
Technology, 423–29. Swinton: British Computer Society.

Spencer, Matt. 2015. “Brittleness and Bureaucracy: Software as a Material for Science.”
Perspectives on Science 23 (4): 466–484.

Springmeyer, Rebecca R. 1993. “Applying Observations of Work Activity in Designing
Prototype Data Analysis Tools.” In Visualization, 1993. Visualization’93, Proceedings.,
IEEE Conference on, 228–35.

Stewart, Mark E. M. 2001. “Automated Analysis of Scientific and Engineering Semantics.” In
Proceedings of the 2001 9th International Workshop on Program Comprehension, 113–
14. Piscataway: IEEE.

Takatsuka, Masahiro, and Mark N. Gahegan. 2001. “Exploratory Geospatial Analysis Using
GeoVISTA Studio: From a Desktop to the Web.” In Proceedings of the 2001 Second
International Conference on Web Information Systems Engineering 2: 92–101.
Piscataway: IEEE.

Talbott, Tara, Michael Peterson, Jens Schwidder, and James D. Myers. 2005. “Adapting the
Electronic Laboratory Notebook for the Semantic Era.” In Proceedings of the 2005
International Symposium on Collaborative Technologies and Systems, 136–43.
Piscataway: IEEE.

Taweel, Adel, Brendan Delaney, Theodoros N. Arvanitis, and Lei Zhao. 2009. “Communication,
Knowledge and Co-ordination Management in Globally Distributed Software
Development: Informed by a Scientific Software Engineering Case Study.” In 2009
Fourth IEEE International Conference on Global Software Engineering, 370–75.
Piscataway: IEEE.

Terranova, Nadia, and Paolo Magni. 2012. “TGI-simulator: A Visual Tool to Support the
Preclinical Phase of the Drug Discovery Process by Assessing in Silico the Effect of an
Anticancer Drug.” Computer Methods and Programs in Biomedicine 105 (2): 162–74.

Trlica, Cary. 1997. “Software Tools [Technology Analysis and Forecast].” IEEE Spectrum 34
(1): 60–64.

Turk, Matthew. 2014. “Fostering Collaborative Computational Science.” Computing in Science
and Engineering 16 (2): 68–71.

———. 2015 “Vertical Integration.” In Computing in Science and Engineering 17: 64–66.
Vanschoren, Joaquin, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. “OpenML:

Networked Science in Machine Learning.” ACM SIGKDD Explorations Newsletter 15
(2): 49–60.

Verigan, Adam. 2007. “Improving Pediatric Cardiology Consultation Methods by Introducing
Digital Interactive 3-D Heart Models: A Proof of Concept Study.” Master’s thesis,
University of South Florida.

44

QUEIROZ AND SPITZ: THE LENS OF THE LAB

Versek, Craig William. 2013. “Charge Transport Studies of Proton and Ion Conducting
Materials.” PhD diss., University of Massachusetts.

Vigder, Mark, Norman G. Vinson, Janice Singer, Darlene Stewart, and Keith Mews. 2008.
“Supporting the Everyday Work of Scientists: Automating Scientific Workflows.” IEEE
Software 25 (4): 52–58.

Wang, Guoqiang, Trung N. Tran, and Hugo Andrade. 2010. “A Graphical Programming and
Design Environment for FPGA-Based Hardware.” In 2010 International Conference on
Field-programmable Technology, 337–40. Piscataway: IEEE.

Wauer, Jochen, Karsten Schmidt, Tom Rother, Thilo Ernst, and Michael Hess. 2004. “Two
Software Tools for Plane-wave Scattering on Nonspherical Particles in the German
Aerospace Center’s Virtual Laboratory.” Applied Optics 43 (35): 6371–79.

Webster, Jane, and Joseph J. Martocchio. 1993. “Turning Work into Play: Implications for
Microcomputer Software Training.” Journal of Management 19 (1): 127–46.

Weerawarana, Sanjiva, Elias N. Houstis, John R. Rice, Ann C. Catlin, Margaret G. Gaitatzes,
Shahani Markus, and Tzveten T Drashansky. 1996. “The Purdue PSE Kernel: Towards
a Kernel for Building PSEs.” Report no. 96-082. Department of Computer Science,
Purdue University. Accessed July 21, 2016. http://docs.lib.purdue.edu/cstech/1336/.

Willson, Bryan, Jeff Whitham, and Charles Anderson. 1992. “Estimating Ignition Timing from
Engine Cylinder Pressure with Neural Networks.” In Proceedings of the Intelligent
Vehicles’ 92 Symposium, 108–13. Piscataway: IEEE.

Wilson, Greg, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy,
Steven H. D. Haddock, Kathryn D. Huff, Ian M. Mitchell, Mark D. Plumbley, Ben
Waugh, Ethan P. White, Paul Wilson. 2014. “Best Practices for Scientific Computing.”
PLoS Biology 12 (1): e1001745. doi:10.1371/journal.pbio.1001745.

Wolff, Christian. 2015. “The Case for Teaching ‘Tool Science.’” In 2015 IEEE Global
Engineering Education Conference, 932–38. Piscataway: IEEE.

Woollard, David, Nenad Medvidovic, Yolanda Gil, and Chris A. Mattmann. 2008. “Scientific
Software as Workflows: From Discovery to Distribution.” IEEE Software 25 (4): 37–43.
doi:10.1109/MS.2008.92.

Yamazaki, Tadashi, Hidetoshi Ikeno, Yoshihiro Okumura, Shunji Satoh, Yoshimi Kamiyama,
Yutaka Hirata, Keiichiro Inagaki, Akito Ishihara, Takayuki Kannon, and Shiro Usui.
2011. “Reprint of: Simulation Platform: A Cloud-based Online Simulation
Environment.” Neural Networks (9): 927–32. doi: 10.1016/j.neunet.2011.08.007.

ABOUT THE AUTHORS

Francisco Queiroz: Lecturer and PhD Student, Department of Arts and Design, PUC-Rio, Rio
De Janeiro, Brazil

Rejane Spitz: Professor, Department of Arts and Design, PUC-Rio, Rio De Janeiro, Brazil

45

The International Journal of Design Management and
Professional Practice is one of six thematically
focused journals in the family of journals that support
the Design Principles and Practices knowledge
community—its journals, book series, conference
and online community. It is a section of Design
Principles and Practices: An International Journal.

The International Journal of Design Management
and Professional Practice explores the organization
of design, design work, and design as a
professional practice. As well as papers of a
traditional scholarly type, this journal invites
presentations of practice—including case studies
documenting professional practice, accompanied
by exegeses analyzing organizational purposes,
processes, and effects.

The International Journal of Design Management
and Professional Practice is a peer-reviewed
scholarly journal.

ISSN 2325-162X

