Supplementary Information

The representation of solar cycle signals in stratospheric ozone. Part II: Analysis of global models

Amanda C. Maycock¹, Katja Matthes^{2,3}, Susann Tegtmeier², Hauke Schmidt⁴, Rémi Thiéblemont⁵, Lon Hood⁶, Slimane Bekki⁵, Makoto Deushi⁷, Patrick Jöckel⁸, Oliver Kirner⁹, Markus Kunze¹⁰, Marion Marchand¹¹, Daniel R. Marsh¹², Martine Michou¹³, Laura E. Revell^{14,15}, Eugene Rozanov^{14,16}, Andrea Stenke¹⁴, Kohei Yoshida⁷, and Yousuke Yamashita^{17,18}

¹ School of Earth and Environment, University of Leeds, UK

² GEOMAR Helmholtz for Ocean Research, Kiel, Germany

³ Christian-Albrechts Universität zu Kiel, Kiel, Germany

⁴ Max Planck Institute for Meteorology, Hamburg, Germany

⁵ LATMOS, Paris, France

⁶ University of Arizona, Arizona, USA

⁷ Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

⁸ Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

⁹ Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany

¹⁰ Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany

¹¹ Centre national de la recherche scientifique (CNRS), France

¹² National Center for Atmospheric Research, Boulder, USA

¹³ CNRM UMR 3589, Météo-France/CNRS, Toulouse, France

¹⁴ Institute for Atmospheric and Climate Science ETH, Zurich, Switzerland

¹⁵ Bodeker Scientific, Christchurch, New Zealand

¹⁶ Physikalisch-Meteorologisches Observatorium, World Radiation Center, Davos, Switzerland

¹⁷ National Institute of Environmental Studies (NIES), Tsukuba, Japan

¹⁸ now at: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan

CCSRNIES-MIROC3.2 1960-2009 Monthly SOR [%]

Figure S1: Monthly mean percent (%) ozone anomalies per 130 SFU for (a) January to (l) December in the CCSRNIES-MIROC3.2 model. The solid contours denote 2% intervals. The hatching denotes regions where the SOR is not distinguishable from noise at the 95% confidence level. Tropospheric values have been masked out.

CESM1(WACCM) 1960-2009 Monthly SOR [%]

Figure S2: As in Figure S1, but for CESM1(WACCM).

CMAM 1960-2009 Monthly SOR [%]

Figure S3: As in Figure S1, but for CMAM.

CNRM-CM5-3 1960-2009 Monthly SOR [%]

Figure S4: As in Figure S1, but for CNRM-CM5-3.

EMAC(L90) 1960-2009 Monthly SOR [%]

Figure S5: As in Figure S1, but for EMAC(L90).

LMDz-REPROBUS-CM5 1960-2009 Monthly SOR [%]

Figure S6: As in Figure S1, but for LMDz-REPROBUS-CM5.

MRI-ESM1r1 1960-2009 Monthly SOR [%]

Figure S7: As in Figure S1, but for MRI-ESM1r1.

SOCOL3 1960-2009 Monthly SOR [%]

Figure S8: As in Figure S1, but for SOCOL3.