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The Clinical Challenge 

A 47-year-old man with super-morbid obesity (BMI = 81 kg/m2) presented to the emergency 

department with leg swelling and mild dyspnea.  The leg swelling was long standing, but had increased 

over the course of one month to the point that ambulation had become difficult. His dyspnea was 

progressive over the course of one week and was significantly worse with exertion. He reported no 

associated cough, fever, chest discomfort or pleurisy. He was a lifelong non-smoker. His initial 

temperature was 36.8 °C, blood pressure 122/75 mmHg, heart rate 118 beats/minute, respiratory rate 16 

breaths/minute, and oxygen saturation by pulse oximetry was 75% while breathing ambient air. His 

mental status was fully intact during his initial examination and auscultation of his chest revealed bibasilar 

rales and distant breath sounds. His cardiovascular examination was limited by body habitus, but S1 and 

S2 were normal without appreciable extra heart sounds. There was no appreciable jugular venous 

distension. His extremity examination was notable for symmetric 3+ pitting edema in both legs extending 

to his upper thighs. Laboratory studies were: sodium 139 mM, potassium 4.5 mM, chloride 97 mM, 

bicarbonate 33 mM, blood urea nitrogen 17 mM, creatinine 0.97 mM. Although no blood gas was obtained 

Ăƚ ƚŚĞ ƚŝŵĞ Žƌ ƉƌĞƐĞŶƚĂƚŝŽŶ͕ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ ĞůĞǀĂƚĞĚ ƐĞƌƵŵ ďŝĐĂƌďŽŶĂƚĞ ƐƵŐŐĞƐƚĞĚ ĐŚƌŽŶŝĐ͕ ŵŝůĚ 

hypercapnia. His chest radiograph was extremely poor in quality due to body habitus and the lung fields 

were judged to be uninterpretable. 

In response to his low oxygen saturation, supplemental oxygen was given via nasal cannula at 2 

liters/min͘ TŚĞ ƉĂƚŝĞŶƚ͛Ɛ follow-up saturation was 98%. Approximately 30 minutes later, he became 

somnolent. An arterial blood gas revealed a pH of 7.11, PaCO2 of 99 mmHg, and PaO2 of 159 mmHg (Table 

1). The patient was intubated and mechanically ventilated with a tidal volume of 450 mL, FiO2 1.0, PEEP 5 

cm H2O, and respiratory rate 16 breaths/min. He was treated with furosemide in 40 mg to 80 mg 

intravenous doses given up to three times daily, which elicited an appropriate increase in urine output.  

Over the following 10 days, the patient had a net negative fluid balance of more than 40 liters, and the 
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serum bicarbonate concentration ([HCO3
-]) increased from 33 to 44 mM. Weaning from mechanical 

ventilation was complicated by persistence of hypercapnia during spontaneous breathing trials. Although 

trials were not aborted due to low respiratory rate or tidal volume, PaCO2 was >80 mmHg and extubation 

was considered unsafe. 

 

Questions 

 What ǁĂƐ ƚŚĞ ƵŶĚĞƌůǇŝŶŐ ĐĂƵƐĞ ŽĨ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ ĐŚƌŽŶŝĐ ŚǇƉĞƌĐĂƉŶŝĂ? 

 What was the most likely mechanism of the acute ventilatory decompensation in the emergency 

department? 

 Did furosemide exacerbate hypercapnia and impede weaning from the ventilator? 

 

Clinical Reasoning 

Obesity hypoventilation syndrome (OHS) is defined by the combination of obesity (BMI >30 

kg/m2) and awake hypoventilation (PaCO2 >45mmHg) in the absence of other causes of hypoventilation. 

The condition was originally coined Pickwickian Syndrome (Burwell et al., 1956) after the obese, 

somnolent character ͞Joe͟ ŝŶ CŚĂƌůĞƐ DŝĐŬĞŶƐ͛ ϭϴϯϳ The Posthumous Papers of the Pickwick Club. The 

recognition and diagnosis of OHS is often confounded by the presence of multiple comorbidities at the 

time of patientƐ͛ ĨŝƌƐƚ ŚĞĂůƚŚĐĂƌĞ ĐŽŶƚĂĐƚ͘ In extremis, patients with OHS become increasingly hypercapnic 

due to the inability to appropriately eliminate CO2. In many cases of OHS, hypoxemia is responsible for a 

greater proportion of ventilatory drive.  As a clinician, the instinct is to treat the immediate threat, which 

typically means reversal of hypoxemia and diuresis. Both interventions, while necessary, may produce 

further problems in OHS that provide a renewed threat of danger. 
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TŚĞ ƉĂƚŝĞŶƚ͛Ɛ initial rapid decompensation was ultimately attributed to administration of 

supplemental oxygen resulting in an excessive rise in PaO2 that contributed to acute on chronic 

hypercapnia. Following initiation of mechanical ventilation, ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ PaCO2, arterial pH and mental 

status progressed towards normal. The rapid reduction in plasma volume following furosemide 

administration combined with underlying chronic bicarbonate retention exacerbated his metabolic 

alkalosis. The acute metabolic alkalosis superimposed upon the physiological effects of a chronic 

hypercapnia made it difficult to achieve acceptable levels of PaCO2 during spontaneous breathing trials 

ĂŶĚ ƉƌŽůŽŶŐĞĚ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ ƚŝŵĞ ŽŶ ƚŚĞ ǀĞŶƚŝůĂƚŽƌ͘  

 

The Clinical Solution 

 Oxygenation goals were adjusted and FiO2 was titrated to a target oxygen saturation of 88-92% 

by pulse oximetry, resulting in a PaO2 of 55-65 mmHg. The failed weaning attempts were treated with 

acetazolamide to combat iatrogenic metabolic alkalosis. Acetazolamide, a carbonic anhydrase inhibitor 

that increases the elimination of bicarbonate in the proximal renal tubule, was administered in 250 mg 

ŽƌĂů ĚŽƐĞƐ ƚǁŝĐĞ ĚĂŝůǇ ĂŶĚ ƌĞĚƵĐĞĚ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ Ɛerum [HCO3
-] from 46 to 36 mM over the course of 

several days (Table 1), following which he was successfully extubated. 

 

The Science Behind the Solution 

The control of breathing is complex. It requires integration of a sensory system, a central 

controlling system, and an effector system (Figure 1). During resting breathing, afferent signaling to the 

respiratory controller from the carotid bodies, central chemoreceptors, pulmonary receptors, and 

mechanoreceptors in the chest wall are integrated in the medulla, which, together with (a still poorly 
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understood) ŝŶƉƵƚ ĨƌŽŵ ĂŶ ŝŶƚƌŝŶƐŝĐ ͚ĐĞŶƚƌĂů ƉĂƚƚĞƌŶ ŐĞŶĞƌĂƚŽƌ͕͛ effect a ventilatory drive in the form of 

cortical respiratory motor outflow. This neural stimulation acts on the effector system ʹ the respiratory 

muscles ʹ  through excitation-contraction coupling, to bring about a coordinated inhalation and exhalation 

pattern. This control system aims to maintain normal arterial PO2 and PCO2. A disadvantaged effector 

system, dysregulation of ventilatory control, and disrupted sensory systems all contribute to the 

pathophysiological abnormalities underlying OHS. 

 

Obesity and Hypercapnia 

Obese individuals are at a significant ventilatory disadvantage. First, total cellular CO2 production, 

and therefore the requirement for CO2 output by ventilation, can be 20 to 30% higher in individuals with 

larger body surface areas. Second, adding weight to the chest and abdomen in the form of adipose tissue 

reduces chest wall compliance and decreases functional residual capacity, expiratory reserve volume, and, 

much less commonly, vital and total lung capacities. Low operating lung volumes increase airway 

resistance and work of breathing and predispose to small airway closure and basal atelectasis, all of which 

cause an intrapulmonary shunt and contribute to ventilation/perfusion (VA/Q) mismatching. Normally, 

hypercapnia resulting from VA/Q inequality is corrected by increased ventilatory drive that results in 

increased alveolar ventilation. In OHS, chronic hypoxemia and hypercapnia are the final result of increased 

airway resistance and chest wall stiffness, while the greater demand for ventilation in the obese individual 

increases the work of breathing and may drive chronic respiratory muscle fatigue. The resulting 

compensation in plasma and cerebrospinal fluid (CSF) buffering capacity blunts ventilatory responsiveness 

to both hypoxemia and hypercapnia and exacerbates the ventilatory control problem. Distribution of 

adiposity is likely more important than BMI in developing OHS, which can, in many cases, be reversed by 

weight loss.   
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Another likely contributor to OHS is leptin insensitivity. Leptin is produced by adipose tissue and 

acts on the hypothalamus to suppress appetite, but also stimulates ventilation. The carotid body also 

expresses leptin receptors, increasing its discharge and driving ventilation when stimulated by circulating 

leptin. While leptin deficiency results in reduced ventilation in animal models, obese individuals are 

hyperleptinemic. However, a high fat diet and metabolic syndrome appear to be associated with blunted 

leptin-dependent sensor signaling in animals and blunted hypercapnic responsiveness in patients with 

OHS.   

Collectively, OHS patients are characterized by chronic abnormalities in the chemo- and mechano-

sensory systems delivering neural input to the ventilatory controller (Figure 1) which causes reduced 

ventilatory motor outflow. Finally, the respiratory muscles are also mechanically disadvantaged. The 

result is a compensated respiratory acidosis, blunted hypoxic, hypercapnic, and leptin sensitivity, 

mechanical constraint, and hypoventilation. 

 

Chemical and Neural Control of Breathing 

 Chemoreceptors are highly specialized cells that respond to changes in the composition of the 

fluid surrounding them. Chemoreceptors in humans are primarily located in the ventral medulla oblongata 

(central) and carotid bodies (peripheral). Central chemoreceptors respond to changes in pH and PaCO2 

while peripheral chemoreceptors respond to changes in pH, PaCO2 and PaO2 (Figure 1). The highly 

specialized hemoglobin molecule, with its ability to maintain a high saturation over a wide range of PaO2 

(60-100 mmHg), reduces the need to tightly regulate PaO2 over the normal physiologic range, and 

therefore, arterial pH and PaCO2 are the primary variables regulated by ventilation. 

Central Chemoreceptors 
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 The central chemoreceptors respond to changes in cerebrospinal fluid pH (pHCSF) rather than the 

pH of arterial blood. The blood brain barrier isolates these chemoreceptors from the systemic circulation 

and is relatively, but not completely, impermeable to hydrogen ions (H+). Carbon dioxide, however, 

diffuses freely into the CSF, where its chemical combination with H2O is catalyzed by carbonic anhydrase, 

yielding dissociated HCO3
- and H+ and reducing pHCSF (Figure 2). Because the CSF protein concentration is 

relatively low, CSF is a poor buffer, and small changes in PaCO2 yield large and rapid changes in pHCSF. 

Chronic retention of CO2 is compensated in the CSF by the choroid plexus, which produces and transports 

HCO3
- into cerebrospinal fluid. CSF HCO3

- retention is a slow process, but if hypercapnia is maintained (as 

it is in OHS) increased CSF [HCO3
-] leads to a blunted central chemosensitivity. The slope of the linear 

relationship in Figure 3A represents normal chemoreceptor sensitivity to PaCO2 effecting an increase in 

ventilation. Above a low threshold value, ventilation increases in linear proportion to PaCO2. On the other 

hand, central chemoreceptors are not sensitive to PaO2 (Figure 3B). Under normal conditions, central 

chemoreceptors are likely responsible for about 80% of the CO2 induced drive to breathe. 

Peripheral Chemoreceptors 

 Peripheral chemoreceptors are found in the carotid bodies located at the bifurcation of the 

common carotid arteries. Their very high blood flow relative to metabolic rate allows them to accurately 

detect arterial PO2, pH, and PCO2. The carotid body is unique in its sensitivity to PO2. Nervous output from 

the carotid body is significantly damped when PaO2 exceeds 100 mmHg and is almost silent above ~400-

500 mmHg. However, the carotid body response is extremely non-linear, such that firing increases 

dramatically when PaO2 falls below 60 mmHg (Figure 3D).  

 It has been estimated that only about 20% of the CO2 induced drive to breathe is mediated by the 

carotid bodies.  Sensitivity to hypercapnia is increased by hypoxemia and blunted by hyperoxia (Figure 
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3C).   Overall, patients with normal PaO2 and PaCO2 derive little ventilatory drive from carotid body 

outflow. Resection of the carotid bodies results in complete loss of hypoxemic ventilatory sensitivity. 

 Mechanoreceptors and the work of breathing 

 The neural control of breathing is a highly complex interplay among ventilatory pattern 

generators, efferent outflow, and afferent sensors. Of particular relevance to OHS are type I and II tendon 

organ (sensing force) and muscle spindle (sensing length) mechanoreceptors in the chest wall muscles, 

tendons, and joints that provide information about movement of the respiratory muscles (Figure 1). Type 

III/IV unmyelinated chest wall metaboreceptors also provide information about muscle metabolic strain. 

Excitation of primary type Ib tendon organs of the internal intercostals has an inhibitory effect on 

inspiratory neuronal activity in the medulla and this may contribute to the hypoventilation of OHS. 

However, there is considerable (teleologically advantageous) redundancy in the sensory motor system to 

the chest wall and a precise understanding of its integrated control awaits discovery.  

Combined ventilatory drive  

The combined effect of all receptor stimuli is that ventilatory drive increases linearly once PaCO2 

exceeds 35 mmHg (Figure 4A). Ventilatory drive from hypercapnia is increased with hypoxemia by 

reducing the threshold for increased ventilation (>30 mmHg), causing greater ventilation for a given 

PaCO2, and increasing the sensitivity to PaCO2 (steeper slope). Metabolic acidosis and metabolic alkalosis 

change the threshold for ventilation without significantly changing sensitivity to PaCO2 (Figure 4B). 

Conversely, ventilation is blunted when the work of breathing is high. This reduces the effective PaCO2 

sensitivity due to reduced airway pressure generation for a given ventilatory motor outflow. 

 

The Effect of Hypoxemia 
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Supplemental oxygen has been used to treat respiratory failure for over 100 years. More recently, 

oxygen therapy has been recognized as a ͞double-edged sword͟ in several disease states.  OHS is typically 

accompanied by chronic hypoxemia and the immediate medical response is to provide supplemental 

oxygen. However, hypoxemia typically augments the overall ventilatory drive in these patients by 

increasing peripheral chemoreceptor outflow and reducing threshold and increasing sensitivity to PaCO2 

(Figure 5B). Providing supplemental O2, however, does just the opposite. In newly diagnosed OHS patients, 

breathing 100% oxygen for 20 minutes effectively silences peripheral chemoreceptor activity and can 

increase PaCO2 by as much as 10 mmHg. If pulmonary perfusion is unchanged, more blood flow to low VA 

/Q regions causes less blood flow to high VA /Q regions.  This further increases the VA /Q of these regions, 

which increases alveolar and physiologic dead space.  This, in turn, leads to a higher PCO2 for a given 

minute ventilation. For a patient already in respiratory distress, this can be devastating. 

In our patient, the pathologic PaCO2 insensitivity at the time of presentation (Figure 5A) was at 

least partially counteracted by increased ventilatory stimulus from hypoxemia (Figure 5B), but this 

stimulus was removed by increasing his PaO2 (Figure 5C). In severe states of hypoxemia, supplemental O2 

should be provided to avoid tissue hypoxia and metabolic acidosis, but providing supplemental O2 in 

excess of that required to maintain an appropriate rate of oxygen delivery (88-92% hemoglobin 

saturation) may have the dramatic and unwanted effect of ventilatory depression.  

Apart from altering chemoreceptor sensitivity, supplemental oxygen may worsen hypercapnia in 

two other ways. First, correcting local hypoxia in the lungs reverses pulmonary vasoconstriction in areas 

of low VA/Q. The increased blood flow to these poorly-ventilated regions adds more blood with low PO2 

and high PCO2 to the systemic circulation. Second, oxygen decreases the affinity of hemoglobin for CO2 

(the Haldane effect), thereby increasing the PCO2 for a given blood CO2 content.  The degree to which 

each of these three factors contributes to O2-induced hypercapnia may vary from patient to patient 
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depending upon the level of initial hypoxemia and intrinsic differences in ventilatory and pulmonary 

vascular responsiveness to changes in O2 and CO2.  

  

Diuresis, Metabolic Alkalosis and Ventilatory Suppression 

 In our patient, compensation for the chronic respiratory acidosis caused by hypoventilation 

resulted in bicarbonate retention. Substantial volume removal with a loop diuretic precipitated a 

metabolic alkalosis through ͞contraction.͟ Urine eliminated through the kidneys contains very little HCO3
-

. Therefore, as the eǆƚƌĂǀĂƐĐƵůĂƌ ǀŽůƵŵĞ ͞ĐŽŶƚƌĂĐƚƐ͟ with a loop diuretic-mediated diuresis, it does so 

around a relatively constant HCO3
- content and the blood HCO3

- concentration increases. Additionally, 

inhibition of sodium reabsorption in the ascending limb of the renal tubule leads to increased sodium 

delivery in the distal tubule. This prompts potassium and hydrogen ion excretion in exchange for sodium 

resorption. Metabolic alkalosis affects the threshold response to PaCO2 so that at a constant PaCO2 in a 

mechanically ventilated patient, the drive to breath is reduced (Figure 5D).  

With the generation of an iatrogenic metabolic alkalosis, our patient did not increase his 

ventilatory drive during spontaneous breathing trials except when PaCO2 was very high. Acetazolamide, a 

carbonic anhydrase inhibitor, was used to stimulate renal elimination of bicarbonate and, once serum 

[HCO3
-] was reduced, a more normal ventilatory response to PaCO2 was restored. With the correction of 

other patient factors contributing to difficult weaning, our patient was extubated safely and discharged 

from intensive care. It should be noted that the routine use of carbonic anhydrase inhibitors as respiratory 

stimulants in mechanically ventilated patients is not recommended. 

 

Conclusion 
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 Patients with the obesity hypoventilation syndrome commonly present to the hospital with 

hypoxemia, hypercapnia, and respiratory distress. While the initial presentation is typically characterized 

by insensitivity to PaCO2, their hospital course can be negatively affected by iatrogenic complications. 

These include overcorrection of hypoxemia and induction of ͞ĐŽŶƚƌĂĐƚŝŽŶ͟ ŵĞƚĂďŽůŝĐ ĂůŬĂůŽƐŝƐ by large 

volume diuresis with loop diuretics. Understanding the physiologic mechanisms behind not only the 

underlying disease, but the complications that can occur during treatment, is fundamental to the 

appropriate treatment of OHS.  These include judicious titration of supplemental oxygen and careful 

correction of hypervolemia by appropriate selection of diuretic agents.   
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Table 1 ʹ Arterial blood gas (ABG) ǀĂůƵĞƐ ĚƵƌŝŶŐ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ hospital course.  

 pH PaCO2 (mmHg) PaO2 (mmHg) Bicarbonate (mmol/L) 

After O2 7.11 99 159 31 

After furosemide 7.41 73 66 44 

Failed spontaneous 

breathing trial 
7.37 82 87 46 

After acetazolamide 7.42 57 72 36 
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Figure Legend 

Figure 1. Ventilatory drive as a negative feedback loop. Changes in PO2 are sensed by peripheral 

chemoreceptors (located in the carotid bodies) while changes in PCO2 are sensed in both the peripheral 

and central chemoreceptors (located in the medulla).  Chest wall mechanoreceptors produce afferent 

feedback to the respiratory control center in the medulla. The central chemoreceptors are responsible 

for approximately 80% of input to controllers in the brainstem which in turn stimulate effectors in the 

periphery. (CSF = cerebrospinal fluid, BBB = blood brain barrier) 

Figure 2. Central chemoreceptors are indirectly affected by serum PCO2. Because hydrogen ions cannot 

cross the blood brain barrier, central chemoreceptors are unaffected by arterial pH. Instead, CO2 

diffuses into the CSF where it dissociates into H+ and HCO3
-. Low pH in the cerebrospinal fluid then 

triggers increased ventilatory drive in the central chemoreceptors. (C = central chemoreceptor) 

Figure 3. A) The linear relationship between PCO2 and respiratory drive in central chemoreceptors. The 

slope of this line represents CO2 sensitivity. B) Ventilatory drive is unaffected by PO2 in central 

chemoreceptors. C) The linear relationship between PCO2 and ventilatory drive in peripheral 

chemoreceptors.  CO2 sensitivity (slope) is increased in hypoxemia and decreased in hyperoxia.  D) The 

curvilinear relationship between PO2 and respiratory stimulation in peripheral chemoreceptors. Rapid 

triggering is stimulated at PO2 below 55-60 mmHg. 

Figure 4. A) The combined effect of central and peripheral chemoreceptors on ventilatory drive. Owing 

to the effect of PO2 on peripheral receptors, CO2 sensitivity is increased in hypoxemia and decreased in 

hyperoxia. B) Metabolic acidosis and alkalosis do not significantly affect CO2 sensitivity, but do change 

the x-intercept.  

Figure 5. A) At presentation, the central chemoreceptors of OHS patients (red line) have decreased CO2 

sensitivity compared to individuals with normal ventilatory drive. Central ventilatory drive is lower for a 
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given PaCO2 in OHS (red dot) compared to normal (black dot). B) In states of hypoxemia (PO2 < 60 

mmHg) CO2 sensitivity is increased (red line).  As a result, peripheral ventilatory drive is higher for a 

given PaCO2 in OHS (red dot) compared to normal (black dot). C) With overcorrection of hypoxemia to 

160 mmHg, CO2 sensitivity is decreased from normal (red line) and PaCO2 increases (red dot). D) In 

metabolic alkalosis, CO2 sensitivity is not affected, but the entire line is shifted to the right (red line) and 

PaCO2 increases (red dot). (OHS = obesity hypoventilation syndrome) 
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