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A long-standing open question in glaciology concerns the propensity for ice sheets5

that lie predominantly submerged in the ocean (marine ice sheets) to destabilise under6

buoyancy. This paper presents a study of the mechanisms by which a buoyancy-driven7

mechanism for the retreat and ultimate collapse of such ice sheets – the marine ice sheet8

instability – is suppressed by lateral stresses acting on its floating component (the ice9

shelf). The key results are to demonstrate the transition between a mode of stable (easily10

reversible) retreat along a stable steady-state branch created by ice-shelf buttressing to11

tipped (almost irreversible) retreat across a critical parametric threshold. The conditions12

for triggering tipped retreat can be controlled by the calving position and other proper-13

ties of the ice-shelf profile and weakly dependent on basal stress, in contrast to principles14

established from studies of unbuttressed grounding-line dynamics. The stability and re-15

covery conditions introduced by lateral stresses are analysed by developing a method16

of constructing grounding-line stability (bifurcation) diagrams, which provide a rapid17

assessment of the steady-state positions, their natures and the conditions for secondary18

grounding, giving clear visualisations of global stabilisation conditions. A further result19

is to reveal the possibility of a third structural component of a marine ice sheet that20

lies intermediate to the fully grounded and floating components. The region forms an21

extended grounding area in which the ice sheet lies very close to flotation, and there is22

no clearly distinguished grounding line. The formation of this region generates an up-23

surge in buttressing that provides the most feasible mechanism for reversal of a tipped24

grounding line. The results of this paper provide conceptual insight into the phenomena25

controlling the stability of the West Antarctic Ice Sheet, the collapse of which has the26

potential to dominate future contributions to global sea-level rise.27

1. Introduction28

The total or partial collapse of the West Antarctic Ice Sheet (WAIS) – the largest29

example of a so-called marine ice sheet – has the potential to increase global sea level30

independently by several metres over the course of the next few centuries (Bamber et al.31

2009; Hanna et al. 2013). However, the conditions controlling its destabilisation are cur-32

rently poorly understood. A marine ice sheet is a continent scale glacial mass that lies33

submerged in the ocean. Since ice is lighter than water, buoyancy acts to detach a ma-34

rine ice sheet from the underlying bedrock. This has led to a long-standing open problem35

in glaciology regarding the conditions under which buoyancy drives a marine ice sheet36

to collapse, a principle known as the ‘marine sheet instability’ (MISI) (Weertman 1974;37

Thomas & Bentley 1978). The essential likelihood of instability, the mode and time scales38

on which it may be triggered, remain key unknowns in efforts to assess contributions to39

future sea-level rise. A potentially key mechanism for suppressing instability is an effect40

of the peripheral floating regions of the ice sheet (the ice shelves) in creating a buttress41
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2 S. S. Pegler

that supports the considerably larger grounded interior of the ice sheet against surg-42

ing outwards into the ocean (Hughes 1981; Stuiver et al. 1981). The process of ice-shelf43

buttressing may be key to understanding marine ice sheet collapse, providing a strong44

motivation to explore its mechanical underpinnings. The present paper presents a theo-45

retical investigation of the mechanisms by which the onset of, suppression of and recovery46

from MISI is controlled by lateral stresses and ice-shelf buttressing. A focus is to iden-47

tify parametric tipping points for triggering of a large-scale retreat occurring once the48

conditions for sustaining a stable steady state fail critically.49

In describing the onset of MISI, I distinguish two different modes of grounding-line50

retreat. Following changing external parametric conditions (e.g. a reduction in snow51

accumulation rate or an increase in the rate of melting of the ice shelf), a grounding52

line may retreat towards a new stable steady state near the present grounding line. In53

this mode of ‘stable’ retreat, the grounding line will recover to its original position if54

parameters are subsequently restored to their former values. If the changing external55

conditions instead lead to a removal of the possibility of a stable steady state near56

the present state, then a more sudden and sustained retreat can instigate from which57

recovery may be impossible following even complete parametric restoration. The onset58

of this mode of ‘tipped’ retreat can be identified with the notion of MISI.59

The main analytical tool I use is the steady-state balance equation for the grounding-60

line position xG (Pegler 2018),61

E[d(xG)] +B(xG, xC) =
1
2ρg

′d(xG)
2, (1.1)

where d(x) is the flotation profile (related to the bed profile), E is the depth-integrated62

longitudinal extensional stress, B is the ice-shelf buttressing force, xC is the calving posi-63

tion of the ice shelf, ρ is the density and g′ is the reduced gravity. The functions E[d(xG)]64

and B(xG, xC) represent universal analytical functions of the grounding-line position xG65

that are derived from integrations of the grounded and floating components of a quasi-66

two-dimensional (Q2D) model (to be reviewed in §2). The Q2D model is defined as a67

flow-line model (Dupont & Alley 2005; Nick et al. 2010; Hindmarsh 2012; Pegler et al.68

2013; Walker et al. 2013; Pegler 2016; Kowal et al. 2016; Schoof et al. 2017) with use of a69

parametrisation of the transverse viscous shear stress for hard margins (Pegler 2016). The70

algebraic equation (1.1) determines the steady-state grounding-line positions consider-71

ably faster than numerical analysis based on the full two-dimensional SSA equations (e.g.72

Gudmundsson et al. 2012), but nonetheless recovers its steady-state predictions to good73

approximation subject to certain caveats, including the approximation of a reasonably74

parallel flow (see the supplemntary document, §2 and §8.3 of Pegler 2018, for a discussion75

of the results of the comparison study and the anticipated limtiations of the theory). As76

will be shown via the analysis of tipping conditions in the present paper, the evaluation77

of the current steady states for a given set of parameters, as predicted by the analytical78

functions comprising (1.1), is sufficient to indicate the future state towards which any79

time-dependent grounding line can stabilise under a given parametric configuration.80

Equation (1.1) elucidates the general control of a grounding line across the spectrum81

bridging the unbuttressed (extension-dominated) balance, E(d) ∼ (ρg′/2)d2 (e.g. Weert-82

man 1974; Muszynski & Birchfield 1987; Chugunov & Wilchinsky 1996; Wilchinsky &83

Chugunov 2000; Schoof 2007a,b; Robison et al. 2010; Tsai et al. 2015) to a limiting84

regime of strong ice-shelf buttressing, B(xG, xC) ∼ (ρg′/2)d2 arising for strongly con-85

fined marine-terminating glaciers (Pegler et al. 2013). The limiting end members of (1.1)86

exhibit markedly different dependences on the properties of a given marine ice sheet. For87

example, the extensional balance is completely independent of calving position xC but88

inherently sensitive to basal stress. By contrast, the strongly buttressed balance is inde-89
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Suppression of marine ice sheet instability 3

pendent of basal stress but centrally dependent on the calving position xC . The theory90

underlying (1.1) will break down if the ice shelf associated with the steady state makes91

further contacts with the bedrock downstream of the grounding line, a situation referred92

to as secondary grounding (encompassing either the formation of an ice rise or an imme-93

diate reconnection between the ice shelf and the bedrock in front of the grounding line).94

The inducement of secondary grounding by lateral stresses will be shown in this paper95

to provide a the first mechanism that comes into play in order to reverse tipped retreat.96

Analysis of horizontally one-dimensional (unbuttressed) marine ice sheets has shown97

that the migration of the grounding line is controlled by the flotation thickness d (e.g.98

Schoof 2007b). This dependence can be recovered by the unbuttressed reduction of the99

grounding-line balance of (1.1) to E(d) ∼ (ρg′/2)d2, which represents an implicit equa-100

tion for d only. This thickness-dominated control can be reduced to a relationship between101

grounding-line thickness and volumetric flux for steady or quasi-steady flow (Chugunov102

& Wilchinsky 1996; Wilchinsky & Chugunov 2000; Schoof 2007a,b). As a consequence of103

this relationship, the retreat of a grounding line on a positive bed slope (sloping upwards104

in the direction of flow, also termed reverse or retrograde) increases the flux across the105

grounding line, producing a positive feedback response. An unbuttressed steady state on106

a positive slope thus provides a local repeller for the evolution of the ice sheet. Con-107

versely, an unbuttressed steady state on a negative bed slope is stable and provides a108

local attractor for the evolution of the ice sheet. Much of the bedrock underlying the109

WAIS deepens towards the centre of Antarctica owing to isostatic depression, creating110

the potential for tipping into positive-feedback retreat.111

With buttressing included, (1.1) introduces a dependence on the properties of the ice112

shelf, including the calving position xC , which precludes the simplified reduction of (1.1)113

to a grounding-line balance dependent purely on the grounding-line thickness d, which114

applies uniquely in the unbuttressed situation. The associated scaling relationship for ice115

flux then fails to apply, along with the direct relationship between the nature of stability116

and local basal slope. The incorporation of ice-shelf buttressing in flow models has re-117

vealed a number of different stability properties (MacAyeal 1989; Dupont & Alley 2005;118

Goldberg et al. 2009; Gagliardini et al. 2010; Gudmundsson et al. 2012; Gudmundsson119

2013). In particular, it is established that a buttressed grounding line can stabilise on a120

positive bed slope (e.g. Gudmundsson et al. 2012). This is possible because grounding-121

line retreat will, at least under the assumption of a fixed calving position, result in an122

increase in the shelf length and hence the buttressing force, potentially counteracting the123

increase in the buoyancy force associated with the retreat. Schoof et al. (2017) consider124

the question of establishing local stability for two alternative calving laws: one where125

calving occurs directly at the grounding line, and the other where an ice shelf forms126

and fractures in accordance with a hydrofracture model (Nick et al. 2010). In the former127

case, lateral stresses only affect the grounded region (a case not considered here), and128

it is found that the flux can be controlled by a different scaling resulting from lateral129

stresses, as discussed in the context of the calving front of a confined ice shelf (Hind-130

marsh 2012; Pegler 2016). For the hydrofracture model, the calving condition is reduced131

to a condition of a prescribed terminal calving thickness, resulting in a different relation-132

ship between the rate of increase of the buttressing force and the rate of retreat of the133

grounding line as compared to the case of a direct imposition of the calving position. The134

results demonstrate the sensitivity of the establishment of local stability to the choice of135

the calving law, and find that stability is also possible on a retrograde slope under this136

alternative calving model.137

The present paper will address the questions of how a marine ice sheet transitions138

(tips) into, is suppressed against and recovers from marine ice sheet instability follow-139
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4 S. S. Pegler

ing continuous parametric variations. The two distinct goals are, first, to construct and140

verify bifurcation diagrams from which the conditions for inducing collapse, maintaining141

stability and recovering following tipping can be inferred. The analysis will elucidate how142

maintenance of the stability of an ice sheet can be assessed on the basis of the critical143

conditions for the instantaneous existence of stable steady states for a given configuration144

of parameters in a time-dependent setting. The second goal is to generate a parameter–145

regime diagram showing the critical conditions separating the situations guaranteeing146

stability, guaranteeing tipping and those for which the question of stabilisation is sub-147

ject to hysteresis. The bifurcation diagrams employ the steady-state database functions148

for steady-state grounding-line forces given by (1.1) in conjunction with conditions for149

secondary grounding (Pegler 2018). The inferred conditions for stabilisation are corrob-150

orated using transient solutions. The analysis of transience identifies in particular a new151

tertiary ice-sheet flow regime – lying in between floating and grounded region – through152

which the flow lies very close to floating over an extended distributed grounding area.153

The formation of such a zone is found to provide the most readily available pathway to154

reversal of tipped marine ice sheet instability.155

I begin in §2 by reviewing the Q2D model and its dimensionless form. This is followed156

in §3 by the development of the primary theoretical tool referred to as the ‘stability157

diagram’, which is a bifurcation diagram in which steady states, their local stability158

and the conditions for secondary grounding are incorporated simultaneously. Section 4159

applies this method to determine the stability of buttressed groundings and elucidates160

new features associated with the ice-sheet structure during the recovery of a tipped161

grounding line. Section 5 considers the general regime diagram describing the conditions162

for tipping and recovery. In §6, corresponding results incorporating power-law rheology163

and transitions to instability based on the retreat of the calving front and the increase164

in melt rate are demonstrated. I end in §7 by summarising the key findings.165

2. Model166

Consider a marine ice sheet comprising a viscous fluid layer (ice) of density ρ flow-167

ing over a rigid bed z = b(x) and lying submerged in an effectively inviscid fluid (the168

ocean) of larger density ρw and upper surface z = 0 (figure 1). The flow is subject to169

a no-slip condition along the margins, y = ±w(x). The flow is modelled using a quasi-170

two-dimensional model that models the two-dimensional viscous stresses associated with171

transverse shearing across the width of the flow, but approximated as retaining an ap-172

proximately one-dimensional thickness profile, H(x, t). A corroboration of the accuracy173

of this model is provided in the companion paper (Pegler 2018). The ice sheet generally174

comprises both a grounded region and a floating region – the ice shelf – which interface175

at the grounding line xG(t). The grounded and floating regions can be determined at any176

given time by comparing the thickness profile H(x, t) to the so-called flotation profile177

d(x) ≡ −(ρw/ρ)b(x), (2.1)

which represents the threshold thickness below which the ice sheet would float at the178

location x. If H(x, t) > d(x), the flow is grounded at x and if H(x, t) < d(x), it is179

floating.180

The flow is modelled as an extensional thin-layer flow with differing forms of drag181

and gravitational forces acting on the grounded and floating components. Ice rheology182

is typically modelled as a shear-thinning power-law fluid, with stress proportional to the183

rate of deformation raised to the power m = 1/n, where n is typically taken as 3.184

Following the companion paper, I model the dynamics using the quasi-two-dimensional
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z = b(x)
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z
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Floating region

Bed
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Figure 1. Schematic of a marine ice sheet.

(Q2D) model defined by the conditional extensional-flow equation
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∂
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µwH
∂u

∂x

)

=



















D(u) + ρgwH

(

∂H

∂x
+

db

dx

)

if H > d(x),

C+(x)Hum+ + ρg′wH
∂H

∂x
if H < d(x),

(2.2a,b)

where u(x, t) is the width-averaged velocity, µ = µ0|∂u/∂x|
m−1 is the effective viscosity,185

µ0 is the coefficient of viscosity, w(x) is the half width of the embayment (assumed186

uniform in the later examples of this paper), C+(x) is the effective lateral drag coefficient,187

g is the gravitational strength, and g′ ≡ (ρw −ρ)g/ρw is the reduced gravity. I model the188

total drag as the sum of the width-integrated basal and depth-integrated lateral stresses,189

D(u) = wτb(u) +Hτs(u) = C−(x)wu
m

− + C+(x)Hum+ , (2.3)

where C−(x) is the basal drag coefficient and m− is the basal drag-law exponent. The190

basal stress is modelled here using a Weertman slip condition (a power-law Navier con-191

dition), which is standard in ice-sheet simulation (Cuffey & Paterson 2010). The lat-192

eral stress is instead formulated in (2.3) on the basis of a ‘shear-drag parametrisation’,193

which models the lateral stress heuristically as the drag stress associated with a shear-194

dominated transverse shear profile. For this model to be consistent with both the regime195

of transverse-shear-dominated flow and conservation of mass, the effective lateral drag196

coefficient must be taken as C+(x) = µ0[2
1−n(n+2)−1w(x)]−(1/n) with m− = m (Pegler197

2016). This heuristic parametrisation of lateral shear drag yields model predictions that198

are, subject to the approximation of a suitably parallel flow, in good agreement with lab-199

oratory data and two-dimensional simulation of the full SSA equations across the range200

of wide to narrow geometries (Pegler 2016, 2018).201

It should be noted that the direct summation of the two drag laws used to describe202

the total stress in the grounded region (2.3) is, while likely a good approximation, not203

necessarily accurate unless either basal or lateral stress is locally dominant. For situations204

where the width-integrated basal and depth-integrated lateral stresses are comparable205

in the grounded region, a resolution of a Poiseuille-type transverse elliptic boundary-206

value problem could be conducted to describe a total drag on the grounded region D(u)207

resulting from the mixture of basal and lateral stresses. Nonetheless, it can be anticipated208

that the simple addition of the two drag laws used in (2.3) may, in addition to its clear209

validity in the limits of either one of the contributions being much greater than the other,210

provide a good general approximation for D(u), but will be tested with further work.211

It is worth emphasising that lateral stresses in the ice shelf and lateral stresses in the212

grounded region generally can have very different roles in large-scale ice-sheet dynamics.213

The role of all drag stresses in the grounded region (lateral or basal) is to control the214

steepness of the ice sheet upstream of the grounding line, and hence the amount of215
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6 S. S. Pegler

‘pile-up’ for a given grounding-line position. As discussed in Pegler (2018), these stresses216

do not necessarily have an important control of the grounding line, which is controlled217

instead specifically by the resistance to flow across it. The drag stresses a short distance218

upstream of the grounding line play some role in influencing the extensional contribution219

to the resistance to flow across the grounding line, as represented by E in (1.1). For220

sufficiently large buttressing B, this contribution can, however, become small even for a221

relatively short ice shelf and the control of the flux and position of the grounding line222

switches to being controlled by the ice shelf (Pegler 2018). The lateral stresses exerted223

in the floating region contributes directly to the resistance to flow across the grounding224

line and hence its position and, in turn, the stability of the entire ice sheet.225

The considerably greater significance of lateral stresses in the floating region compared226

to lateral stresses in the grounded region can thus be understood by considering the227

forces against which they compete for significance. For flow in the grounded region, the228

competing stress is basal stress. For the flow across the grounding line, the competing229

stress is the extensional stress E. Since the magnitude of the extensional stress would, in230

the absence of ice-shelf buttressing, provide an independent, and potentially very weak,231

resistance to the flow across the grounding line, it is readily possible for the lateral stresses232

in the floating region – despite their small magnitude compared to the basal stresses in233

the grounded region – to provide the dominant resistance to flow across the grounding234

line. In a sense, the resistance to flow across the grounding line in a marine ice sheet235

provides an independent ‘weak link’ in the maintenance of the large-scale ice-sheet mass236

balance, for which the ice-shelf buttressing provides a direct control. Consequently, ice-237

shelf buttressing can have a major independent control of the amount of ice that can be238

stored stably in the grounded region of a marine ice sheet even if generated by a relatively239

small ice shelf and being small in absolute magnitude compared to the accumulated basal240

stresses exerted further upstream.241

The symmetry conditions at the ice divide xD and the stress condition at the terminus
xC are given by

u = 0 at x = xD, (2.4)

µ
∂u

∂x
= 0 at x = xD, (2.5)

µ
∂u

∂x
=

ρg′

8
H at x = xC , (2.6)

While I treat xC as an imposed parameter in the examples of this paper, a more complex242

calving condition, e.g. on the calving thickness (Schoof et al. 2017) could be incorporated243

into the analytical toolkit developed in this paper using an extra condition of the implicit244

form H(xC) = HC , where HC is a parameter.245

Finally, the evolution equation for the thickness is246

∂H

∂t
= −

1

w

∂

∂x
(wHu) + f(x, t), (2.7)

where f(x, t) is the net accumulation of ice.247

2.1. Integrated steady-state balance equation248

It will be demonstrated in this paper that the sustainment of ice-sheet stability can249

be understood by constructing the steady-state solutions for a given configuration of250

parameters. The steady states can be determined by a reduced, integrated theory (Pegler251

2016, 2018), which will be reviewed as follows. In steady state, the mass conservation252
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Suppression of marine ice sheet instability 7

equation (2.7) can be integrated subject to (2.4) to yield the flux along the flow,253

q(x) = Hu =
1

w(x)

∫ x

xD

w(x̂)f(x̂) dx̂. (2.8)

On applying this expression along with certain approximations of the components of the254

grounded and floating sections, separate analytical expressions for forces exerted by the255

steady-state profiles of the grounded and floating regions can be derived. By utilising256

these analytical results together, it was determined that the grounding line xG satisfies257

the algebraic equation258

E(xG) +B(xG) =
1
2ρg

′d(xG)
2, (2.9)

where the two functions on the left-hand side can be interpreted as databases that give259

the steady-state extensional stress and the steady-state buttressing force exerted by an260

ice shelf explicitly in terms of the physical parameters and grounding-line position xG.261

By integrating the reduced systems representing grounded and floating regions, these262

functions, given here in a general dimensional form, were determined as follows. The263

extensional resistance function is264

E(xG) = 4µ0d(xG)

[

u(xG)

d(xG)

(

db(xG)

dx
+

D[u(xG)]

ρgw(xG)d(xG)

)]1/n

, (2.10)

where u(xG) = q(xG)/d(xG). The buttressing resistance function is265

B(xG) =
ρg′

2

[

(

HN
C +

N

ρg′

∫ xC

xG

C+(x̂)q(x̂)
1/n

w(x̂)
dx̂

)2/N

−H2
C

]

, (2.11)

where N = (n+ 1)/n, and266

HC ≡ H(xC) = κ

[

(

µ0

ρg′

)n(n+1) (
C+(xC)

µ0w(xC)

)n

q(xC)
n+1

]N2

. (2.12)

The constant κ = 3.28 for n = 3 (and κ ≈ 81/N
2

more generally).267

The result of (2.9), with (2.10) and (2.11), forms a closed algebraic equation for steady-268

state grounding line positions xG, which can be solved at very minimal numerical cost.269

The relative saving in numerical cost compared to full numerical simulation of the SSA270

equations (e.g. Gudmundsson et al. 2012) is at least ten orders of magnitude, but the271

numerical precision is similar for suitable geometries. The method thus provides new272

avenues for rapid scenario exploration and sensitivity analysis, in addition to providing273

physical insight into the underlying dynamics. Moreover, it does not suffer issues of spatial274

numerical resolution, which can be a limitation for confident grounding-line prediction.275

In applying these results, a number of caveats should be noted, which are summarised in276

§8.3 of Pegler (2018). This include the assumption of a suitably parallel ice sheet flow,277

which, while typical of many outlets, will be limited in applicability to the context of278

narrow outlets feeding broad ice shelves, for example.279

In addition to providing a useful counterpart to numerical simulation, the results of280

(2.9)–(2.11) provide physical insight into the parametric control of marine ice sheets.281

The right-hand side of (2.9) represents the driving hydrostatic pressure drop (δ/2)d(x)2,282

a force which is purely dependent on the grounding-line thickness. The left-hand side283

is the sum of two distinct forces resisting this driving force: the extensional resistance,284

E, and the ice-shelf buttressing force B, which varies with respect to the calving and285

grounding-line positions, xC and xG. The equation (3.1) clarifies the bridge between two286

fundamental limiting balances. One is the unbuttressed, extension-dominated balance,287
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8 S. S. Pegler

E(xG) ∼ (δ/2)d(xG)
2 (this result will, subject to some further approximation, recover288

the unbuttressed expression for Q given by Schoof 2007b). In the opposite limit is the289

buttressing-dominated balance, B(xG) ∼ (δ/2)d(xG)
2, which represents a distinct regime290

of grounding-line control referred to as ‘strong buttressing’ and arises in sufficiently291

narrow geometries (Pegler et al. 2013). In this regime, the grounding-line dynamics do292

not depend on the basal conditions of the ice sheet (nor indeed any of the contributions293

to the mixed total drag in the grounded region (2.3)).294

2.2. Example configurations and dimensionless model295

While the full framework specified above is more general, for the main illustrative so-296

lutions used in this paper I will make a number of specifications designed to distil the297

examples to focusing specifically on the implications of lateral stresses. First, I neglect298

the db/dx(xG) in (2.10), which I anticipate to be a good approximation for dimensional299

slopes of order 10−3 of less. I will also assume that the coefficient of basal drag C−, flow300

width w and effective lateral drag coefficient C+, are uniformly constant along the flow.301

The basal-drag and rheological exponents will be set as equal, m− = m, and I will focus302

on the examples of n = 1 and 3.303

For my illustrative examples, I will also focus on the case of a broad linear slope defined304

by305

b(x) = b0 + ax, (2.13)

where |b0| is the depth of the ocean at the reference position x = 0, and a is the bed306

slope. Positive slopes, a > 0, correspond to a bed height that increases in the direction307

of flow (also termed a reverse, or retrograde slope), as is characteristic of many regions308

of the bedrock underlying the West Antarctic Ice Sheet at large scales. Examples of309

nonlinear bed slopes involving a global maximum or global minimum are provided in the310

supplementary document.311

The input will be specified as being localised at the ice divide312

f(x) = 2Qδ(x− xD), (2.14)

where Q is the input flux into the region x > xD. It should be noted that the effects of a313

distributed net accumulation and/or loss via melting [negative f(x)] is typical across the314

extent of an ice sheet. The case (2.14) nonetheless provides a useful control condition for315

distilling the examples to considering the effects of lateral stresses independently without316

the extra effect of a variable steady-state flux q(x). An example of a large-scale distributed317

accumulation f(x) 6= 0 spanning ice divide to terminus is provided by example 4 of the318

supplementary document. The effect of distributed melting along the underside of the ice319

shelf will be considered in §6 in order to demonstrate the manner in which it can trigger320

tipping of a grounding line.321

I non-dimensionalise (2.2)–(2.7) by defining322

x ≡ Lx̃, t ≡ (L/U)t̃, (H, b, d) ≡ H(H̃, b̃, d̃), u ≡ (Q/H)ũ. (2.15)

where

H ≡

[

µ0C
m
−

(

Qm

ρg

)m+1
]

1
km

, L ≡

[

µm+2
0 Qm

ρgCm+1
−

]

1
km

, (2.16a,b)
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and km ≡ (m+1)(m+2)− 1. On dropping tildes, the governing equation (2.2) becomes

4
∂

∂x

(

µH
∂u

∂x

)

=















(1 + SH)um +H

(

∂H

∂x
+

db

dx

)

if H > d(x),

SHum + δ H
∂H

∂x
if H < d(x),

(2.17a,b)

where µ = |∂u/∂x|
m−1

. The dimensionless input condition associated with (2.14), the
regularity condition (2.5) and the frontal stress condition (2.6) become

Hu = 1 at x = xD+, (2.18)

µ
∂u

∂x
= 0 at x = xD, (2.19)

µ
∂u

∂x
=

δ

8
H at x = xC . (2.20)

where the plus subscript is used to define a limit from the positive x direction. The
evolution equations (2.2a, b) become

∂H

∂t
= −

∂

∂x
(Hu), ẋC = u(xC , t). (2.21a,b)

In addition to the positions x∞ and xC , the dimensionless model depends on two dimen-
sionless parameters:

S ≡
HC+

wC−
, δ ≡

g′

g
, (2.22a,b,c)

representing the dimensionless lateral shear-drag coefficient and the density difference,
respectively. As estimated in Pegler (2018), S = 0–10−2, with S = 0 recovering the case
of a one-dimensional marine ice sheet. The value δ = 0.1 will be assumed throughout
my analysis. The value xD = −3 × 103 will be used for my illustrative time-dependent
numerical solutions. Finally, the dimensionless form of the linear bed height (2.13) is

b(x) = −β + αx, where α ≡ (L/H)a, β ≡ |b0|/H, (2.23)

are a scaled bed slope and reference ocean depth, respectively.323

3. Construction of a grounding-line stability diagram324

This section develops the analytical methodology used to visualise the determinants325

of stability of a marine ice sheet for a given configuration. A method is developed based326

on the construction of effective stability (bifurcation) diagrams for grounding lines that327

unify steady states, the natures of their local stability (attractor versus repeller) and the328

inducement of secondary grounding within a single parameter–stability diagram.329

3.1. Steady states330

The first component of the methodology is provided by the steady-state equation (2.9a).331

In dimensionless form, along with the simplifications described in §2.2, this equation332

reads333

E[d(xG)] +B(xG, xC) =
1
2δd(xG)

2. (3.1)

For linear rheology, n = 1, the reduced forms of the resistance functions (2.9b, c) are
given by

E[d(xG)] ≈ 4d(xG)
−3, B(xG, xC) = −S(xC − xG). (3.2a,b)
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RetreatAdvance

Stable Unstable

xx

Figure 2. The relationship between the stability variable V (x) = VU [d(x)] and the ground-
ing-line thickness d for an unbuttressed grounding line (3.4). In this simplified situation, retreat
occurs if the grounding-line thickness d is larger than the critical value d0, and advance occurs
if it is less than d0, where d0 ≈ 2.345 is the universal dimensionless thickness at which any
unbuttressed steady-state grounding line occurs, VU (d0) = 0. Panels (b) and (c) show the sta-
bility variable V (x) predicted by (3.3) for cases of (a) a negative bed slope α = −2× 10−3 and
β = 2.8, and (b) the positive bed slope α = 2 × 10−3 and β = 1.4, each with zero buttressing,
illustrating stability and instability, respectively. The arrows in the insets show the direction of
grounding-line migration following perturbation from the steady state, as implied by the sign of
V (x).

For simplicity, I have here also neglected a contribution to E owing to the lateral stresses334

in the grounded region, represented by the first term in (2.3). These stresses, if comparable335

to the effect of the width-integrated basal stress have a role in controlling the magnitude336

of the thickness gradient upstream of the grounding line and, for sufficiently weak ice-337

shelf buttressing, may have some effect on the grounding line. By contrast, the lateral338

stresses in the floating region are, despite their similar absolute magnitude to the lateral339

stresses in the grounded region, fundamentally more important to ice-sheet stability via340

their leading-order control of the grounding line (Pegler 2018).341

3.2. Local stability342

A steady-state grounding line position, as predicted by (3.1) and (3.2), will either be an343

attractor (stable) or a repeller (unstable). In the context of unbuttressed grounding-line344

dynamics, a negatively sloped bedrock, b′(xG) < 0, generally results in an attractor while345

a positively sloped bedrock results in a repeller (at least subject to the simplification of346

a uniform drag coefficient which, as highlighted at the end of this subsection, can af-347

fect stability along with any other spatial parametric variation that determines E(x)).348

These basic stability results arise because an unbuttressed grounding line perturbed349
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Suppression of marine ice sheet instability 11

backwards from a steady state on a positive bed slope will increase the grounding-line350

thickness and hence the driving buoyancy force, thereby stimulating further retreat, i.e.351

a positive-feedback response to the original perturbation. Conversely, perturbation of an352

unbuttressed grounding line on a negative slope produces negative feedback and attrac-353

tion back to the original steady state. This has been argued previously on the basis of354

the relationship between grounding-line flux and thickness applicable to an unbuttressed355

grounding line and linear stability analyses (Schoof 2007a; Wilchinsky 2009; Fowler 2011;356

Schoof 2012). These conclusions do not apply to the buttressed case.357

In order to assess the stability of a general grounding line, I propose a method based358

on evaluating the function359

V (x) = E[d(x)] +B(x, xC)−
1
2δd(x)

2, (3.3)

which represents the ‘imbalance’ associated with the steady-state forces in (3.1). If360

V (xG) = 0, there is a steady state at xG. The gradient V ′(xG) will then indicate the361

nature of stability of the steady state at xG in the manner of an autonomous evolu-362

tion rule, ‘ẋ ∝ V (xG)’. To explain this, note first that the function V (xG) will indicate363

stability correctly in this way for the unbuttressed case, as I verify directly below. Its364

general functioning is then clear from the fact that the nature of an isolated steady-state365

branch across a bifurcation diagram is conserved under continuous parametric variation.366

A more rigorous proof of the functioning of V is beyond the scope of this paper but,367

to gain confidence in its functioning, I include a supplementary document with a suite368

of examples validated using time-dependent integrations, in addition to those provided369

later in the paper (figures 5 and 9).370

Because (3.3) depends purely on known analytic expressions, it affords a versatile di-371

rect assessment of steady states and their local stability that, as far as the qualitative372

question of local stability is concerned, bypasses the need for any linear stability anal-373

ysis or consideration of a flux relationship. The method applies for generalised physical374

situations described by the functions of (2.9) (with or without buttressing). Since any375

determinant of the spatial variation of E and B will change V , it follows that the spatial376

variation in x of any one of the physical parameters, including rheological variation, µ(x),377

the net accumulation/melt distributions of the ice sheet and ice shelf, f(x), calving laws378

(cf. Schoof et al. 2017), spatial variations in the coefficients of basal and lateral drag,379

C+(x) and C−(x), the flow width w(x), and the local slope b′(x), will all affect local380

stability. It is worth remarking that, as highlighted at the beginning of this subsection,381

spatial variation in the coefficient of basal drag or indeed any of the other parameters382

controlling E as defined by (2.10) could, in principle, allow for stability of a grounding383

line on a retrograde slope even in the unbuttressed case. An unbuttressed grounding384

line can therefore form stably on a retrograde slope for suitable spatial variations of the385

determinants of E.386

In order to verify that V ′ correctly indicates the nature of stability for the simplest387

example of the unbuttressed case, B = 0, note that, in this case, (3.3) simplifies to388

V (x) = E[d(x)] − 1
2δd(x)

2 ≡ VU [d(x)]. (3.4)

Uniquely in the unbuttressed case, V is thus a pure function of the flotation thickness389

d(x). The plot of VU (d), given in figure 2(a) for n = 1, shows that a steady state occurs390

wherever the grounding-line thickness equals d = d0 ≈ 2.345. The plot illustrates that391

V ′
U (d) < 0. Thus, on combining this result with the chain rule V ′(x) = d′(x)V ′

U (d),392

it follows that sgn [V ′(x)] = sgn [b′(x)], confirming that the steady state is stable if393

b′(xG) < 0 and unstable if b′(xG) > 0. The value of V (x) evaluated for examples of a394

negative and a positive bed slope are shown in figures 2(b, c), confirming a stable and395
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unstable state, respectively, in agreement with the time-dependent results of panels (a)396

and (c) of figure 3 in Pegler (2018).397

In addition to providing a clear visualisation of the direction of migration of a perturbed398

grounding line, the function V (x) given by (3.3) provides physical insight into the general399

control of stability. If a term comprising V decreases with x then the effect it represents400

contributes towards stabilisation, and vice versa. For example, buoyancy, −(δ/2)d(x)2,401

creates a stabilising, negative-feedback effect if b′ < 0 and a positive-feedback effect if402

b′ > 0. The extensional resistance E[d(x)] = 4d−3 given by (3.2a) is, like buoyancy, also403

a decreasing function of d and will therefore have a qualitatively similar effect on pro-404

moting negative versus positive feedback as the buoyancy force. However, it should be405

noted that for n = 3, E[d(x)] = 4d(x)−0.25 is only very weakly dependent on x and thus406

has practically no effect on the control of local stability. The buttressing force B(xG, xC),407

given by (2.9c) or (3.2b), is, in contrast to the functions representing the buoyancy force408

and extensional stress, always a decreasing function of the grounding-line position xG (a409

longer ice shelf generates more buttressing), and thus has an unconditionally stabilising410

effect (this is true at least for the case of a prescribed xC assumed here; this relationship411

is not necessarily as straightforward for cases where xC is controlled implicitly by a condi-412

tion based on a critical thickness, H = HC (Schoof et al. 2017)). If b′(x) < 0, buttressing413

will reinforce the stabilising effect of buoyancy on a negative slope. For a positive slope,414

b′(xG) > 0, buttressing and buoyancy act in opposition: retreat of the grounding line will415

increase both buoyancy and buttressing. Thus, if the increase in buttressing following a416

retreat of a grounding line exceeds the increase in buoyancy critically, then the positive417

feedback response, which would occur in the absence of buttressing, will be suppressed.418

3.3. Secondary grounding419

The final step of constructing the stability diagram is to determine the grounding-line
positions x for which the steady-state profile of the ice shelf produced would experience
secondary grounding. As described in §6 of Pegler (2018), there are two kinds of secondary
grounding. Either the ice shelf is predicted to penetrate the bedrock immediately at the
grounding line (type I) or further downstream (type II). The critical boundary of the
region of a parameter space in which secondary grounding occurs is given by the critical
satisfaction of the cotangency conditions between the ice shelf and the bedrock at the
grounding line,

H(xG) = d(xG), H ′(xG) = d′(xG). (3.5a,b)

This condition represents both the critical transition between no secondary grounding420

and type I, as well as the transition between type I and type II. My numerical ap-421

proach for determining these transitions is detailed in Pegler (2018), along with the more422

straightforward analytical approach available for n = 1.423

For grounding-line positions invalidated by secondary grounding, the stability variable424

(3.3) fails to apply because the expression for the buttressing force (3.2b) is based on an425

assumption of continuous flotation between the grounding line and the calving front. It426

will be demonstrated later that the critical occurrence of secondary grounding leads to427

a surprising effect of unconditionally reversing tipped grounding-line retreat, with the428

direction of grounding-line migration indicated by (3.3) being directly overridden.429

4. The critical transitions into and from marine ice sheet instability430

Lateral stresses impact ice-sheet stability in three fundamentally distinct ways. One431

is to introduce the buttressing force B(xG, xC) directly into the balance equation (3.3).432

Page 12 of 31
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Secondary grounding

Figure 3. The stability diagram for the negative slope α = −2 × 10−3, reference ocean depth
β = 2.8 and calving position xC = 0, shown as a continuous variation of the dimensionless lateral
shear drag coefficient S, illustrating its variation from the unbuttressed case S = 0 to buttressed
cases S > 0. The colour scale indicates the sign of the stability variable V (x) evaluated using
(3.3). Green represents grounding-line advancement (V > 0) and red represents retreat (V < 0).
The solution to the steady-state equation (3.1) is shown as a solid curve. The dark green region
with a dotted outline represents grounding-line positions for which the steady-state ice shelf
produces secondary grounding. The portrait illustrates the existence of a stable steady state for
all values of S.

The second is to induce secondary grounding by thickening the ice shelf. A third is the433

contribution to the total drag in the grounded region (2.3). This section will focus on434

demonstrating the first two of these effects and to demonstrate their potential to provide435

the leading-order control of the onset and reversal of tipped grounding-line retreat (ma-436

rine ice sheet instability). The analysis is divided into three subsections – one addressing437

a negative bed slope, and two addressing a positive slope – which account for all the438

qualitatively different regimes of stabilisation that are possible for a broad line slope.439

4.1. A negative bed slope440

For a negative bed slope, α < 0, buoyancy has a stabilising effect, which is reinforced441

by ice-shelf buttressing. To illustrate this explicitly, I construct the stability diagram for442

the example of α = −2 × 10−3, β = 2.8 and xC = 0, as a continuous variation against443

the drag parameter S, showing its variation from the unbuttressed case S = 0 to the444

buttressed cases S > 0. The result is shown in figure 3, where the colour indicates the445

sign of the stability variable V (x) evaluated using (3.3): red represents retreat (V < 0),446

green represents advance (V > 0). The steady-state solution to (3.1) is shown as a solid447

curve. The region of the space for which the steady-state ice shelf produces secondary448

grounding is shown coloured darker with a dashed outline. The plot confirms that a449

stable steady state arises for all values of S. The exclusive effect of lateral stresses is to450

cause the steady state to lie further downstream.451

It should be noted that the region in which secondary grounding is predicted only452

overlays the region in which V > 0. Since secondary grounding can only increase the453
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Runaway retreat

Figure 4. The stability diagram for the positive bed slope α = 2× 10−3, reference ocean depth
β = 1.4 and calving position xC = 0, shown as a continuous variation of S. The colour scale
indicates the sign of the stability variable V (x) evaluated using (3.3). Green represents ground-
ing-line advancement (V > 0) and red represents retreat (V < 0). The dark green region with
a dotted outline represents the region in which secondary grounding is predicted to occur in
steady state. As confirmed by the numerical result of figure 5(b)), the instance of secondary
grounding overrides the direction of stability indicated by (3.3), with the result of producing
unconditional grounding-line advance. The solution to (3.1) is shown as a solid curve, and as a
dotted curve in the region of secondary grounding. For values of S < S∗(α, β) ≈ 6.9×10−4 , there
is a single unstable steady state. Above the critical value, S > S∗(α, β), secondary grounding
invalidates the steady state and completely suppresses the possibility of runaway retreat, in cor-
respondence with the numerical results of figure 5(b) below. The initial grounding-line positions
for the solutions of figure 5(a) are shown as crosses. That of figure 5(b) is shown as a plus sign.

buttressing force at the primary grounding line, any secondary grounding will simply454

reinforce the prediction of the stability variable (3.3) that the grounding line advances.455

Therefore, the dark-green region can, in this case, assuredly produce grounding-line ad-456

vancement; a grounding line initiated in the dark green region will advance into the457

lighter green region and on to the steady state.458

4.2. A positive bed slope459

For a positive bed slope, α > 0, the stabilising effect of ice-shelf buttressing instead460

competes against buoyancy, creating richer dynamics. Recall from above that any un-461

buttressed steady-state grounding line (S = 0) for α > 0 is locally unstable and occurs462

at the critical thickness d0, i.e. at the dimensionless ocean depth463

β0 = d0(1 − δ) ≈ 2.11. (4.1)

If β < β0, an unstable steady state for S = 0 therefore occurs at the position xG =464

(β − β0)/α. If instead β > β0, no such steady state exists and, in accordance with the465

prediction of (3.4) that V < 0 if |b| > β0, an unbuttressed grounding line would retreat466

unconditionally. Thus, the form of the stability diagram differs qualitatively depending467

on whether β is greater than or less than β0.468
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4.2.1. The case β/β0 < 1469

Beginning with the case β/β0 < 1, I show the continuous variation of the stability470

diagram with S constructed for α = 2 × 10−3, β = 1.4 < β0 and xC = 0 in figure 4.471

The initial effect of introducing lateral stresses is to cause the unstable steady state to472

move upstream. This produces a more secure ice-sheet configuration because a grounding473

line must be displaced further upstream in order for runaway retreat to trigger. The474

hysteresis effect discussed previously in the unbuttressed context (Schoof 2007a) can475

therefore apply to a buttressed grounding line. However, the grounding line must be476

displaced further upstream in order for positive-feedback retreat to instigate. At the477

critical drag parameter S∗ ≈ 6.9 × 10−4, secondary grounding abruptly invalidates the478

consistency of the unstable steady state predicted by (3.1). The region in which secondary479

grounding is predicted in steady state is shown as a dark green region outlined by a thick480

dotted curve. The invalidated steady-state solution to (3.1) is shown as a thin dotted481

curve extended into this region. For S < S∗, collapse of the ice sheet occurs conditionally482

on the grounding-line position lying upstream of the unstable steady state (similarly to483

the unbuttressed case, S = 0). For S > S∗, the question of grounding-line migration is484

complicated fundamentally by the potential interference of secondary grounding. For the485

case of negative bed slope considered above, the qualitative effect of secondary grounding486

on the direction of grounding-line migration was not a point of uncertainty because487

secondary grounding simply reinforces the prediction of advance already indicated by488

the stability variable, V > 0. In the present case, secondary grounding instead covers489

a considerable region for which the stability variable predicts retreat (V < 0) and it is490

therefore possible – in principle – for secondary grounding to suppress the grounding-line491

retreat that would occur in this situation if the ice shelf was to remain fully floating.492

To investigate the possible interference of secondary grounding, I conducted time-493

dependent numerical calculations of the full equations (2.17)–(2.21) for values of S which494

straddle the two side of the critical threshold S∗. The Lagrangian numerical scheme ap-495

plied is detailed in Pegler (2018). The computations were initialised using fully developed496

grounded and floating regions represented by the uniform-flux solutions to (2.17). The497

ice-divide position is chosen as xD = −33. For S > S∗, the secondary grounding implies498

that the steady-state ice shelf produced at this position would intersect the bedrock; for499

these cases, I initialised the shelf using the steady-state profile (derived in Pegler (2016)500

and reviewed by (5.1) in Pegler (2018)) clipped along the bedrock, leaving a shallow gap501

initially between the base of the ice shelf and the bedrock.502

As a benchmark, I first consider the marginally subcritical value of S = 6.5×10−4 < S∗,503

for which secondary grounding is not predicted in steady state, and corroborate the di-504

rection of grounding-line migration predicted by the sign of the stability variable (3.3).505

The evolutions of a grounding line initiated just upstream and just downstream of the506

unstable state are shown in figure 5(a). These initial positions are indicated by crosses in507

figure 4. The evolutions confirm the onset of a continuous advance or retreat, thus verify-508

ing the direction of grounding-line migration predicted by the sign of V . The results show509

that a buttressed grounding line will undergo runaway tipped retreat if the buttressing510

is insufficient to outweigh the destabilising effect of buoyancy. An apparent oscillation in511

xG(t) for the retreating example represents some periodic secondary contacts between512

the ice shelf and the bedrock. Despite these contacts, collapse of the ice sheet ultimately513

occurs.514

Next, I consider the marginally supercritical value S = 7.5×10−4 > S∗. The grounding-515

line evolution for this example is shown in figure 5(b). Here, I initiated the grounding516

line far upstream into the (dark green) region where retreat is predicted in the absence517
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Advance

Retreat Unstable steady state

105

Unconditional advance

(a)

(b)

t

xG

xG

S = 6.5× 10−4 < S∗

S = 7.5× 10−4 > S∗

Figure 5. Grounding-line evolutions xG(t) predicted by the numerical solution to (2.17)–(2.21)
for the positive bed slope α = 2 × 10−3, reference ocean depth β = 1.4, ice-divide position
xD = −3000, and (a) a subcritical drag parameter S = 6.5 × 10−4 < S∗ and (b) the slightly
larger, supercritical value S = 7.5 × 10−4 > S∗. The evolutions in (a) illustrate advance and
retreat either side of the unstable steady state, confirming the direction of migration predicted
by the stability variable (3.3). For (b), the grounding line is initialised deeply into the region
where the stability variable (3.3) predicts retreat, V < 0. Nevertheless, a net advance of the
grounding line occurs as a consequence the additional buttressing generated by basal stresses
in a ‘marginal-flotation zone’ in front of the grounding line. The intermittent ‘grazing’ between
the ice shelf and the bedrock in this region produces an oscillation in xG(t), which is illustrated
by the enlargement in the inset of (b).

of secondary grounding, V < 0, at xG(0) = −2.6 × 103 (shown as a plus sign in figure518

4). In direct contradiction to the sign of V , the grounding line undergoes a persistent519

net advancement. This conclusion stands in remarkable contrast to the runaway retreat520

occurring for the slightly smaller, marginally subcritical value S = 6.5× 10−4 shown in521

figure 5(a). The retreat is suppressed by added buttressing generated by intermittent con-522

tacts between the ice shelf and the bedrock; the periodic surges in the buttressing force523

generated by the contacts produces the oscillation in xG(t) shown in the inset of figure524

5(b). The prediction of secondary grounding in steady state therefore overrides the pre-525

diction of grounding-line retreat indicated by the sign of the stability variable (3.3), with526

the result of unconditional advance. The buttressing arising from lateral stresses alone,527

as predicted by (3.2b) and assumed in evaluating (3.3), considerably underestimates the528
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effective buttressing force generated over time as a consequence of intermittent grounding529

of localised sections of the ices shelf over an extended region in front of the grounding530

line. The criterion for secondary grounding, S > S∗(α, β), creates a sharp threshold531

separating conditions producing runaway grounding-line retreat from those resulting in532

unconditional advance. The hysteresis effect possible for S < S∗ is thereby eliminated,533

leading to complete suppression of grounding-line retreat.534

4.2.2. The marginal-flotation regime535

The intermittent contacts between the ice shelf and the bedrock produce a distinc-536

tive flow regime referred to as ‘marginal flotation’. The regime is characterised by slight537

modulations in thickness that produce temporarily grounded regions over a well-defined538

interval intermediate to the fully grounded and fully floating regions. The overall struc-539

ture of the flow is illustrated in figure 6(a). Here, the grounded regions are shown by540

blue shading, illustrating the firmly grounded region upstream, as well as a patch of541

temporarily grounded ice further downstream. A plot of H(x, t) − d(x) in figure 6(b)542

clearly indicates the three-component structure of the ice sheet. A fully grounded region543

upstream, wherein H > d, a fully floating region downstream, wherein H < d, and an544

intermediate zone in which the thickness straddles the flotation thickness,545

H ≈ d(x) (marginal flotation). (4.2)

This region is referred to as the ‘marginal-flotation zone’.546

The marginal-flotation zone represents a tertiary component of a marine ice sheet, ad-547

ditional to the fully grounded and fully floating regions. In essence, it replaces the notion548

of a grounding line to a grounding area in which the transition between floating and549

grounded regions takes place over an extended region. It is possible that certain regions550

of the WAIS may lie in this marginal-flotation state, which may appear as distributed551

grounding zones or ice planes. Since the present-day WAIS is likely to be in a state of552

decline, such regions may not be widespread; as noted above, the development of this553

region is a hallmark of a grounding line recovering from tipped retreat. However, the554

prediction is a fundamental feature of ice-sheet dynamics that may be important in un-555

derstanding their formation on time scales of glaciation and potential to recover following556

destabilisation.557

The patterns of grounding and detachment in the marginal-flotation zone, as predicted558

by the numerical solution, take the form of travelling waves, which begin at the down-559

stream end of the marginal-flotation zone and propagate to the ‘primary’ grounding line560

at the upstream end of the marginal-flotation zone. The merging events of the grounded561

wave to the fully grounded region at the primary grounding line produce the oscillations562

shown in figure 5(b). The phenomenon of intermittent grounding represents a remarkable563

feature of the model, namely, that once the interior of the ice shelf grounds, the switch564

in the governing equation (2.17) leads to a new force balance that immediately favours565

its detachment from the base. Reducing the time step was thus found to increase the566

frequency of the switches and hence the frequency of the grounded pulses. Nonetheless,567

the time-averaged predictions of the model (averaged over a few periods of the numerical568

oscillation, for example) is unchanged to leading-order in small time step, indicating that569

the long-term migration predicted is physically meaningful.570

In order to investigate the structure of the marginal-flotation zone, I evaluate the571

time-averaged indicator function572

Gr(x, t) =
1

2T

∫ t+T

t−T

1{H(x,τ)>d(x)} dτ, (4.3)
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'Grazing'

Intermitent secondary grounding

Figure 6. Panel (a) shows the three-component structure of a marine ice sheet, predicted by the
numerical solution to the full system (2.17)–(2.21) for the example α = 2× 10−3, β = 1.4 and
xD = −3000, shown at time t = 7.5×104 . Grounded sections of the flow are shown shaded. Panel
(b) shows the difference H(x, t)− d(x), which distinguishes the three components of the marine
ice sheet: the fully grounded region, H > d, the fully floating region, H < d, and, connecting
them, the marginal-flotation zone, through which the thickness straddles the flotation thickness,
H ≈ d. The black cross and red circle mark the edges of the marginal-flotation zone.
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Figure 7. The evolution of the grounding number Gr(x, t) defined by (4.3), which measures
the proportion of time that a region of the ice sheet lies grounded over a time scale of T = 500.
The fully grounded region is represented by Gr = 1, the fully floating region by Gr = 0, and
the marginal-flotation zone by 0 < Gr < 1. The end of the marginal-flotation zone is illustrated
by a dotted curve. The extent of the zone reduces over time until it vanishes at t ≈ 1.65 × 105

to leave a sharp transition between fully grounded and fully floating regions. Surprisingly. the
transition from floating to grounding does not occur monotonically, with a local minimum in
Gr indicated by the relatively lighter band just downstream of the grounding line.
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Runaway retreat

Stable

Figure 8. The stability diagram for the positive bed slope α = 2×10−3 and the reference ocean
depth β = 2.8 shown as a continuous variation of the drag parameter S. Colour indicates the
value of the stability variable V (x) defined by (3.3) and the dark green region with a dashed
outline represents the region of secondary grounding. Grounding-line retreat occurs uncondi-
tionally below a critical value ST (α, β) = 1.369×10−3 . At S = ST , two steady arise (one stable,
the other unstable), as illustrated in the enlargement. The circular markers in this inset indicate
the initial grounding-line positions for the computations following ice-shelf collapse of figure 9.
At the slightly larger value S∗(α, β) = 1.382 × 10−3, secondary grounding invalidates the un-
stable steady state and suppresses the possibility of runaway grounding-line retreat. Above S∗,
unconditional stabilisation towards the steady state occurs.

where the integrand is equal to unity if the ice sheet is grounded and zero if it is floating,573

and T is a specified time scale assumed smaller than the time scales on which the primary574

grounding line migrates. The variable Gr(x, t) quantifies the proportion of time that a575

given point on the ice sheet lies grounded over the time interval [t−T, t+T ]. For a fully576

grounded or floating region, Gr equals unity and zero, respectively, and intermediate577

values represent marginal flotation. The value of Gr(x, t) is shown as a density plot578

in figure 7(a) for the example of figure 5(b) and T = 500. The plot shows that the579

upstream boundary of the marginal-flotation zone, i.e. the ‘primary’ grounding line,580

gradually advances while the downstream boundary remains approximately constant.581

Perhaps surprisingly, the transition from Gr = 1 to 0 does not occur monotonically; there582

is a band of relatively less grounding in front of the primary grounding line compared to583

the interior of the marginal-flotation zone (this structure mirrors that of the thickness584

profile of a confined ice shelf, which involves a region of rapid thinning in an extensional585

boundary layer in front of the grounding line; Pegler 2016). The marginal-flotation zone586

vanishes at t = 6.5×104, with a sharp transition between the fully grounded and floating587

regions persisting subsequently.588

4.2.3. The case β/β0 > 1589

I now address the qualitatively different case β > β0. The stability diagram for590

α = 2× 10−3 and the deeper reference ocean depth β = 2.8 > β0 is shown in figure591

8. In contrast to the case β < β0, no steady state is possible if S = 0, in which case an592
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unbuttressed grounding-line would retreat unconditionally. As S is increased, this con-593

clusion continues to hold up to a critical value ST (α, β) ≈ 1.369 × 10−3, whereat two594

steady states – one stable, the other unstable – appear at xT ≈ −1330. As S is increased595

further, the stable state moves downstream and the unstable state moves upstream. At596

a slightly larger value S∗ = 1.382× 10−3, secondary grounding abruptly invalidates the597

unstable steady state, and completely covers the upstream region for which V < 0. A598

single, stable steady state then remains. In regard to the contributions to the terms in599

the numerator of (3.3), the critical value ST represents the threshold at which the stabil-600

ising effect of ice-shelf buttressing critically cancels the destabilising effects of buoyancy601

and extensional stress, creating a new stable steady-state branch along the interior of a602

positive bed slope.603

The branch of stable steady states is a new property of the stability diagram compared604

to β < β0 that is inherently associated with the stability mechanism generated by ice-605

shelf buttressing. A conclusion from §4.2.1 illustrated in figure 4 is that there is no stable606

steady state possible if β < β0 for all values of S. By contrast, the stable steady states607

arising here for β > β0 and S > ST are a robust long-term regime, indicating that the608

removal of such states as a consequence of parameter variation (e.g. reduction of the609

upstream flux Q) provides the trigger to tipped retreat of a buttressed marine ice sheet.610

A key question is: how might a runaway grounding-line retreat be triggered if a marine611

ice sheet lies on the stable branch? One plausible trigger is the large-scale collapse of the612

ice shelf, which abruptly removes the buttressing force, and may provoke instability if613

the ice shelf fails to recover sufficiently quickly. Another mechanism for destabilisation614

is for parameters, such as the calving position or melt rate, to vary in time and cause615

a transition from supercriticality, S > ST (α, β), to subcriticality, S < ST (α, β). The616

stability diagram of figure 8 indicates that such a transition would involve an initially617

quasi-steady migration along the stable branch followed by a sudden onset of runaway618

grounding-line retreat upstream of the critical ‘cliff edge’ grounding-line position xT .619

In order to investigate the first possibility of destabilisation from ice-shelf collapse, I620

ran a series of time-dependent computations initialised at a selection of positions along621

the stable branch. In each case, I removed the ice shelf completely at t = 0. Subsequently,622

the front of the ice shelf was evolved with the flow rate until it recovered to the position623

xC , beyond which time the calving front was again imposed at xC . It was found that the624

grounding line recovers in all cases, with the exception of a range of S very close to the625

critical value ST ≈ 1.369. The results for two marginally supercritical critical values of626

S given by S = 1.370 × 10−3 and 1.380 ×10−3 are illustrated in panels (a) and (b) of627

figure 9, respectively. For case (a), the removal of the ice shelf leads to a relatively sudden628

retreat of the grounding line to a minimum position at t ≈ 1500. Near this minimum,629

the front of the ice shelf reaches its former calving position, indicated by a filled circular630

marker. Following this, the grounding line remains upstream of the unstable steady state631

and long-term recovery fails. For case (b), the initial retreat of the grounding line instead632

remains downstream of the unstable steady state indicated by a dashed line, which is633

consistent with a long-term recovery to the original steady state. It should be noted that634

the range of values of S for which recovery fails is extremely limited to situations very635

close to ST : all values of S > 1.001ST undergo a complete recovery.636

In light of the results above, I hypothesise that the destabilisation of a marine ice637

sheet from a buttressed steady state is more likely to arise from parametric variation638

in the properties of the ice sheet inducing a transition from supercriticality S > ST to639

subcriticality S < ST . This transition has the character of a ‘cliff-edge’, with robust640

stability occurring for S > ST to a sudden loss of stability occurring for S < ST .641

To illustrate this mode of destabilisation, I ran a computation in which the parameter642
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(a) (b)

xG

tt

Figure 9. Grounding-line evolutions following the collapse of the ice shelf for α = 2 × 10−3,
β = 2.8 and xD = −3 × 103 for (a) S = 1.37 × 10−4 and (b) S = 1.38 × 10−4, obtained from
the numerical solution of the full equations (2.17)–(2.21). Each computation is initialised from
the corresponding stable steady state, corresponding to the positions of the circular markers in
the inset of figure 8. In case (a), the grounding line initially retreats upstream of the unstable
steady state and ultimately fails to recover to the original steady state. The time at which the
front of the ice shelf reaches its former calving position, xC(t) = 0, is indicated by a filled circle.
In case (b), the grounding line instead remains downstream of the unstable steady state and a
long-term recovery ensues. The results show that an ice-shelf collapse generally leads to total
restoration of the marine ice sheet for even marginally supercritical values of S > S∗.

Collapse
Tipping point

Stable

Stable steady-state
branch

Runaway retreat

xG

t
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tT

Figure 10. The grounding-line evolution xG(t) following initialisation at the stable steady state
for S = S0 = 2× 10−3 > ST , α = 2× 10−3, β = 2.8, and xD = −3× 103 and a gradual ramping
down of the lateral drag parameter S = S(t) to the subcritical value S = 10−3 < ST linearly over
a time scale of t = 106. The plot illustrates the initial quasi-steady migration along the stable
branch given by the solution to (3.1) shown as a dotted blue curve, followed by the onset of a
runaway grounding-line retreat beyond the ‘cliff-edge’ at which the steady branch terminates.
The critical transition to instability occurs once S(t) > ST ≈ 1.36× 10−3 or t > tT ≈ 6.3× 105.

S = S(t) is ramped down linearly from the supercritical value S = 2× 10−3 > ST to the643

subcritical value 10−3 < ST over a time scale of t = 106, shown in figure 10. Initially,644

the grounding line retreats in proximity to the stable branch of steady states shown by645

a blue dotted curve in a quasi-steady manner, representing ‘stable’ retreat. Once the646

threshold ST is passed at t = tT ≈ 6.3 × 105, a relatively rapid ‘tipped’ grounding-line647

retreat ensues, culminating in detachment of the ice sheet a relatively short time later at648

t ≈ 8.4× 105 whereat xG = xD. More than 80% of the retreat with respect to the initial649
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position occurs for t > tT , confirming that the critical value ST represents a tipping650

point. Thus, while the ice sheet is totally secure for even marginally supercritical values651

of S > ST (against even a full ice-shelf collapse), security vanishes completely below the652

threshold ST .653

5. Thresholds for tipping and recovery of a marine ice sheet654

The general conditions for stability of a marine ice sheet on a retrograde slope are shown655

in figure 11. Here, I plot the critical dimensionless lateral drag coefficients, S∗(α, β) and656

ST (α, β), for the illustrative case α = 2×10−3 as a function of β, which provide the critical657

boundaries of the possible regimes. For S > ST , the inducement of secondary ground-658

ing guarantees the stability of the ice sheet (the green region). For S < S∗, secondary659

grounding cannot suppress the retreat, and the stability depends on the dimensionless660

ocean depth β. In this case, if β < β0 ≡ (1−δ)d0 (the yellow region), runaway grounding-661

line retreat occurs if and only if the grounding line lies upstream of the unstable steady662

state. For β > β0, runaway grounding-line retreat is guaranteed (the red region) with663

the exception of a very narrow band ST < S < S∗ of values where retreat is conditional664

on the grounding line lying upstream of the unstable steady state. The plot shows that665

the transition to tipped retreat from a buttressed steady state generally occurs abruptly666

across a parametric threshold. For the unbuttressed case, a transition to runaway retreat667

can occur only if β changes from less than β0 to greater than β0. A transition from668

buttressed stability also depends on a transition from S > ST to S < ST , representing669

a stability criterion that is entirely distinct from the transition associated with unbut-670

tressed MISI. Subsequent recovery of the grounding line depends on S increasing to the671

slightly larger value S∗ & ST .672

For a general topography b(x) and calving position, the ‘tipping point’ critical values
of S can be defined by the functionals

ST [b, xC ] ≡ min
x

{S : (3.1) holds}. (5.1)

S∗[b, xC ] ≡ min
x

{S : (3.5) holds}. (5.2)

These represent the minimum value of S for which a stable steady state exists, and the673

minimum value of S such that secondary grounding occurs in steady state, respectively.674

The stability of the ice sheet is critically removed once S drops below ST . In practise, it is675

possible for there to be multiple localised tipping points (each a saddle-node bifurcation),676

and these will be illustrated by the stability diagram constructed for a given scenario. In677

such cases, transitioning across a tipping point may cause the grounding line to migrate678

to a new steady state upstream. The value of (5.1) represents the final tipping point679

below which the system will continue to retreat without subsequently stabilising towards680

a new steady state.681

The plot of figure 11 indicates that the two critical values ST and S∗ are numerically682

almost coincident. This coincidence occurs because both values approximate the location683

where the universal profile of the ice shelf intersects the bedrock (Pegler 2018). In order684

to confirm that S∗ and ST are approximately coincident in general, I plot these functions685

for a range of bed slopes α = 2 × 10−4, 2 × 10−3, 2 × 10−2, in figure 12 (spanning three686

orders of magnitude). The plot shows that ST (solid) and S∗ (dotted) practically coincide687

in each case. Note that ST is only defined for β > β0 because it represents the critical688

turning point of the branch of stable steady states, which only exists for β > β0.689

It should be noted that there is a special region of the parameter space, S < S0(β),690

for which the calving front of the ice shelf itself is predicted to penetrate the bedrock691
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Figure 11. Regime diagram illustrating the conditions for stability of a buttressed marine ice
sheet on a retrograde slope across the space of dimensionless reference ocean depth β and lateral
drag coefficient S. The dimensionless slope α = 2×10−3 is illustrated, and is representative of the
general case. If S > S∗ (green), the system is guaranteed to remain stable for any dimensionless
ocean depth. If S < S∗ and β < β0 ≈ 2.345 then stabilisation is contingent on whether the
grounding line lies downstream of the unstable steady state (yellow). If S < S∗ and β > β0 then
then is a very narrow range ST < S < S∗ for which stability is also contingent on the grounding
line lying downstream of the unstable steady state (yellow). Otherwise, runaway grounding-line
retreat is guaranteed (red). The approximation for the critical tipping-point value of S∗ given
by (5.5) is shown as a line of circular markers. The critical value of S0 given by (5.3) for which
the calving front is predicted to contact the bedrock for S < S0 is shown as a dotted black
curve. The arrows indicate the two different pathways for instigation of instability, as given by
the two criteria (5.7) and (5.8).

(as opposed to the interior to the ice shelf). For these special situations, the critical692

cotangency conditions for secondary grounding (3.5) are not applicable and, instead, the693

condition for secondary grounding is HC > β. Using the analytical prediction for the694

calving-front thickness for n = 1, namely, HC = κ(S/δ2)1/4, where κ ≈ 1.502 (Pegler695

2016), I determine this critical value as696

S0 = δ2{β/[κ(1− δ)]}4, (5.3)

which is shown by the thin dotted curves in figures 11 and 12. The value S0 represents697

the termination of the threshold value S∗ for which cotangency is possible, as illustrated698

figure 12.699

To gain analytical insight into the nature of the buttressed stability criterion S >700

S∗(α, β), and its parametric form, I determine an analytical approximation for S∗(α, β).701

As discussed in Pegler (2018), the critical cotangency condition for secondary grounding702

(3.5) is given approximately by the strong-buttressing limiting balance of (3.1), namely,703

1
2δd(xG)

2 ≈ B(xG, xC). (5.4)
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Figure 12. The critical values of the dimensionless lateral shear drag coefficients, ST (solid black
curve) and S∗ (dotted blue curve), representing the terminus of the stable branch of steady
states and of the instance of secondary grounding, respectively, plotted against the reference
ocean depth β for bed slopes α = 2 × 10−4, 2 × 10−3and 2 × 10−2, spanning two orders of
magnitude. The plot illustrates the approximate equivalence of ST and S∗ across the complete
parameter space. The critical dimensionless ocean depth β0 for which the stable branch exists
for β > β0 is shown as a vertical dashed line. The critical drag coefficient S0 for which the
calving front of the ice shelf is predicted to contact the bedrock is shown as a thin dotted curve,
and provides the minimum of S∗ for each value of α.

Substituting (3.2b) into (5.4), and rearranging for S, I determine the threshold value

S∗ ≈ min
x

[

1
2δd(x)

2/(xC − x)
]

, (5.5)

= 2δ(1− δ)−2αβ (5.6)

for the linear bedrock. The analytical approximation (5.6) is shown as a line of circular704

markers in figure 11 and is confirmed to provide excellent agreement with the numerical705

result. The result implies a near linear relationship between S∗ and the basal slope α and706

the reference depth β.707

The result of (5.6) yields an analytical condition for grounding-line stability, S <
S∗(α, β). A transition to tipped retreat will therefore occur, for example, if the flux
Q reduces sufficiently for the threshold S = S∗ to become crossed. In discussing the
critical transitions from a stable ice sheet to tipped retreat, I henceforth assume that
the topography downstream of the reference position x = 0 slopes downwards, such that
there is a topographic maximum at x = 0 and β is the minimum ocean depth. For
the context of an unbuttressed grounding line, a transition from a stable configuration
on the downwards slope for x > 0 to a positive slope for x < 0 occurs critically once
the dimensionless reference depth β drops below the value β0. In the general buttressed
context, there are instead two distinct criteria necessary to trigger instability in this
configuration, namely, both β > β0 and S < ST . In their dimensional forms, these
criteria read

Q <
ρg

µ0

[

δµ0

8C−

(

|b0|

1− δ

)5
]

1
2

(tipping criterion 1), (5.7)

Q <
2ρg′a|b0|w

(1− δ)2C+
(tipping criterion 2), (5.8)

respectively. These two distinct necessary criteria for transitioning to tipped grounding-708
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Figure 13. Regime diagram illustrating the conditions for stability of a buttressed marine ice
sheet on a retrograde slope across the space of dimensionless reference ocean depth β and lateral
drag coefficient S for the power-law case n = 3. The diagram is the power-law analogue of figure
11. The dimensionless slope α = 2×10−4 is illustrated, and is representative of the general case.
If S > S∗ (green), the system is guaranteed to remain stable for any dimensionless ocean depth.
If S < S∗ and β < β0 ≈ 2.345 then stabilisation is contingent on whether the grounding line
lies downstream of the unstable steady state (yellow). If S < S∗ and β > β0 then then is a very
narrow range ST < S < S∗ for which stability is also contingent on the grounding line lying
downstream of the unstable steady state (yellow). Otherwise, runaway grounding-line retreat is
guaranteed (red). The approximation for the critical tipping-point value of S∗ given by (6.4) is
shown as a line of circular markers. The critical value of S0 given by (6.3) for which the calving
front is predicted to contact the bedrock for S < S0 is shown as a dotted black curve.

line retreat are illustrated by the arrows in the regime diagram of figure 11. Importantly,709

either one can provide the critical threshold for tipping, and each represents a different710

pathway in parameter space resulting in runaway retreat. For an unbuttressed grounding711

line, λ+ = ∞ and criterion 2 is automatically satisfied. The only criterion for transition712

to instability is then criterion 1, which represents the threshold at which the thickness713

necessary for an unbuttressed steady-state grounding line to exist decreases below the714

minimum flotation thickness |b0|. Criterion 2 introduces a distinct threshold representing715

the condition for the destabilising effect of buoyancy to critically outweigh the stabilising716

effect of ice-shelf buttressing. It is interesting that for S < S∗(β0), only criterion 1 is717

necessary for tipping. Over this region of the parameter space, the buttressing force,718

while present, therefore plays no role in controlling the onset of tipping.719

6. Tipping thresholds controlled by ice-shelf calving and melting720

To this point, I have illustrated the onset of tipped retreat by variation of the di-721

mensionless lateral shear drag coefficient S, a parameter grouping that is dependent in722

particular on snowfall accumulation Q and channel width. Here, I will demonstrate other723

natural modes of transitioning to tipped retreat, namely, the retreat of the calving front724
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of the ice shelf xC and an increase in the net rate of melting along the base of the ice725

shelf, −f(x), which will each erode the buttressing force generated by the ice shelf. The726

dynamics of a grounding line is, via the buttressing force, sensitive to both the melt-rate727

distribution and the control of its calving position (e.g. Dupont & Alley 2005; Gagliardini728

et al. 2010; Nick et al. 2010; Gudmundsson et al. 2012; Gudmundsson 2013; Favier et al.729

2014; Schoof et al. 2017). In particular, the possibility of a stable grounding line on a730

retrograde slope depends sensitively on the choice of calving model and its underlying731

parameters (Schoof et al. 2017).732

For illustrating the critical tipping points associated with changes in calving position
and melt rate, I will first confirm that the same qualitative features of the stability–
regime diagram of figure 11 also apply for the shear-thinning power-law exponent n = 3.
Thus, I write the expressions for E and B given by (2.10) and (2.11), which take the
dimensionless forms

E[d(xG)] = 4d(xG)
(n2−3n−1)/n2

, (6.1)

B(xG) =
δ

2

{

[

N

δ

∫ xC

xG

Sq(x′)1/ndx′ +HN
C

]2/N

−H2
C

}

, (6.2)

where N ≡ (n + 1)/n, H̃C ≈ κη, η ≡ δ−1/NS1/(nN2), q = 1 −
∫ x

xG
M(x) dx, M(x) ≡733

−f(x)L/Q is the dimensionless melt-rate distribution, and I have again neglected the734

contribution due to db/dx in E.735

The regime diagram constructed for n = 3, α = 2 × 10−4, zero melting M = 0 and736

xC = 0 is shown in figure 13. The plot represents the power-law analogue of figure 11.737

As in the Newtonian case, there is a range of shallow slopes for which S < S0(β), where738

S0(β) = δn+1 (β/[κ(1− δ)])
nN2

, (6.3)

for which the calving front itself is predicted to intersect the bedrock. The regime diagram739

again shows the near coincidence of the critical values S∗ and ST . One difference compared740

to n = 1 is that the critical values increase nonlinearly with β. Repeating the analysis741

used to develop (5.6), one can determine the approximation742

S∗(α, β) ≈
δα

1− δ

[

(n+ 1)β

1− δ

]

1
n

(6.4)

which is shown as a curve of circular markers in figure 13, confirming the nonlinear743

dependence.744

To illustrate the control of stability by the calving position xC , I show the stability745

diagram for α = 2 × 10−4 and S = 10−4 against a continuous variation of xC in figure746

14(a). In qualitative similarity to the stability diagrams shown with respect to the drag747

coefficient S (cf. figure 8), there is a stable steady-state branch above a critical value,748

xC > xCT . The plot illustrates the retreat of the grounding line induced by retreat749

of the calving front, and its eventual destabilisation below the critical calving position750

xC = xCT . Thus, if progressive retreat of the calving front occurs, there is an initial751

retreat of the grounding line along the stable branch before runaway grounding-line752

retreat triggers critically the calving front retreats upstream of the critical position xCT753

interior to the retrograde slope. It is interesting to note that the conditions for tipping754

and recovery for this example of calving-induced tipping are almost coincident. The755

condition to lose a steady state is essentially the same as the condition for the ice shelf to756

reground. Consequently, recovery will essentially occur following parametric restoration.757

The hysteresis effects noted to apply for unbuttressed grounding lines (Schoof 2007a)758
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Figure 14. stability diagrams illustrating the grounding-line position and critical transition to
instability against (a) calving position xC and (b) melt rate M . For these examples, α = 2×10−4,
β = 12 and S = ×10−4. For (a), the melt rate M = 0. For (b), the calving position is xC = 0.

therefore practically do not occur here. It should be noted that the results here are for a759

prescribed calving position xC . For a thickness-dependent calving law (e.g. Schoof et al.760

2017), xC can be treated as an unknown and its prescription replaced by imposition of the761

implicit condition H(xC) = HC . In this case, the conditions for tipping are likely highly762

sensitive to the parameter HC , and this could be illustrated by a bifurcation diagram763

constructed for this case.764

To demonstrate the destabilisation as a consequence of increased melting, I plot the765

stability diagram with respect to the dimensionless melt rate M in figure 14(b), which766

is assumed to take a uniform value along the ice shelf for this example. The plot shows767

a critical melt rate MT above which destabilisation of the grounding line occurs. Inter-768

estingly, the steady-state position of the grounding line stays relatively insensitive to the769

melt rate along the entire stable branch. This indicates the potential for a more abrupt770

transition to tipped retreat in situations where the destabilisation is induced primarily771

by increasing melt-rate. The critical melt rate below which secondary grounding occurs,772

M∗, is also appreciably smaller than the critical value MT representing the termination773

of the steady-state branch. Based on a comparison between this stability diagram and774

that obtained for calving-induced tipping (figure 14(a)), it is indicated that hysteresis is775

more plausible for melt-induced tipping. That is, a grounding-line retreat stimulated by776

melting may be relatively harder to reverse compared to a retreat triggered by calving.777

This difference can be attributed to the fact that melting decreases the thickness along778

the longitudinal interior of the ice shelf, which makes secondary grounding harder to779

instigate.780

The examples given above indicate general features of how a grounding-line retreat is781

triggered on a retrograde slope upstream of a topographic maximum. As noted above,782

other configurations involving more specialised features could be determined by apply-783

ing the analytical machinery developed here on a case by case basis. This includes the784

prescription of alternative calving laws, nonlinear bed topographies and a large-scale non-785

linear distributed accumulation field, for example, which are readily accounted for within786

the analytical framework presented here. A suite of additional examples is provided in787

the supplementary document demonstrating the construction of the bifurcation diagrams788

for nonlinear bed topographies, as well as a case of large-scale distributed accumulation789

field. The approach of constructing the stability diagram provides both conceptual in-790

sight into conditions for tipped retreat to trigger and considerable numerical efficiency791
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for scenario exploration and sensitivity analysis, and could provide a useful complement792

to numerical simulation.793

7. Conclusions794

In this paper, I have analysed the mechanisms underlying the onset of and suppression795

of marine ice sheet instability. A central conclusion is that the onset of instability has the796

characteristic of a ‘cliff edge’ with an abrupt transition from a mode of easily reversible797

‘stable’ retreat into a mode of almost irreversible ‘tipped retreat’. The tipping points798

are identified as occurring abruptly below thresholds of parametric variation and occur799

at the vanishing of steady-state branches. The grounding-line positions at which these800

parametric thresholds are crossed can occur either midway along a retrograde slope801

or at a topographic maximum. A complete regime diagram moving continuously away802

from the unbuttressed case was constructed and provides a clear visual demonstration of803

how buttressed tipping points are distinct from unbuttressed tipping points. The regime804

diagram illustrates that for certain modes of tipping, the long-term trajectory of the ice805

sheet’s evolution is dependent on hysteresis (for example whether it has already tipped806

into instability), as applies to an unbuttressed tipping transition. For others, the long-807

term recovery or collapse of the ice sheet does not depend on hysteresis. That is, certain808

parameter values are guaranteed unconditionally to result in stabilisation or collapse809

without reference to the initial state of the system (for example, whether the grounding810

line has already tipped). This situation is found to apply if tipping is induced by a loss811

of ice-shelf buttressing, for which there is an abrupt switch between guaranteed stability812

(or recovery from a previously tipped state) and guaranteed retreat across the tipping813

threshold. For situations where the suppression of marine ice sheet instability is controlled814

by the buttressing force, the basal condition of the ice sheet plays almost no role in setting815

the conditions for triggering instability, differing significantly from unbuttressed tipping.816

The critical conditions for buttressing-controlled tipping depend primarily on the details817

of the ice-shelf dynamics, with control of tipping being related to the length, lateral drag818

parameters, calving position, and melt rate of the ice shelf.819

A method of constructing bifurcation diagrams for grounding lines was developed in820

which steady states, the direction in which a perturbation from them will migrate, and821

the prediction of secondary grounding of the ice shelf, are each integrated systematically.822

The direction of grounding-line migration inferred from the stability diagram was con-823

firmed using time-dependent solutions of the governing quasi-two-dimensional equations.824

A remarkable feature is that the critical prediction of secondary grounding in steady825

state simply overrides the direction of grounding-line migration derived under an assump-826

tion that the buttressing force stems from lateral stresses alone, to imply unconditional827

advancement. There is therefore a sharp transition in the direction of grounding-line828

migration across a parametric tipping point.829

For ocean depths sufficiently low that the topography allows for an unstable grounding-830

line position in the unbuttressed case, the effect of lateral stresses on a positive bed slope831

is to cause the unstable steady state to move upstream. For these situations, the hysteresis832

effect noted previously for the unbuttressed case is possible, but becomes harder to pro-833

duce. At a critical value, the unstable steady state is abruptly invalidated by secondary834

grounding, with the steady-state ice-shelf profile necessary to sustain the steady state835

predicted to penetrate the bedrock. Remarkably, the prediction of positive-feedback re-836

treat without secondary grounding is simply overridden by a prediction of unconditional837

advance. The prediction of secondary grounding in steady state is confirmed to lead to838

unconditional advance of the grounding line even if the grounding line is initiated far up-839
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stream into territory where it would undergo potentially rapid positive-feedback tipped840

retreat if the geometry were such as to preclude secondary grounding. By forming brief,841

glancing contacts with the bedrock in the vicinity of the grounding line, the ice shelf842

generates an additional time-averaged buttressing force that far exceeds that developed843

by lateral drag directly and is sufficiently powerful to suppress grounding-line retreat844

almost unconditionally. The possibility for hysteresis is thus sharply eliminated if the845

criterion for secondary grounding is satisfied.846

The glancing contacts that can arise during the recovery of a retreated grounding847

line develop a tertiary mechanical component – intermediate to the fully grounded and848

floating regions – referred to as the ‘marginal-flotation regime’. This regime replaces the849

notion of a grounding line with a grounding area. Along this region, the thickness of850

the ice sheet straddles the critical thickness for flotation, with the base of the ice shelf851

‘hovering’ above the bedrock with intermittent contact. The creation of this zone is caused852

by the thickening of the interior of the ice shelf by lateral stresses, which induces the853

contact, combined with a switchback mechanism in the governing conditional momentum854

equation creating rapid oscillations between its floating and grounded components. The855

existence of the marginal flotation zone may be a hallmark of a marine ice sheet that856

is regenerating from a former inducement of tipped retreat, and may be an important857

mechanism for generating marine ice sheets during periods of glaciation.858

For the case where the ocean depth is sufficiently deep that there is no steady steady in859

the unbuttressed case, unconditional retreat of the grounding line occurs for all values of860

the coefficient of lateral drag below a critical tipping-point value. Above the threshold,861

lateral stresses produce a new branch of stable steady states. It was found that even862

marginally above the threshold, the ice sheet is completely secure against permanent863

tipping, even following a total collapse of the ice shelf. However, if the parameters in864

the system vary such as to produce a change to subcritical values, destabilisation of865

the ice sheet occurs. A natural mode of destabilisation was demonstrated in which the866

grounding line retreats ‘stably’ along the stable branch in a quasi-steady manner before867

transitioning to ‘tipped’ retreat once the steady-state branch vanishes and the tipping868

point for buttressed stability is passed (at least with the assumption that the ice shelf869

can regrow to its former calving position). Following the transition to tipped retreat, the870

system will always fail to recover following a parametric restoration to former values.871

However, the recovery of a tipped grounding line was determined to be possible fol-872

lowing a recovery of parameters to values slightly more secure than the values that were873

necessary to trigger tipping in the first place. The restoration of the grounding line al-874

ways occurs as a consequence of the ice shelf making secondary contact with the bedrock,875

forming an ice rise or marginal-flotation zone. Lateral stresses allow this mode of recovery876

to become more feasible owing to its development of a considerably thicker ice shelf. The877

conditions for regrounding can be almost coincident with the condition for establishing878

the steady state from which tipping is critically lost. This result is attributed to the prop-879

erty that the grounding-line position necessary to produce regrounding and the position880

for a buttressed steady state to form can occur very close together (Pegler 2018). The881

bifurcation diagrams show that the conditions for secondary contact are easier to attain882

than those necessary to instigate reversal of a tipped grounding line in the absence of any883

secondary grounding. The reversal of tipped grounding-line retreat is therefore dependent884

on and/or occurs with the formation of an ice rise or marginal flotation zone.885

A complete regime diagram for tipping and recovery of a grounding line was con-886

structed, showing that there are two distinct criteria that can trigger a critical transition887

to runaway grounding-line retreat upstream of a topographic maximum. One is the but-888

tressed threshold described above. The other is the unbuttressed threshold. The failure889
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of both of these distinct criteria was shown to be necessary in order to induce tipping of890

the ice sheet on a retrograde slope.891

Transitions to tipped retreat induced by the retreat of a calving front or the increase892

in the rate of basal melting of the ice shelf were demonstrated. In the latter case, the893

steady-state grounding-line position was found to be relatively insensitive to melt rate894

before an abrupt transition to tipped retreat occurs above a critical melt rate. The tipping895

point resulting from an increase in melt rate produces an abrupt transition from very896

gradual stable retreat to sudden tipped retreat. The conditions necessary to reverse the897

tipped retreat driven by an increase in melting was found to relatively harder to attain898

as compared to tipping induced by calving or lateral softening.899

The results of this work provide a foundation for understanding the processes leading900

to a regional or large-scale collapse of the WAIS and paleo ice sheets. An overarching901

conclusion is that lateral stresses exerted on ice shelves introduces a remarkably impor-902

tant effect for maintaining global stability. The sustainment of mass in a marine ice sheet903

depends on two different controls: the setting of the grounding line, and the setting of904

the interior thickness upstream of the grounding line. Importantly, these properties are905

controlled by different physical processes and parameters. Either one of these must be906

the weak link in maintaining a ‘healthy’ marine ice sheet. In regards to the future of the907

WAIS, it can be anticipated that the control of the grounding line is likely to provide the908

weaker of the two links. The importance of ice shelves can be attributed to their indepen-909

dent contribution to the strengthening of this weakest link. The stability of the WAIS is910

therefore likely to be contingent on the physical processes controlling the sustainment of911

ice shelves and their lateral contact.912
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