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The Lens of the Lab:  
Design Challenges in Scientific Software 
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Abstract: Playful and gameful design could improve the quality of scientific software. However, literature about 
gamification methods for that particular type of software is presently scarce. As an effort to fill that gap, this paper 
introduces a set of design challenges and opportunities that should be informative to professionals approaching the area. 
This research is based on literature review on scientific software development, also contemplating material on the 
gamification of science, software, and work. From the gathered information, we identify, map, and discuss key aspects of 
development and use of professional scientific software. Those findings are, then, formatted as a Design Lens—a set of 
questions designers should ask themselves to gain insight, from a particular perspective, on their work. We propose the 
Lens of the Lab as a design lens to support designers working in collaboration with scientists and software engineers in 
professional scientific software initiatives. 

Keywords: Specification, Gamification, Scientific Software 

Introduction 

t has been suggested that gamification should be applied to scientific software as a way to 
improve user experience (Wolff 2015). This paper investigates scientific software 
characteristics, focusing on usability, to propose a set of principles organized as a design 

lens. Originally concerned about videogame-inspired experiences, the lens could be useful to 
UI/UX designers approaching scientific software. 

Definitions 

Before proposing a design lens to facilitate gamification and playful design of scientific software, 
we must introduce those terms. Scientific software is defined by three characteristics: (1) it is 
developed to answer a scientific question; (2) it relies on the close involvement of an expert in its 
scientific domain; and (3) it provides data to be examined by the person who will answer that 
question (Kelly 2013). In the light of the recent trend of citizen science, we should clarify that 
this paper is primarily concerned with software “developed by scientists for scientists” (Sletholt 
et al. 2012, 24)—even if aware and informed by gamified citizen science. 

Design lenses were first elaborated by Jesse Schell (2015) as a way of expressing principles 
that should inform design decisions. They are usually constituted by a brief explanation of a 
topic, followed by a set of questions. Originally developed for game design, they have been 
expanded to user experience (Scott 2010) and gamification practices (Deterding 2013).  

Gamification, “the use of game design elements in non-game contexts” (Deterding et al. 
2011, 2), is typically associated with structured play (e.g., games) and gameful behavior 
(McGonigal 2011). It is opposite and complimentary to playful design, based on unstructured 
play (e.g., toys) (Deterding et al. 2011). For all practical purposes, this study embraces the whole 
spectrum from games to toys, ludus to paidia (Caillois 2001), toyplay to goalplay (Madsen et al. 
2007), focusing on videogames as inspiration for better software.  
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Methodology 

Throughout the next subsections, we describe the semi-systematic literature review (SSLR) on 
which this study is based. 

Issues and Concerns 

Through this SSLR, we were interested in investigating: 
 How is scientific software developed and used? 
 How are user interfaces for scientific software designed? 
 Which guidelines and case studies can be used as reference? 
 How can scientific software be gamified? 

Sources, Queries, and Search Results 

We have selected the following databases for a thorough search: ACM Digital Library, IEEE 
Explore, Scopus, AIS Electronic Library, and Web of Knowledge. Aiming for a comprehensive 
result, searches for the following terms were performed:  

(1) “scientific software” and “gamification” 
(2) “citizen science” and “gamification” 
(3) “scientific software” and “user experience” 
(4) “scientific software” and “user interface” 
(5) “scientific software” and “HCI” 
(6) “scientific software development” 

 
After excluding duplicates and unrelated material, we have reached the number of 270 
references. The number of results for each query by database, followed by the number of selected 
articles after screening and deduplication, are shown in Table 1. 

 
Table 1: Search Results for Queries 

 ACM 
DL 

IEEE 
Exp. Scopus AIS 

EL WoK Total  

“scientific software” and “gamification” 0 1 0 1 0 1 

“citizen science” and “gamification” 8 17 11 5 3 21 

“scientific software” and “user experience” 0 17 4 9 1 6 

“scientific software” and “user interface” 2 201 42 55 10 132 

“scientific software” and “HCI” 2 11 0 7 0 5 

“scientific software development” 13 140 81 62 54 105 

Total 25 387 138 139 68 270 
Source: Data updated from selected databases on December 4, 2015. 

 

Further Refinement and Additional Material  

We have included articles on related subjects, found through sources such as Science Direct, 
Google Scholar, and gamification-research.org, as a way to acknowledge significant 
contributions otherwise eluded by the initial databases. Also, we have refined our selection 
through further screening, reaching the number of 221 unique references. 
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Findings 

Through the next subsections, we present the most relevant findings collected.  

How Is Scientific Software Developed and Used? 

Scientific software (SS) has gained importance in the last three decades, moving science “from 
test tubes into silicon-based simulation” (Woollard et al. 2008, 38). SS is used for “processing, 
analyzing, visualizing, managing, sharing, experimenting and […] generating new raw data” 
(Ahmed and Zeeshan 2014, 55), and allows the conduction of research in otherwise impossible 
conditions (Segal and Morris 2008). A testbed for new technologies (Mills et al. 1995), SS 
connects “abstract theoretical and real industrial worlds” (Prego and Seisdedos 2011, 1). It can be 
used to control field equipment (Mielke et al. 2005) or geographically distributed lab facilities 
(Gertz, Stewart, and Khosla 1994). SS is diverse in scope and size: it could mean a single 
software library, a plugin, or a fully-fledged software. It could be built from scratch or as a 
module for third-party solutions (Frank et al. 2007).  

A survey from 2009 claims that scientists who use SS spend on average 30 percent of their 
working time developing and 40 percent using it. Developing their own software is important or 
very important to 84.3 percent of those who use it. Additionally, SS developed by scientists 
might be important to other researchers (Hannay et al. 2009). Recently, a poll indicated that 
seven out of ten UK researchers consider research without software an impossibility (Hettrick 
2014). Moreover, although only a minority uses SS, a vast majority benefits from the 
advancements it brings (Kelly and Skordaki 2015). Very often, SS is built for the developer 
himself or groups under ten people—although there is a significant number of projects intended 
for larger groups (over 100 people), and cases of SS reaching over 5,000 users—mostly the case 
for open-source or commercial packages (Hannay et al. 2009; Nguyen-Hoan, Flint, and 
Sankaranarayana 2010). Reasons behind development are usually (1) first-hand research; (2) 
training and education; (3) external decision support (Sanders 2008, 36). A survey from 2010 
claims that most projects are developed within universities—followed by industry, research, and 
government—often by small teams comprising one to six members (Nguyen-Hoan, Flint, and 
Sankaranarayana 2010). 

The scientific and academic nature of SS is responsible for its most pronounced 
characteristics, needs, and challenges. First, there is motivation: unlike in most development 
environments, the main goal is not making software, but science (Basili et al. 2008). As such, 
professional reputation comes from publishing papers—and scientists can perceive software 
exclusively as a means to that. This attitude could hurt software quality (Killcoyne and Boyle 
2009), demotivate developers, and harm their collaboration with users/scientists (Howison and 
Herbsleb 2011), who could fail to engage into the development process (Segal 2009). In fact, 
collaboration is vital, yet potentially problematic, since it can be undermined by a personal sense 
of authorship (Turk 2014). Team communication is essential (Morris and Segal 2012; Taweel et 
al. 2009), as members might come from different backgrounds, work across the globe 
(Marinovici, Kirkham, and Glass 2014) for extended periods of time, and hold particular visions 
for the project (Spencer 2015). Ideally, the software itself should support collaboration, 
facilitating data integration, content sharing, documentation, workflow, and knowledge 
management (Pinto et al. 2002). Additionally, supporting collaborative communities for know-
how sharing can stimulate software use and adoption (De Roure and Goble 2009). 

Communities for free and open SS resources have been fostering collaboration for a long 
time, evolving from personal memberships in the 1950s to global communities, through e-mail, 
Arpanet, and Internet servers, during the 1980s and 90s (Dongarra et al. 2008). In the last ten 
years, new types of massively collaborative efforts, such as open data, crowd science, and citizen 
science, have become a new paradigm (Vanschoren et al. 2014). Crowd science disrupts from 
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“traditional” science in two ways: openness to a wide base of contributors (up to hundreds of 
thousands), and disclosure of sensitive information (e.g.: data, algorithms) normally restricted to 
scientists undertaking the research. It defies the traditional model of closed research groups 
competing for publication impact by suggesting new ways of collective authorship. As such, it 
could influence how science is traditionally made regarding collaboration, motivation, 
knowledge creation, openness, transparency, organization of teams, the embedding of scientific 
processes, and rigor in software (Franzoni and Sauermann 2014). In many cases, crowd science 
is gamified—a relationship we investigate in a further subsection. 

SS often depends on the collaboration between scientists and software engineers (Holthouse 
and Greenberg 1978). Often, scientists who are technically apt might develop software 
themselves. Segal (2007) refers to them as the “professional end-user developer,” for whom 
software development is a secondary activity, and who develops alone or along other scientists 
and programmers, for himself or his community of practice. As a result, SS development culture 
is often described as averse to software engineering best practices, informal, with no clear 
requirements or design (Ahmed and Zeeshan 2014). This lack of planning could affect 
development and commercialization (Sanders 2008, 40) and is inadequate to complex systems, 
although sometimes sufficient for punctual research (Spencer 2015). Kelly (2007) identifies a 
“chasm” between software engineering (SE) professionals (who lack domain-specific 
knowledge) and scientific computing (SC) community members (who lack SE knowledge) 
communities. Developers might downplay initiatives to improve development process, failing to 
acknowledge room for improvement—in which case advocates for solutions might have to 
demonstrate potential gain by joining the development process (Brebner 1998). Focus on SE 
practices might be perceived as bureaucratic and demotivate scientists (Spencer 2015). On the 
other hand, both SC and SE communities agree that SS quality could be increased by the 
adoption of SE practices (Mohammad 2010); Heaton and Carver 2015), including well-specified 
requirements, automated testing, and documentation (Koteska and Mishev 2013). Likewise, it 
would be advisable for software engineers to gain knowledge on the scientific domain in 
question (Marinovici, Kirkham and Glass 2014), and on how scientists work and report their 
progress (Killcoyne and Boyle 2009).  

The “professional end-user developer” mindset is not the only obstacle between SS and SE 
practices: scientific computing offers specific challenges—starting with the difficulty in 
establishing requirements. Brooks stated that “the hardest single part of building software is 
deciding precisely what to build” (Brooks apud Ovaska, Rossi, and Smolander 2005, 32). That is 
particularly true to SS, as scientific theories behind the software might change throughout 
research, forcing requirements to change along development. Requirements are, then, understood 
along the process (Segal 2007), “as the software and the concomitant understanding of the 
domain progress” (Segal and Morris 2008, 18). Requirements are often undocumented, although 
some fields require formal documentation—in some cases using UML (Daniluk 2012), low and 
high-fidelity prototypes (Aragon et al. 2008), or interactive storyboards (Sanders 2008). 
Informally asking users for requirements is often unproductive (Morris and Segal 2012) and, 
ideally, requirements should be consolidated as technical, clear descriptions of specific features 
(Marinovici, Kirkham, and Glass 2014). In some cases, requirements can be established through 
the use of personas (Schneidewind et al. 2012). 

Another challenge is longevity: SS can be developed, used, and maintained for a long time, 
often decades (Basili et al. 2008; Sanders 2008; Kelly 2009). For that reason, it might require 
refactoring (Heaton and Carver 2015; Spencer 2015), and should be planned for sustainability 
(Morris and Segal 2012) and expandability, since it could grow beyond initially planned (Basili 
et al. 2008). Keeping software simple and avoiding unnecessary features is advisable (Gorton 
2013). In some cases, new features are better incorporated via “modules” added to the main 
software (Sanders 2008). On the other hand, there are cases where software life is expected to be 
short and the software itself, disposable (Segal and Morris 2011).  
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To face such challenges, SS is usually developed in an iterative fashion (Sanders 2008). 
Performing incremental changes is a best practice for scientific computing (Ackroyd et al. 2008; 
Wilson et al. 2014), since regular iterations and small releases “let users influence development 
and form requirements” (Ackroyd et al. 2008, 46). From a design perspective, responding to 
user’s needs and having a user-base in mind can be more effective than striving for a complete 
solution (De Roure and Goble 2009). Adopting development methodologies can be problematic: 
this iterative nature makes it somewhat incompatible with traditional Waterfall development 
methodology (Holthouse and Greenberg 1978). Agile seems to be more appropriate (Crabtree et 
al. 2009; Nantaamornphong et al. 2014; Ahalt et al. 2014). However, SS communities can be 
selective in the adoption of Agile practices (Sletholt et al. 2012), some of which can be 
unfeasible to apply to scientists (Kelly and Smith 2010). Instead of embracing an established 
methodology, developers might adopt a “loose version(s)” (Basili et al. 2008, 35) or a few 
selected practices (Nanthaamornphong and Carver 2015). Sometimes, developers decide for an 
“amethodological” approach (Kelly 2015). Methodologies tailored to SS have been outlined a 
number of times (Platz 1986; Pereira Junior 2007; Ahmed, Zeeshan, and Dandekar 2014), often 
emphasizing neglected (or difficult) aspects such as requirements, testing, and design (Cort et al. 
1985). As early as 1986, Platz (1986) observed the need to balance SE measures with creative 
freedom. 

SS has a number of scientific needs: Correctness, a “core value of science” (Howison and 
Herbsleb 2010, 3), stands as its most important quality and primary concern, beyond usability 
(Kelly and Sanders 2008a). Reproducibility is also essential for the scientific method (Cimiano 
and Sagerer 2015), allowing for validation and peer review (Recio-Garcia, Diaz-Agudo, and 
González-Calero 2013), and is often addressed through portability and process automation. 
Additionally, SS must handle complex data (Keffe 2010, 8) at great levels of precision (Hatton 
and Roberts 1994). This complexity often requires interoperability with third-party software and 
external resources (Fdez-Riverola et al. 2012), from other scientific software, industrial, and 
robotic systems (Picón et al. 2006), to productivity software such as spreadsheet editors (Trlica 
1997; McKiney 2003). Finally, testing and validation can be challenging, since comparing results 
to real-world data is unfeasible (Segal and Morris 2008; Heaton and Carver 2015) and code 
testing requires scientific domain knowledge or the help of a scientist. (Kelly, Thorsteinson, and 
Hook 2011). 

SS can be developed for desktop computers, workstations (Hannay et al. 2009), and portable 
devices (Hughes et al. 2004; Clark 2014). Sometimes, SS demands High Performance 
Computing (HPC) achieved through resources such as supercomputers (Hatton and Roberts 
1994; Hannay et al. 2009), mainframes (Chen and Fu 1996), clusters (Cohen et al. 2013), grids 
(Choi et al. 2006; Frank et al. 2007), and cloud services (Hou et al. 2010; Church et al. 2012; 
Mendez, Villamiazr, and Castro 2013). HPC resources can be structurally complex (Kovalchuk 
et al. 2012), and are usually accessed through gateways via desktop or web tools (Ernst et al. 
2003; Kolberg, Courivaud, and Özbek 2007; Gomes et al. 2015). Giving access to top 
computational power to users of low-end systems has been a concern for decades, and ensuring 
similar user experience for all users was once a much bigger challenge (Atkins and Phillips 1986; 
Phillips et al. 1986). In that respect, web and cloud-based services democratize HPC (Afgan et al. 
2015), allowing scientists to focus on scientific problems, not computational ones (Bastos, 
Moreira, and Gomes 2013).  

Skeptical on new technologies, SS developers are likely to adopt technologies that are 
compatible with old ones and tend to start things from scratch instead of adopting preexisting 
frameworks (Basili et al. 2008). Late adoption of technological trends could be attributed it to 
“high complexity and narrowly defined market segments” (Clark 2014, 237). This tendency 
reflects on how software is used: establishing new practices can be challenging due to preexisting 
work culture (Morris and Segal 2012). In such case, benefits should be clear from the start, and 
users should not be forced to change how they work (De Roure and Goble 2009). SS can be 
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developed in various languages such as Fortran, Binary, Assembler, C, C++, Java, Python, PHP, 
MatLab, etc. (Nguyen-Hoan, Flint, and Sankaranarayana 2010); Ahmed and Zeeshan 2014). It 
can be developed in multiple languages (Basili et al. 2008) or assisted by domain-specific 
frameworks (Glez-Peña et al. 2010; Fdez-Riverola et al. 2012). Allowing scientists to do their 
own programming can be necessary (Wang,  Tran and Andrade 2010). In this case, visual 
programming (VP) and domain-specific languages (DSLs) can be alternatives to low-level 
programming (Jones and Scaffidi 2011). Simpler and less error-prone than low-level languages 
(Hinsen 2013), DSLs are available as closed-source or open-source solutions (Papadimitriou et 
al. 2009). VP, on the other hand, allows scientists to construct scientific models and equations by 
dragging and connecting components as in a CAD/CAM environment resembling data flow 
diagrams (Keller and Rimmon 1992; Rijnders, Spoelder and Groen 1993). An example of such 
environment is LabVIEW, which enables lab automation and simulation combining data-flow, 
building blocks, virtual instruments, and typed programming language, (Kodosky, MacCrisken, 
and Rymar 1991; Wang,  Tran and Andrade 2010). VP usability makes scientists more 
productive—unless computational performance is affected (Chambers 2013). Eventually, loss of 
performance can be overcome: visual elements could be rewritten in DSL or recompiled as 
machine language (Bilmes 1996). Another possibility is teaching users to improve their 
programming through the software itself (Chambers 2013). As an additional benefit, allowing 
users to develop and incorporate their own solutions can add value to the software (De Roure and 
Goble 2009). 

Work in SS, especially when done through networked resources, can be divided in three 
phases: modeling, simulation, and result analysis (Kovalchuk et al. 2012, 2)—which are not 
necessarily attained through a single software. First, during the modeling phase, the scientific 
problem is represented in mathematical terms (Li 2011, 42), designed, and coded to represent the 
system during simulation (Daniluk 2012). 

Once ready, models can be used in the simulation, where data is entered, submitted, and 
processed by a series of computational tasks. Dependencies and connections between these 
individual tasks, from start to finish, compose a workflow (Woollard et al. 2008). Workflows can 
be automated through scripting, visual editors, or specialized frameworks (Vigder et al. 2008; De 
Roure and Goble 2009; Silva 2010). They can involve complex processing, possibly requiring 
data to go sequentially through a series of different software, possibly taking days to compute. To 
minimize the risk of failure, it has been suggested that workflows should be broken down in 
smaller steps and use checkpoints systems (Gross et al. 2008; Nguyên, Trifan, and Désidéri 
2011). In some cases, workflows can be saved as templates, exported, and shared for reuse 
(Bergmann, Demuth, and Sander 2011). 

Finally, after simulation, output data should be ready for the result analysis phase. That is 
the culmination of the work in SS, since “the purpose of computing is insight, not numbers” 
(Hamming apud Kelly and Sanders 2008a, 3). Result analysis often relies on data visualization 
and manipulation—topics which will be explored in the next subsection. Scientific findings 
derived from analysis could be used to advance research further or disclosed in publications.  

How Are User Interfaces for Scientific Software Designed? 

HCI is often regarded as “the most ignored and unattended phase of scientific software solution 
development” (Ahmed, Zeeshan, and Dandekar 2014, 6), in many ways reflecting the 
“professional end-user developer” mindset. Developer’s proximity to the domain can be a 
complication, as they assume that users with similar backgrounds or programming skills will 
understand the software, thus neglecting testing or documentation (Kelly and Sanders 2008b; 
Sanders 2008; Nguyen-Hoan, Flint, and Sankaranarayana 2010). Mainly concerned with the 
computational engine (Sanders 2008), developers might believe that “almost any user interface 
will be tolerated” (MacLeod, Johnson, and Matheson 1992, 415). Indeed, SS usability can be 
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challenging right from installation and setup (Geimer, Hoste, and McLay 2014), potentially 
obfuscating functionalities (Papadimitriou et al. 2011). Additionally, creating GUIs requires 
specialized skills, and is possibly “the last thing a scientist wants to deal with” (Lundstrom and 
Klimeck 2006, 497). Developers are not the only responsible group for usability issues: 
sometimes, stakeholders financing the software might misunderstand user’s needs (Morris and 
Segal 2012), or resist investing in design research, since its influence on insight is difficult to 
demonstrate (De Matos et al. 2013).  

Neglecting usability presents a major risk, especially when software grows in complexity 
(Kendall et al. 2007), or is developed for external use (Sanders 2008). Applications could be 
rejected due to difficult user interfaces and lack of visual output (Ahmed and Zeeshan 2014). 
Conversely, user-friendly interfaces can be a major reason for adoption (Joppa et al. 2013), even 
overcoming “apparent lack of performance” (Manjunatha et al. 2011, 4). Sometimes, 
documentation is seen as a substitute for usability. However, SS documentation is often 
incomplete, generated based on user’s demand and feedback, or created by users themselves 
(Pawlik et al. 2012). Also, it can be unpractical to access. Interestingly, a developer expressed his 
desire of keeping his software’s manual “to the slim size of an average video game manual” 
(Sanders 2008, 69).  

Aware of such risks, some developers adopt good practices such as: continuously testing 
user interfaces; elaborating storyboards; observing field work; testing software in controlled 
environments; adding help systems (Sanders and Kelly 2008); and planning usability cases (La 
Rue et al. 2014). The perceived importance of usability in SS seems to be increasing in some 
areas (Eliceiri et al. 2012). Recent approaches to SS development put interface design as a 
priority by valuing the interface designer’s perspective (Mohammad 2010). The Butterfly 
development model, for instance, pays attention to interface design from early development 
stages, aiming at ease of use and learning by understanding user psychology, scientific domains, 
work environment, and HCI principles and patterns (Ahmed, Zeeshan, Dandekar 2014). The 
recent proposition for a “tool science” discipline, dedicated to SS development and teaching, 
recommends the improvement of usability through case study research, comparison of similar 
tools, and gamification. It also advocates that software quality reflects development and usage 
aspects combined, including basic functionality, good development practices, efficiency and 
effectiveness, and fun in use (Wolff 2015).  

In many cases, GUIs are not essential (Chen and Fu 1996; Jarvis et al. 2006): SS can start as 
libraries accessed through command line and, later, receive a GUI—sometimes through third-
party software integration (Chancelier, Lapeyre, and Lelong 2014). In fact, users might find 
convenient to bypass GUIs and use text-based interfaces (Joshi et al. 1997) or enter data 
programmatically (Weerawarana et al. 1996). GUI code should be kept separate from scientific 
calculations (Kelly, Hook, and Sanders 2009), allowing for easier customization and 
reconfiguration (Bastos, Moreira, and Gomes 2013). Nevertheless, GUIs can make SS user-
friendly (Murphy 1996; Belsky et al. 2002), especially to users without computing background 
(Cohen et al. 2013) or in the case of complex software (Versek 2013). GUIs can mediate user’s 
“visual and cognitive processes and the computer’s numerous low-level calculations” (Foulser 
and Gropp 1990, 22), providing “a high-level abstraction of the underlying computational 
facilities” (Ramakrishnan and Rice 1996, 2). A particular class of SS that embraces the 
importance of GUIs is the Problem Solving Environment (PSE). PSEs are “computer system[s] 
that provides all the computational facilities to solve a target class of problems […] by 
communicating in the user’s own terms” (Gallopoulos, Houstis, and Rice 1999, 7). In simpler 
terms, “PSE = user interface + libraries + knowledge base + integration” (Rice and Boisvert 
1996, 47). PSEs do not require specialized programming expertise by the user: problems are 
formulated, simulated, solved, and displayed with the assistance of high-level user interfaces 
(Houstis and Rice 2002).  
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SS offers specific HCI challenges depending on which stage of the scientific process is being 
supported. The modeling phase, for instance, might require combined knowledge on scientific 
domain, mathematical modeling, and programming—needs that can foster interesting solutions: 
modeling could be constructed through flow-diagram interfaces (Julvez, Matcovschi, and 
Pastravanu 2014; Bunus 2006) and informed by a display of domain-specific knowledge base 
(Keller, Michal, and Das 1994). Additionally, GUIs could provide clearer understanding of 
scientific concepts behind programming by reinterpreting selected sections of code as scientific 
terms, along with an appropriate glossary (Stewart 2001).  

The simulation phase could require tools for construction and execution of workflows, 
which could be created, configured, submitted, and monitored through GUIs (Bergmann, 
Demuth, and Sander 2011) for ease of use and increased productivity (Dong and Wild 2008; 
Vigder et al. 2008); De Roure and Goble 2009). As with models, workflows are often edited 
through data-flow diagrams—in this case, connecting sequences of computational tasks and 
services through which data will be transformed.  

The result analysis phase is often highly visual, demanding GUIs for visualization and 
manipulation of output data. That could take shape as visual representations of the object under 
study, such as crystal structures (Belsky et al. 2002), geographic terrain (Feibush, Gagvani, and 
Williams 2000), or medical imaging (Bitter et al. 2007). In other cases, it could involve methods 
for data visualization such as charts, 2D and 3D graphs (Willson, Whitham, and Anderson 1992; 
Murali, Dutta, and Biswas 1993; Curtis, Kinnaird, and Xing 2011; Ellis et al. 2013). Finding 
ways of representing knowledge is important (Ramakrishnan and Rice 1996): they can enhance 
and facilitate insight (Kornbluh 1993), since “the human brain works better with pictures than 
strings and characters” (Ntombela et al. 2005, 247). Occasionally, however, search commands 
and formulas can be more effective and convenient than image-based approaches when analyzing 
large datasets (Springmeyer 1993). 

Result analysis depends on how data is viewed, navigated, and configured by the user. 
Desirable features depend on context, and can include single or multiple views of data tables 
(Fischer et al. 2010); descriptive text; 3D, 2D and mixed representations of the subject (Bitter et 
al. 2007; Verigan 2007); static, dynamic, or interactive charts (Murali, Dutta, and Biswas 1993); 
control schemes for 3D and 2D viewport navigation (Bitter et al. 2007); 3D object examination 
and manipulation (Hu and Lill 2014); facilities for observing evolution over time (Springmeyer 
1993, Bitter et al. 2007, Eliceiri et al. 2012, Terranova and Magni 2012); 3D scenes featuring 
complex geometry and materials (Feibush, Gagvani, and Williams 2000); Rigged 3D humanoid 
figures (Fourquet, Hue, and Chiron 2007); Image manipulation tools, access to 3D visualization 
properties (MacLeod, Johnson and Matheson 1992; Fischer et al. 2010). The ability of exporting 
images for the generation of reports can be an advantage (Springmeyer 1993).  

Regarding the division of the scientific process (modeling, simulation, and analysis), 
supporting multiple stages could influence GUI construction (Bunus 2006). The PN Toolbox, for 
instance, is a Matlab extension featuring two GUI modes: drawing (for modeling) and exploring 
(for simulation and analysis). A toggle switch triggers subtle changes to the GUI, enabling 
appropriate tools to the selected phase, and disabling those which are not (Julvez, Matcovschi, 
and Pastravanu 2014). Another illustrative case is “Biok,” a “programmable graphical application 
for biologists” where graphs, protein sequences, and 3D visualizations can have their content and 
methods modified, via programming, by users (Letondal 2006, 15).  

SS can have specific HCI requirements derived from its scientific nature. Although having 
an up-front design phase contemplating a user-friendly interface is considered a best practice 
(Baxter et al. 2006), UI could have to adapt to emerging requirements, frequent changes in 
source code (Lande 2008), and software growth. This need for flexibility can lead to creative 
solutions for the quick addition of functionalities (MacLeod, Johnson and Matheson 1992). The 
complexity of data in SS might require ways of entering and analyzing a high number of 
parameters (Fdez-Riverola et al. 2012). The need for correctness could demand input methods 
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tailored for precision (MacLeod, Johnson and Matheson 1992). Also, the production of adequate 
design artifacts could require collaboration between designers and scientists (Chen, Zhang, and 
Vogeley 2009).  

Professional needs might also influence HCI design: SS might allow for different work 
modes depending on user specialization (Gertz, Stewart, and Khosla 1994; Javahery, Seffah and 
Radhakrishnan 2006). It could feature a dedicated toolbar for frequently used commands (Julvez, 
Matcovschi, and Pastravanu 2014). The use artificial intelligence to generate contextualized UI 
seems to be unusual, although it has been an area of investigation for some time (Brouwer-Janse 
1990). Depending on the nature of work, visualization should support critical analysis of data 
under time pressure (Aragon et al. 2008), or provide clear indication of system malfunctioning 
(Morais et al. 2014). In some cases, for the sake of familiarity, GUIs might attempt to emulate 
functions and looks of physical instruments (Foster 1998).  

Specialized frameworks can accelerate GUI development and help research groups to 
achieve better usability (Glez-Peña et al. 2010; Fdez-Riverola et al. 2012). In some cases, GUI 
solutions are designed with customization and expansion in mind, as a way to stimulate use and 
further development by other researchers (La Rue et al. 2014). Conversely, the adoption of open 
source solutions might allow the customization of preexisting UI to better suit requirements 
(Gorton et al. 2012). 

Since SS is more often used in personal computers (Hannay et al. 2009), GUIs are typically 
based on the Windows-Icon-Mouse-Pointer (WIMP) paradigm—usually supporting simultaneous 
windows display (McFaddin and Rice 1992) and drag-and-drop functionalities (Manjunatha et al. 
2011). The web is also a popular platform: web-based GUIs have been used since, at least, two 
decades ago (Chen and Fu 1996). In the past, transitioning from desktop to web applications 
meant tradeoffs and compromises in UI (Takatsuka and Gahegan 2001). Today, web interfaces 
can replicate environments as diverse as command line prompts (Choi et al. 2006), standalone 
desktop software (Yamazaki et al. 2011), websites and wiki platforms (Gorton et al. 2012), and 
“app stores” (Skidmore et al. 2011)—which helps developers to integrate different products 
(Turk 2015). Web interfaces can be expandable (Brookes et al. 2015) and adaptable to different 
screen sizes—allowing for better mobile experiences (Yamazaki et al. 2011). Web-based apps 
can also eliminate installation and compatibility issues, since the software runs on a server. 
Sometimes, web interfaces can be dynamically built (Wauer et al. 2004).  

Finally, SS might demand particular technological devices and capabilities. High-quality 
graphics could be necessary for readability and immersive visualization (Feibush, Gagvani, and 
Williams 2000; Kovalchuk et al. 2012). In some cases, allowing users to balance visual quality 
and performance is advisable (Fischer et al. 2010). The use of SS could require equipment 
beyond traditional desktop computers, including joysticks, speech control, stereographic displays 
(Feibush, Gagvani, and Williams 2000); multi-touch screens, mobile devices, motion capture 
equipment (Fourquet, Hue, and Chiron 2007); real-time surveillance cameras (Gertz, Stewart, 
and Khosla 1994); tablet PCs, trackballs, 3D force-feedback controllers (Keefe 2010) and so on. 
Combining different platforms and technologies could be necessary: simulations could be 
diagrammed in web tools, executed in HPC resources, and experienced through stereoscopic VR 
(Kovalchuk et al. 2012). Hybrid interfaces, combining desktop PCs and immersive environments, 
could allow for 2D or 3D operations, depending on context (De Carvalho et al. 2009).  

Which Guidelines and Case Studies Can Be Used as Reference? 

In spite of the lack of attention to HCI attributed to SS, we could identify a number of guidelines 
and case studies that should be acknowledged for their informative research on usability design 
and research methods. Cherri Pancake identifies ten usability objectives divided into four 
dimensions: Ease of learning; Ease of use; Usefulness; and Throughput (efficiency). Her work 
emphasizes the need for user-centered, consistent, intuitive, and minimalistic design capable of 
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preventing and fixing user errors, streamlining operations, and increasing productivity. She 
suggests a four-step model for user-centered design consisting of: Identifying software 
requirements based on user needs; Understanding how users work within their environment; 
Designing incrementally; and Performing user testing (Pancake 1996). 

Daniel Keefe (2010, 8) highlights two important HCI needs in SS: handling “complex data” 
and “complex analysis tasks defined by specialized, motivated users.” Keefe also emphasizes the 
importance of tool evaluation from scientific domain experts; the need to prioritize accuracy over 
speed of use; and the presence of interaction requirements such as selection, navigation, and 
annotation. 

Ahmed, Zeeshan, and Dandekar (2014) argue that interface design should be guided by HCI 
principles of experimentation, contextualization, iteration, and empirical measurement. Their 
study proposes a comprehensive design process including the production of mockups, 
brainstorming, and prototyping informed by HCI design patterns (Ahmed, Zeeshan, and 
Dandekar 2014). Attention to scientific domain, work environment, and user’s IT background are 
also emphasized.  

Case studies unanimously stress the need for understanding the scientific work and its tasks. 
Rebecca Springmeyer (1993) has applied the “designer-as-apprentice” methodology for 
designing the MDC tool for data analysis. Her methods included field observation and user 
interviews to design around the way scientists worked.  

The need for ethnographic research was also reinforced by developers of “Making Tea,” a 
pervasive, Tablet PC-based version of the lab book (Hughes et al. 2004). Their research 
emphasizes the importance of consulting field experts for understanding their work best 
practices. The end product was evaluated under the Process, Outcome, Affect model, in which 
users describe their performance, results, and if they felt “empowered” by the new system 
(Hughes et al. 2004). A separate study on electronic laboratory notebooks was performed by 
Talbott et al. (2005), who stressed the need for collaboration, annotation, and access to metadata.  

Methodologies and principles for user-centered design are also discussed by Javahery, 
Seffah and Radhakrishnan (2006). Again, the need for understanding how scientists operate 
(including field observation of work with other tools) is emphasized as a fundamental step, 
followed by prototyping, usability studies, and heuristic evaluation.  

Design research methods for the OMERO imaging software were extensively documented 
(Macaulay et al. 2009; Sloan et al. 2009; Loynton et al. 2009) and included testing sessions, 
design workshops, demonstrations, surveys, design research, heuristics evaluation, and training 
material. The study also emphasizes the need to understand how scientists work and how labs 
function, find ways of setting priorities and manage user’s expectations.  

The Enzyme Portal (De Matos et al. 2013), developed through user-centered design, 
employed the following methods: Requirements eliciting; personae creation; user interviews; 
workflow analysis; workshops with experts; analysis of workshops; paper prototyping and 
testing; technical specification; and interactive prototyping. Identified challenges included: 
balancing needs of both computational and lab-based communities; measuring insight levels; 
establishing standards; presenting data and metadata; and finding individuals with combined 
knowledge on HCI, computing, and scientific domain. Overall, investigated material points out 
the need for designing around how SS is developed and used, offering insight on how to identify 
and address those needs through a careful design process.  
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How Can Scientific Software Be Gamified? 

The idea of making scientific software more similar to games is hardly recent: back in 2000, 
Houstis and Rice predicted that, by this current decade, PSEs would resemble simulators and 
games (Houstis and Rice 2000), taking advantage of immersive environments, “abstract worlds 
and spaces with new rules and topologies” (Rice 1996, 5). It has been reported, over a decade 
ago, that new scientists and students were missing videogame-like features in SS (Javahery et al. 
2004). Indeed, videogames should become a major influence on how interfaces are designed 
(Isbister 2011). Paul Brown (1996) has calculated the necessary time for mainstream adoption of 
new paradigms to be around forty years—approximately the amount of time since domestic 
video game systems have been released. Over two decades ago, PSEs were already taking 
advantage of multimedia and interactive tools for 3D visualization, also supporting simultaneous 
users in collaborative mode (Anupam and Bajaj 1993). In the early 1990s, multimedia 
capabilities for data visualization, such as 3D graphics, sound, and animation, were celebrated. 
There was an anticipation for virtual reality environments where users could “step inside their 
data” by using technologies “driven by mammoth commercial markets for games and 
entertainment” (Kornbluh 1993, 74). According to Sloan, McCorkle, and Bryden (2013), the 
evolution of the PSE is to become an Integrated Computational Environment featuring plug and 
play interaction and customizable real-time visualization tools (Sloan, McCorkle, and Bryden 
2013)—arguably, qualities present in games. Moreover, the experimental quality of SS gives it a 
playful character—which can be illustrated by scientific applications named “playgrounds” 
(Larkin et al. 2009), or by simulated spaces denominated “playboxes” (Feibush, Gagvani, and 
Williams 2000, 38). 

Gamification is frequently designed around motivational affordances characteristic of 
games. These include points, leaderboards, goals, levels, challenges, etc. (Hamari, Koivisto, and 
Sarsa 2014). This approach, combined with videogame-like virtual environment, has reportedly 
increased enjoyment, perceived ease of use, and flow experience (Herzig, Strahringer and 
Ameling 2012)—a mental state of optimal focus and engagement derived from ideal balance 
between challenges and skills (Csikszentmihalyi 1997). Video games often elicit flow through 
attention to feedback, contextual learning, and adjustment to player skills (Morris et al. 2013).  

Beyond structural qualities and motivational affordances, games have a user-centric quality 
of teaching necessary skills for users to achieve goals and engage with the system. This is 
investigated by Sebastian Deterding (2013), who proposes a design lens and elaborates a 
gamification method for “[translating] game design insights for interaction design” (Deterding 
2015, 329). Drawing inspiration from games is also a central issue to Dana Maria Popa, who 
argues that gamification of software should take advantage of “cross references from games and 
game design process…for designing better emotional experiences” (Popa 2013a, 8). Popa’s 
guidelines recommends that gamified software should “facilitate optimal user experience,” “give 
clear feedback,” sustain “productivity or efficiency,” “provide a safe play space,” and “respect 
ethical goals” (Popa 2013a, 18). To better understand user requirements, Popa has also developed 
a variation of the persona method focused on emotional response to gamified experiences (Popa 
2013b).  

Regarding STEM applications, the state-of-the-art in gamification seems to be represented 
by engineering software—especially CAD and BIM—where game mechanics, aesthetics, and 
technologies have been applied to improve usability (Kosmadoudi et al. 2013). Such systems 
draw inspiration from videogames to tailor experiences that are more responsive, intuitive, and 
compelling than the ones made possible by conventional tools (Boeykens 2011). Such 
experiences take advantage of aesthetical (Aydin and Schnabel 2014), four-dimensional, 
immersive capabilities of game design and technologies (Moloney 2015). Parametric BIM 
models have been transformed into gamified environments, in some cases featuring Virtual and 
Augmented Reality technologies developed through videogame engines (Keenaghan and Horvath 
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2014). This immersive quality is not the only benefit: Autodesk Research team has applied a 
sense of structured play to GamiCAD, a gamified tutorial system for AutoCAD, by adding clear 
goals, feedback, sense of progression, guidance, time pressure, rewards, fictional setting, and 
visual stimulation (Li, Grossman, and Fitzmaurice 2012). Researchers from the Chinese 
University of Hong Kong developed ModRule, a software that explores collaborative aspects of 
gamification to bring closer architects and inhabitants in mass housing production (Lo et al. 
2014). Researchers from the University of Calgary have been investigating how games can be 
used to teach and learn engineering. At a particular stage of their research, undergraduate 
students have created fully functional games about circuit design techniques (Marasco, Behjat, 
and Rosehart 2015). These games are, essentially, scientific software—as they allow for 
simulations modeled around actual scientific requisites.  

The use of games in science education has been increasing, either through gamified learning 
or the use of scientifically themed games. These are considered useful practices, since games can 
elicit motivation and cognitive skills, fostering scientific thinking and learning (Morris et al. 
2013). In some cases, educational games can be supported by data obtained through scientific 
software (Garcia Esquirol 2015). 

There are propositions for gamifying SS development: Daniel Katz (2015) proposes 
gamification as a means to stimulate the building of scientific software communities, which 
could assist trends such as crowdsourced documentation (Pawlik et al. 2015). Other possible 
applications include test case generation and software verification (Mao et al. 2015). 
Requirement elicitation, critical in SS development, could benefit from approaches such as 
IThink, a gamified application for that end (Fernandes et al. 2012). 

Although usually not designed for specialists, Citizen Science (CS) has become a very 
successful and prolific venue for gamified science, and could inform SS in many ways. Gamified 
citizen science is part of an emerging culture of massive collaborative scientific initiatives that 
make use of crowdsourced skills—ranging from common human skills to domain-specific 
ones—to handle tasks. These tasks can vary regarding how well-structured and independent from 
each other they are. In this context, gamification can transform monotonous tasks into 
compelling activities (Franzoni and Sauermann 2014). CS has been used to enlighten, educate, 
and collect scientific data from the general public (MacDonald et al. 2015) or, occasionally, 
specialists (Good et al. 2012). Crowdsourced problem-solving skills can be used to replace 
limited computational power (Cooper et al. 2010), or improve software accuracy (Mason, 
Michalakidis, and Krause 2012). In that sense, Cooper observed that videogames serve well 
citizen science by “combining what humans are good at with what computers are good at” 
(Cooper 2015, 490). User motivation in CS games can be elicited by game design elements 
(Bowser, Hansen, and Preece 2013), fictional settings (Prestopnik and Tang 2015), socialization 
(Bowser, Hansen, and Preece 2013), fun and amusement (Greenhill et al. 2014), discovery and 
education (Bowser et al. 2014), altruism (Schrope 2013), and previous interest in science 
(Iacovides et al. 2013). Success in CS projects can be measured for its contribution to science—
e.g., publication rate, academic impact—and for its public engagement (Simmons et al. 2015). 
Through CS games, players can learn advanced topics while generating data that will expand that 
knowledge globally (Devlin et al. 2014).  

Applying competitive point-based systems to CS is somewhat controversial: it could 
motivate some users (Bowser, Hansen, and Preece 2013) while having a de-motivational effect in 
others (Eveleigh et al. 2013). In this case, compelling experiences could be more effectively 
created through fictional settings (Prestopnik and Tang 2015), refined and interesting aesthetics 
(Kappen, Johannsmeier, and Nacke 2013), or explorative freeform play (Ponti, Hillman, and 
Stankovic 2015). Some studies link the amount and quality of collected data to the level of 
competitiveness (Preist, Massung, and Coyle 2014), while other sources claim that data quality is 
not negatively affected by neither point-based or story-based approaches (Prestopnik, Crowston, 
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and Wang 2014). That is an important debate, as low quality of collected data is a risk in CS 
(Sandbrook, Adams, and Monteferri 2015). 

Guidelines and case studies from gamified CS raise points that can be relevant to SS. 
Bowser, Hansen, and Preece (2013) state that gamified CS should support both casual and expert 
users, and that data quality should not be compromised. Jennett and Cox enlist a series of 
desirable attributes in CS projects: (1) clear presentation; (2) clear text (avoiding technicalities); 
(3) supportive learning material; (4) functionalities that help users to complete tasks; (5) attention 
to users level of expertise; (6) reminders of the importance of users contribution; (7) feedback on 
progress; and (8) engage learning on the tasks, the science behind it, and the community around 
it (Jennett and Cox 2014). Some of these guidelines could be applied to SS (especially numbers 4 
and 7, but also 1, 3, and 5).  

Cooper et al. (2010) discuss the design process behind Foldit, a game where hundreds of 
thousands players contributed to solve a very complex problem regarding protein folding. For 
this project, game designers were constantly informed by two groups: scientists who explained 
the underlying science behind the game, and players who discussed gameplay. Their study 
elaborates design challenges regarding visualization and interaction that could be pertinent to SS: 
Visualizations should make rules of represented systems visible and clear, manage the 
complexity of scientific models, and make the game approachable by non-experts (but 
customizable for experts). Interactions should be intuitive and fun, respect constraints of the 
scientific model, and allow for enough exploration. Moreover, scores should serve as feedback, 
indicating that players are moving towards a valid solution, and introductory levels should teach 
how the game works (Cooper et al. 2010). Arguably, the challenge of developing “an accessible 
interface to complex structures and problems” (Cooper, Khatib, and Baker 2013) could be 
transported to SS. 

Lastly, since SS is used professionally, gamification should look at work-related gains and 
challenges. Oprescu, Jones, and Katsikitis (2014) have delineated ten principles for gamifying 
workplaces, listing expected benefits such as increased engagement; development of capabilities; 
increased satisfaction; and enhanced productivity. Their work claims that younger generations 
might value gamified workplaces more than older ones. A similar remark has been done two 
decades before by Webster and Martocchio (1993), who observed that younger employees were 
more receptive to playful approaches to work. Gamified work can raise objections: gamification 
practices have been accused of being exploitative (Bogost 2015), especially when underlying 
objectives of gamification proponents are not aligned with the workers’ (Bigham, Bernstein, and 
Adar 2014). In that case, is recommended that workers do not lose the connection with the real 
purpose of their work—as opposed to gamified motivational elements (Kim 2015). 

Discussion 

Structuring a design lens based on our findings requires such information to be condensed, 
reorganized, and articulated as a brief introduction to the subject and a set of questions. To assist 
with the process, we have gone through the findings, identifying challenges, issues, and 
opportunities, to organize them as shown in Table 2.  
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Table 2: Identified Challenges, Issues, and Opportunities 
Development  Project size; team size; development methodologies; timescale; software 

lifecycle; technologies; expandability; team collaboration.  

User-base  User-base size and necessities; multiple types and levels of user 
specialization; computer literacy; user expectations; empowerment through 
participation in development; community building. 

Professional  Work practices, conditions, culture, ethics, safety norms, conventions, and 
best practices; evaluation from science-domain expert. 

Scientific/Academic  Correctness; reproducible; data complexity and quality; changeable 
requirements; rigor.  

Software  Expandable; incremental; portable; configurable; performance-oriented; 
easy to install; interoperability; automatable; target system requirements. 

General UI  User-friendly; easy to learn; customizable; adequate to platform; consistent; 
flexible; minimalistic; incremental. 

Specialized Usability  Complex data input/output and monitoring; precision; annotation tools; 
access to programming and knowledge-base; prevention and recovery from 
errors; report generation; metadata; GUI bypassing. 

Modeling, Simulation 
and Result Analysis  

Productive modeling and workflow composition; insightful result analysis 
through visualizations, navigation, and manipulation of data in two, three or 
four dimensions. Adequate contextualization and integration between 
modeling, simulation, and result analysis phases. 

Gamification and Playful 
Design  

Games as source of inspiration; better presentation and aesthetics; 
interactivity; technologies; game-like structures; goals; feedback; guidance; 
progression; flow; fun; exploration; adequate motivational design elements 
(score, points, etc.). 

 
Table 3: Formatted Lens 

The Lens of the Lab 

Scientific software should augment insight, productivity, and knowledge. It should facilitate and integrate 
supported stages of scientific work (modeling, simulation and result analysis), and generate output for 
publication, sharing, or further research. When designing for scientific software, consider the questions: 

How can the interface represent the scientific matter, reinforce the way it works and 
support the theory behind it? How can it present and explore complex data at high levels of 
precision? How can it prevent and fix errors? 

Is the user interface intuitive, consistent and uncluttered? Is it flexible enough to allow for 
incremental expansion and customization? Is it adequate to the platforms it was designed 
for, and to other software it should be integrated to?  

How do scientists work? How is the work environment, culture, ethics, conventions, 
current practices and best practices? What do users need and expect? How can design 
embrace different levels of scientific specialization, computer literacy, and programming 
skills? How can it promote and attract collaboration or community building?  

How can games inform and inspire the software aesthetics and interactivity? Which game 
design elements could provide structure, goals, feedback, guidance, progression, flow, fun 
and experimentation? Would competition and point-based systems motivate or demotivate? 

Is implementation feasible regarding scope, planning, timescale, technologies, human 
resources, and software lifecycle? 
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Finally, we adapt that content to the design lens formatting, as shown in Table 3. Applying 
the lens to a project should be a straightforward process, basically consisting of either (a) 
reflecting upon the questions during design stage or (b) consulting appropriate stakeholders about 
the issues at hand.  

Conclusion 

Development and use of scientific software are very particular, often intertwined, activities, 
influenced by diverse technical, professional, and scientific needs. Usability in SS is, 
comprehensibly, regarded as deficient. However, it has also been approached very professionally 
by designers and researchers—a trend that should be increased by efficient development 
methodologies. The visual, interactive, structured, and experimental qualities of SS seem to 
qualify it as an opportune and natural venue for gamification and playful design—widely and 
successfully applied to citizen science, from which design lessons could be taken. By 
restructuring our literature review findings, we proposed a design lens to support gamification 
and usability design for SS. This lens should be further examined and tested as an extension of 
the current work, as well as complimented by additional research on game design applied to 
scientific software.  
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