

This is a repository copy of Towards a Holarctic synthesis of peatland testate amoeba ecology: development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data..

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/137799/

Version: Accepted Version

Article:

Amesbury, M, Booth, R, Roland, T et al. (21 more authors) (2018) Towards a Holarctic synthesis of peatland testate amoeba ecology: development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quaternary Science Reviews. pp. 483-500. ISSN: 0277-3791

https://doi.org/10.1016/j.guascirev.2018.10.034

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- 1 Towards a Holarctic synthesis of peatland testate amoeba ecology:
- 2 development of a new continental-scale palaeohydrological transfer function
- 3 for North America and comparison to European data

4

- 5 Matthew J. Amesbury ^{a,b*}, Robert K. Booth ^c, Thomas P. Roland ^a, Joan Bunbury ^{d,e}, Michael J.
- 6 Clifford ^f, Dan J. Charman ^a, Suzanne Elliot ^g, Sarah Finkelstein ^h, Michelle Garneau ⁱ, Paul D. M.
- Hughes ^j, Alexandre Lamarre ^k, Julie Loisel ^l, Helen Mackay ^m, Gabriel Magnan ⁱ, Erin R. Markel
- 8 °, Edward A. D. Mitchell ^{n,o}, Richard J. Payne ^{p,q}, Nicolas Pelletier ^r, Helen Roe ^g, Maura E.
- 9 Sullivan ^c, Graeme T. Swindles ^s, Julie Talbot ^t, Simon van Bellen ⁱ, Barry G. Warner ^u

10

* Corresponding author: Email: m.j.amesbury@exeter.ac.uk (M. J. Amesbury).

12

- ^a Geography, College of Life and Environmental Sciences, University of Exeter, UK
- 14 b Environmental Change Research Unit (ECRU), Faculty of Biological and Environmental Sciences,
- 15 University of Helsinki, Finland
- 16 c Earth and Environmental Sciences, Lehigh University, USA
- 17 d Department of Geography and Earth Science, University of Wisconsin La Crosse, USA
- 18 e Department of Geography, University of Toronto, Canada
- 19 f Desert Research Institute, Nevada, USA
- 20 g School of Natural and Built Environment, Queen's University Belfast, UK
- 21 h Department of Earth Sciences, University of Toronto, Canada
- ¹ Geotop, Université du Québec à Montréal, Canada
- 23 ^j Geography and Environment, University of Southampton, UK
- 24 k Environment and Climate Change Canada, Canada
- 25 Department of Geography, Texas A&M University, USA
- ^m School of Geography, Politics and Sociology, University of Newcastle, UK
- ⁿ Institute of Biology, Faculty of Science, University of Neuchâtel, Switzerland
- 28 ° Botanical Garden of Neuchâtel, Switzerland
- 29 PEnvironment, University of York, UK
- 30 q Department of Biology, Penza State University, Russia
- 31 r Department of Geography and Environmental Studies, Carleton University, Canada
- 32 School of Geography, University of Leeds, UK
- 33 ^t Department of Geography, Université de Montréal, Canada
- 34 ^u Earth and Environmental Sciences, University of Waterloo, Canada

35 36

37

Author contributions: MJA and RKB conceived the work and compiled/archived the data. MJA conducted data analysis and wrote the manuscript. All authors contributed data, actively discussed the direction of the research and/or contributed to manuscript editing.

38 39 40

Keywords: North America, testate amoebae, peatland, water table, transfer function, ecology, biogeography, cosmopolitanism.

41 42 43

44

45

46

47

48

Highlights

- Dataset of ca. 2000 North American peatland testate amoeba surface samples compiled
- Palaeohydrological transfer functions tested statistically, applied to independent palaeo data
- New model an effective tool for palaeohydrological reconstruction across North America
- Biogeographical patterns occur at taxonomic resolution applied; taxa hydrological optima mostly robust across North America

Combined North American and European dataset illustrates potential for Holarctic synthesis

Abstract

Fossil testate amoeba assemblages have been used to reconstruct peatland palaeohydrology for more than two decades. While transfer function training sets are typically of local- to regional-scale in extent, combining those data to cover broad ecohydrological gradients, from the regional- to continental- and hemispheric-scales, is useful to assess if ecological optima of species vary geographically and therefore may have also varied over time. Continental-scale transfer functions can also maximise modern analogue quality without losing reconstructive skill, providing the opportunity to contextualise understanding of purely statistical outputs with greater insight into the biogeography of organisms. Here, we compiled, at moderate taxonomic resolution, a dataset of nearly 2000 modern surface peatland testate amoeba samples from 137 peatlands throughout North America. We developed transfer functions using four model types, tested them statistically and applied them to independent palaeoenvironmental data. By subdividing the dataset into eco-regions, we examined biogeographical patterns of hydrological optima and species distribution across North America. We combined our new dataset with data from Europe to create a combined transfer function. The performance of our North-American transfer function was equivalent to published models and reconstructions were comparable to those developed using regional training sets. The new model can therefore be used as an effective tool to reconstruct peatland palaeohydrology throughout the North American continent. Some ecoregions exhibited lower taxonomic diversity and some key indicator taxa had restricted ranges. However, these patterns occurred against a background of general cosmopolitanism, at the moderate taxonomic resolution used. Likely biogeographical patterns at higher taxonomic resolution therefore do not affect transfer function performance. Output from the combined North American and European model suggested that any geographical limit of scale beyond which further compilation of peatland testate amoeba data would not be valid has not yet been reached, therefore advocating the potential for a Holarctic synthesis of peatland testate amoeba data. Extending data synthesis to the tropics and the Southern Hemisphere would be more challenging due to higher regional endemism in those areas.

1. Introduction

Testate amoebae are a polyphyletic group of microscopic, unicellular protists that occur globally in a range of soils, rivers, lakes and wetlands, including ombrotrophic peatlands – environments which are frequently used to reconstruct Holocene palaeohydrological change (Mitchell et al., 2008). These reconstructions are based on a transfer function approach, inherent in which is a robust understanding of peatland testate amoeba ecology, particularly as it relates to target reconstruction variables, principally water table depth (WTD).

Local- or regional-scale transfer function models around the globe have provided robust palaeohydrological reconstructions based on the strong empirical relationship between independent (i.e. WTD) and response (i.e. testate amoeba community change) variables (e.g. Swindles et al., 2009, 2014; van Bellen et al., 2014; Li et al., 2015). However, reconstruction magnitude can vary when local-and regional-scale models are applied outside of their training set range (Turner et al., 2013), providing a strong motivation to develop broader-scale, compiled models that provide standard reconstruction tools with directly comparable results.

Modern analogues from sites close to a core location may potentially better represent the contemporary environment than those from more distant sites in the present day. However, as we go back in time through different climate and ecological boundary conditions, as any transfer function reconstruction inevitably aims to do, local modern analogues may be less appropriate and it becomes more likely that better analogues will be found in different regions. Therefore, whilst local- and regionalscale models perform well statistically in cross-validation, the same performance cannot be assumed for downcore reconstructions and large-scale datasets/models should yield more reliable reconstructions for any given location given their greater range of modern analogues. However, as the geographical extent of training sets is increased to the continental-, hemispheric- or even global-scales, it may become more problematic to effectively model independent and response variable relationships due to the introduction of confounding factors such as latitude and temperature effects, secondary environmental gradients or non-linear processes such as permafrost and fire. Therefore, there may be a geographical range limit beyond which the compilation of modern testate amoeba and associated environmental data is no longer beneficial for model development. Recently, it has been shown that the development of continental-scale transfer functions may have advantages over the use of local- or regional-scale models (Amesbury et al., 2016). In particular, large training sets (i.e. > 1000 samples) capture a greater range of variability in target environmental variables and include more modern analogues for taxa that may be abundant in fossil records but that can be rare or absent in modern datasets (Charman et al., 2007; Swindles et al., 2015a), potentially improving palaeohydrological reconstructions.

In addition, although individual transfer functions statistically model the relationship between modern testate amoeba assemblages and WTD, a broader contextual understanding of peatland testate amoeba ecology and biogeography is important. For example, recent research has shown that certain taxa, or groups of taxa, may react to environmental change at different timescales (Sullivan and Booth, 2011; Marcisz et al., 2014) or have geographically restricted or skewed ranges (Booth and Zygmunt, 2005; Amesbury et al., 2016; Beyens and Bobrov, 2016), even extending to regional endemism, particularly in the tropics and Southern Hemisphere (Smith and Wilkinson, 2007; van Bellen et al., 2014; Reczuga et al., 2015). However, these ecological and biogeographical intricacies are not explicit in strictly statistical reconstructions. Indeed, research has shown that continental-scale geographical patterns of both genotypic and phenotypic diversity exist within seemingly cosmopolitan taxa (Heger et al., 2013; Roland

et al., 2017; Singer et al., 2018). In the case of *Hyalosphenia papilio* (Heger et al., 2013), this is a finding potentially supported by a regionally skewed distribution of the same taxon across Europe (Amesbury et al., 2016).

Greater insight into wide-scale biogeographical patterns of soil protists is a fundamental research domain (Geisen et al., 2017). An increasing number of studies have used protists (Foissner, 2006, 2008), and specifically testate amoebae (e.g. Smith and Wilkinson, 2007; Fournier et al., 2015; Fernández et al., 2016; Lara et al., 2016), to argue against the 'everything is everywhere: but the environment selects' paradigm (Baas Becking, 1934; see also De Wit and Bouvier, 2006; O'Malley, 2007, 2008). Research communities can move towards a broader understanding of these patterns by working collaboratively to make use of the ever-increasing amount of data from individual studies that can be compiled and used to both develop new, robust reconstruction tools (Amesbury et al., 2016), as well as begin to provide insight into important biogeographical debates (Smith et al., 2008). In addition, an understanding of wide-scale peatland testate amoeba ecology and biogeography is important in order to provide robust regional- to continental-scale palaeoclimatic interpretation of 1) palaeo-data compilations (e.g. Swindles et al., 2013), 2) studies from individual sites or groups of sites aiming to study the Holocene evolution of regional-scale climate systems (e.g. Magnan and Garneau, 2014; van Bellen et al., 2016), 3) studies investigating anthropogenic drainage (e.g. Laggoun-Défarge et al., 2008; Payne et al., 2010; Talbot et al., 2010) and 4) studies of ecohydrological changes from specific climatic disturbances such as permafrost thaw (Lamarre et al., 2012; Swindles et al., 2015b; Pelletier et al., 2017; Zhang et al., 2018).

Building on the development of a recent pan-European transfer function (Amesbury et al., 2016), here we apply a similar approach to the North American continent. Through a wide collaborative network, we have compiled almost 2000 published and unpublished testate amoeba surface samples from 137 sites covering 34° of latitude and almost 100° of longitude. Our objectives are to (1) describe the ecology of peatland testate amoebae in North America in terms of the key environmental variable, water table depth; (2) develop a new, rigorously tested continental-scale transfer function for reconstructing ombrotrophic peatland palaeohydrology; and (3) as the first step towards a Holarctic synthesis, assess the ecology and biogeography of testate amoeba across two continents by combining our new North-American dataset with data from a pan-European synthesis (Amesbury et al., 2016) to create a combined dataset with >3700 samples in total.

2. Methods

2.1. Data compilation and taxonomy

We collated a total dataset of 1956 modern surface samples from 137 peatlands located throughout the Canada and the USA (Figure 1; Table 1). Peatlands included were predominately *Sphagnum*-dominated and ombrotrophic, but data from other site types was also included (e.g. Booth and Zygmunt, 2005). Data were compiled from 15 published sources in addition to four unpublished datasets (Table 1). All original datasets, including previously unpublished datasets, in percentage data form and a majority also as raw count data, have been archived and are freely available on the Neotoma Paleoecology Database (www.neotomadb.org). Raw count data was available for 1844 of 1956 samples (excluding the datasets of Warner, 1987 and Payne et al., 2006). For those samples, the mean count was 148 individuals. Only 65 samples had a count <100, with a minimum count in any one sample of 52 individuals. All testate amoeba surface samples had an associated water table depth (WTD) value, with a smaller number (n = 1859) also having an associated pH value. Although some datasets contained

other potential environmental variables (e.g. electrical conductivity, vegetation type), these data were not frequent enough across the entire dataset to permit inclusion in the data analysis.

198 [INSERT FIGURE 1]

Figure 1: Map showing the location of 137 sites included in the study (see Table 1 for full details). Sites are colour-coded by United States Environmental Protection Agency (EPA) eco-region (see text for details). Locations of two independent palaeo records at Lac Le Caron, Québec and Framboise, Nova Scotia are also shown (black spots). For references to colour, readers are referred to the online version of the article.

Since the multiple analysts involved in the original data collection (publication dates ranging over 30 years from 1987 – 2017) applied slightly varying taxonomic schemes, it was necessary to merge data into a coherent taxonomy that was valid across all datasets. To do this, we followed the precedent set by Amesbury et al. (2016) in a compilation of European peatland testate amoeba data, taking a low-resolution approach and merging like taxa into groups wherever necessary. However, due to the generally greater consistency between original taxonomies than was the case for Amesbury et al. (2016), the relative extent of grouping required here was less, with a total of 72 taxa in the complete merged dataset, of which 25 were groupings containing multiple taxa (Table 2). Despite the improvement in taxonomic resolution from Amesbury et al. (2016), individual analysts should not count samples to the taxonomic scheme used here, but rather define individual taxa to as great an extent as possible (e.g. particularly within *Corythion – Trinema* type), grouping into this scheme for statistical analysis only. Exceptions to the taxonomy of Amesbury et al. (2016), permitted by the relative taxonomic consistency of the original datasets, were as follows:

- 1. Arcella artocrea was consistently identified in addition to Arcella arenaria type and Arcella catinus type, so this division remained. However;
- 22. Arcella catinus type was identified in most datasets, whereas Arcella arenaria type was only identified in two datasets, that did not include Arcella catinus type. Therefore, Arcella arenaria type was merged into Arcella catinus type;
- Centropyxis cassis type and Centropyxis platystoma type were consistently identified across all
 datasets, so these divisions remained. Centropyxis aerophila type was only identified in two
 datasets so was merged into Centropyxis cassis type;
- 4. Cyclopyxis arcelloides type was consistently split into Cyclopyxis arcelloides type, Difflugia globulosa type and Phryganella acropodia type so these divisions remained;
- 5. Difflugia pulex type and Hyalosphenia minuta were consistently identified in addition to Cryptodifflugia sacculus, so all taxa remained and were not grouped into Cryptodifflugia sacculus type;
- 232 6. Difflugia pristis type, Pseudodifflugia fulva type and Pseudodifflugia fasicularis type were 233 consistently identified in addition to Difflugia lucida type, so all taxa remained and were not 234 grouped into Difflugia lucida type;
- 7. Difflugia bacillifera type and Difflugia rubescens type were consistently identified in addition to Difflugia oblonga type, so all taxa remained and were not grouped into Difflugia oblonga type;
- 8. Euglypha strigosa type and Euglypha tuberculata type were consistently identified in addition to Euglypha ciliata type, Euglypha compressa and Euglypha cristata. Euglypha strigosa type and Euglypha tuberculata type therefore remained as separate taxa, with Euglypha ciliata type containing only Euglypha ciliata type, Euglypha compressa and Euglypha cristata;
- 9. Nebela penardiana type was consistently identified in addition to Gibbocarina (Nebela) tubulosa type, so this division remained;

- 10. Heleopera petricola was consistently identified in addition to Heleopera sphagni, so this division remained;
 - 11. Padaungiella (Nebela) wailesi type was consistently identified in addition to Padaungiella (Nebela) lageniformis, so this division remained;
 - 12. Planocarina (Nebela) marginata type was consistently identified in addition to Planocarina (Nebela) carinata type, so this division remained.

Following a recent redefinition, we update the nomenclature of *Nebela militaris* to *Alabasta militaris* (Duckert et al., 2018 in press). The complete dataset was screened for data quality and rare taxa. Eight taxa were removed as they occurred in <1% of the total number of samples (i.e. <19 samples; Table S1). Eleven samples were removed where taxonomic merging or deletion of taxa only identified to genera (e.g. *Difflugia* sp., *Euglypha* sp. etc.) resulted in a percentage total <90% (Table S2). A further 18 samples with extreme WTDs below the 0.5th (-15 cm) or above the 99.5th (67 cm) percentiles of all WTD measurements were removed to avoid undue influence of these samples in subsequent transfer function development (Table S3). This data management resulted in a useable dataset of 64 taxa and 1927 samples (Figure 2). Hereafter, this will be referred to as the full dataset. Of these 1927 samples, all, with the exception of those from Warner and Charman (1994), had a known site location. It was not possible to assign samples to exact sites for the Warner and Charman (1994) data due to unspecific sample codes. Therefore, in all analyses requiring geographical information, reduced datasets were used that excluded those samples.

[INSERT FIGURE 2]

Figure 2: Percentage distribution of all samples (n = 1927) and taxa (n = 64), ordered vertically by water table depth (wettest samples at the top) and horizontally by water table depth optima from a WA-Tol (inv) model of the full dataset (wettest optima at the left; see also Figure 5).

To investigate testate amoeba ecological and biogeographical patterns across North America and Europe (Amesbury et al., 2016), we compiled the two continental-scale training sets to form a combined dataset. We used the original merged datasets before the removal of rare taxa (n = 1799 for Europe, n = 1956 for North America, total n = 3755), since combining the two may have resulted in additional samples to characterise previously rare taxa. Given the greater degree of taxonomic grouping in the European data, it was necessary to harmonise the North American data into the European taxonomic scheme (Amesbury et al., 2016). Taxonomic changes made to facilitate this followed the reverse of the 12 numbered points above. In addition, three taxa not identified in Europe (*Conicocassis pontigulasiformis*, *Nebela barbata* and *Waileseila eboracensis*) were added to the European taxonomy, resulting in an initial 63 defined taxa/taxonomic groups. Once combined, we applied the same data quality and rare taxa criteria as above and in Amesbury et al. (2016). We removed 11 rare taxa present in <1% of the total number of samples (<37 samples), 35 samples with extreme WTDs below the 0.5th (-15 cm) or above the 99.5th (82 cm) percentiles of all WTD measurements and a further 45 samples with percentage totals <90% (see Tables S4 – S6 for details of removed samples/taxa). This resulted in a workable combined dataset of 52 taxa and 3675 samples.

All biogeographical inferences resulting from this work should be set against the taxonomic resolution applied. Light microscopic studies necessitate a practical, but relatively low-resolution approach when set against known levels of cryptic and pseudo-cryptic diversity in testate amoebae (e.g. Heger et al., 2013; Oliverio et al., 2014; Kosakyan et al., 2016; Singer et al., 2018). Therefore, where biogeographic patterns are identified at the resolution applied, we can assume that these would still be valid at a higher taxonomic resolution. However, if biogeographic patterns are absent for particular taxa, this does not exclude possible evidence when true genetic diversity is examined.

2.2. Statistical analyses

Considering the key aim of this study to produce a transfer function for palaeohydrological reconstruction, non-metric multidimensional scaling (NMDS) was used sensu Amesbury et al. (2016) to objectively examine the dataset and potentially exclude outlying sites and/or samples that were nontypical for the ombrotrophic peatlands commonly used in palaeoclimate research. NMDS was carried out using the 'metaMDS' function in the R package vegan (Oksanen et al., 2015), with water table depth and pH included as potential environmental drivers. Default settings and automatic data transformation were applied and the analysis was conducted based on Bray-Curtis dissimilarity. Environmental variables were passively fitted to the NMDS, and their significance tested, using the 'envfit' function in vegan. Sample-specific values for the Shannon-Wiener diversity index (SWDI) were calculated using the 'diversity' function in vegan. Transfer function development was carried out using the R package rioja (Juggins, 2015). Four common model types were applied; weighted averaging with and without tolerance downweighting (WA/WA-Tol; both with potential for inverse (inv) or classical (cla) deshrinking), weighted averaging with partial least squares (WAPLS), maximum likelihood (ML) and the modern analogue technique (MAT; with the potential for a weighted-mean version, WMAT). For each model, only the best performing version (judged by r² and leave-one-out root mean square error of prediction; RMSEPLOO) was selected for further analysis. Additional statistical testing followed convention in the recent literature after Amesbury et al. (2013) and included calculation of leave-onesite-out RMSEP (Payne et al., 2012; RMSEP_{LOSO}), segment-wise RMSEP (Telford and Birks, 2011; RMSEP_{sw}) and a spatial autocorrelation test (Telford and Birks, 2005, 2009) using the 'rne' (random, neighbour, environment) function in the R package palaeoSig (Telford, 2015). Also, following convention, transfer function development followed a two-step process. We firstly developed models using the full dataset and then, for each model type, performed a second, 'pruned', model run which excluded samples with high residual values greater than 20% of the total range of measured water table depths.

As part of the testing process, models were applied to independent (i.e. no modern samples from the sites were included in the transfer function) palaeo-data from two *Sphagnum*-dominated ombrotrophic peatlands: Framboise bog, Nova Scotia (45.7208°N, 60.5521°W; H. Mackay, unpublished) and Lac Le Caron peatland, Québec (52.2884°N, 75.8393°W; van Bellen et al., 2011). Original taxonomies of the independent palaeo datasets were merged and updated (i.e. in terms of nomenclature) as necessary in order to match the taxonomic scheme of the new models produced here. Sample-specific errors for all transfer function reconstructions were based on 1000 bootstrapping cycles. We compared our reconstructions with output from the most geographically extensive published transfer function in North America (Booth, 2008) and tested the significance of all new reconstructions (Telford and Birks, 2011b) using the 'randomTF' function in the R package palaeoSig (Telford, 2015; Payne et al., 2016).

To test for regional variability within the continental dataset, we developed regional models based on United States Environmental Protection Agency (EPA) Level 1 eco-region sub-divisions (www.epa.gov/eco-research/ecoregions), using the pruned WA-Tol (inv) model (excluding samples from Warner and Charman, 1994; see Section 2.1) as the basis for regional model development (n = 1696). Our data covered eight different eco-regions but to ensure regional models were representative, we only developed models for those regions containing >50 samples (Table 3). This resulted in five regional models: taiga (samples n = 68, sites n = 7), northern forests (samples n = 978, sites n = 56), northwestern forested mountains (samples n = 136, sites n = 16), marine west coast forest (samples n = 266, sites n = 23) and eastern temperate forests (samples n = 377, sites n = 18). Models were not developed for the tundra (samples n = 7, sites n = 1), Hudson Plain (samples n = 32, sites n = 7) and North American deserts (samples n = 11, sites n = 1) eco-regions. The independent palaeo records were

located in the northern forest (Framboise) and taiga (Lac Le Caron) eco-regions. The programme PAST (v3.20; Hammer et al., 2001) was used to run one-way PERMANOVA tests (9999 iterations, assessed by Bray-Curtis dissimilarity) of the differences between samples from different eco-regions.

To test the validity of a combined North American and European transfer function, we applied the North American (this study), European (Amesbury et al., 2016) and a pruned combined model (n = 3425; all WA-Tol (inv)) to independent palaeo data from both North America (Framboise) and Europe (Tor Royal Bog, UK *sensu*. Amesbury et al., 2016). We also qualitatively compared the modelled taxa water table depth optima and relative optima ranking of the three models.

3. Results

3.1. Ordination

Summary NMDS results are shown in Figure 3. For the NMDS of the full dataset (Figures 3A and 3B), square root transformation was automatically applied. WTD was significantly correlated to NMDS axis 1 (p < 0.001), although the WTD vector was at 45 degrees to the horizontal, with taxa favouring drier conditions in the top left of the ordination space and taxa favouring wetter conditions in the bottom right (Figure 3B). In general, all samples fell in a large, fairly coherent single swarm of data, with no significant outliers, or groups of outliers, though samples tended to cluster more in the uppermost part of the swarm (Figure 3A). When sub-divided by eco-region (Figure 3C), there was a high degree of overlap, with no regions outlying all others. Only samples from the northwestern forested mountain eco-region tended to cluster in a specific part of the sample swarm (towards the left; Figure 3C), whereas samples from all other regions were located throughout the ordination space. This high degree of overlap, coupled with the significant correlation of WTD to NMDS axis 1 provided a strong justification to continue with transfer function development using the full dataset.

[INSERT FIGURE 3]

Figure 3: NMDS biplots for A) the full dataset (n = 1927) showing sample positions, B) the full dataset showing taxa positions, C) a reduced dataset excluding samples from Warner and Charman (1994) (n = 1884) showing sample positions, colour-coded by EPA eco-region (see text for details). Vectors on all plots show correlation with environmental drivers. Some taxa positions in B have been marginally altered to improve legibility, but relative positions remain intact. Full names for taxa abbreviations can be found in Table 2. For references to colour, readers are referred to the online version of the article.

3.2. Transfer function development

Performance statistics for the best-performing version of each model type are shown in Table 4. For the full dataset, the range of WTD values was 82 cm (minimum WTD -15cm; maximum WTD 67 cm), therefore a value of 16.4 cm (20% of range) was used to remove outlier samples during data pruning. The number of pruned samples varied for each individual model type (Table 4). Following data pruning, the WMAT K5 (weighted-mean modern analogue technique with five nearest neighbours) model was the best performing when judged by RMSEP $_{LOO}$ and R 2 . ML was the worst performing model (based on RMSEP $_{LOO}$) when all samples were included but improved after data pruning (e.g. second best pruned model for r 2 only), largely down to the removal of 410 samples with high residual values, more than double the number of pruned samples than for the next highest model (WA-Tol (inv); n = 197). Pruned samples for all models tended to be reasonably evenly distributed between wet and dry extremes, however ML produced far more extreme negative residuals (i.e. samples where WTD was substantially overestimated; Figure 4). Partly as a result, both ML and WMAT K5 suffered from comparatively high average bias values when compared to the two WA-based models, although the WA-based models had

higher maximum bias (Table 4). WAPLS C2 and WA-Tol (inv) performed very similarly on all metrics, with WA-Tol (inv) marginally outperforming WAPLS C2 after data pruning.

All models showed a decrease in relative performance for RMSEP_{LOSO} and RMSEP_{SW} compared to RMSEP_{LOO}, though for ML, both reductions were marginal (Table 4). Relative performance ratings also changed when different versions of RMSEP were applied. For example, when using RMSEP_{LOSO}, WA-based models were the best performing, but using RMSEP_{SW}, both showed a higher relative decrease in performance than WMAT K5 and ML (though RMSEP_{SW} for the WA-based models was still lower than for ML; Figure S1). Both WA-based models performed worse in 'dry' segments (i.e. WTDs greater than 40 cm) with comparatively less samples, whereas WMAT K5 and ML displayed more consistent RMSEP values across all segments, suggesting that these models were not as affected by WTD and/or segment sampling frequency (Figure S1). WMAT K5 performed relatively poorly for RMSEP_{LOSO}, suggesting that this model type does not deal well with clustered training sets (Amesbury et al., 2016).

All models displayed evidence of spatial autocorrelation, given that r^2 declined much more rapidly when geographically close compared to random samples were removed; this decline was sharpest for WMAT K5 (Figure S2). R^2 values for WMAT K5 and ML declined steadily with the continued removal of geographically close samples, whereas, interestingly, r^2 increased from previous values for both WA-based models when all samples within 1000 km of each other were removed, such that the 1000 km values were higher than for 100 km. Even values at 2500 km (i.e. the models would only contain samples that are >2500 km apart) were comparable to 100 km. These results suggest that, despite the initial decline in r^2 , the WA-based models are more robust to spatial autocorrelation than WMAT K5 or ML.

Taxon-specific values for WTD optima and tolerance showed taxa ordered along a WTD gradient both comparable to the diagonal WTD vector along axis 1 of the NMDS (Figure 3) and also to other studies. In contrast to a European compilation (Amesbury et al., 2016), where taxonomic grouping resulted in more similar tolerance ranges along the WTD gradient, tolerances in this dataset (Figure 5) showed a more typical pattern of being wider for drier taxa and vice versa (Mariusz Lamentowicz and Mitchell, 2005). For example, the mean tolerance for the driest half of taxa, ranked by optima, was 12.5 cm, whereas the same value for the wettest half was 8.4 cm (significantly different at p < 0.05 for a two-sample, two-tailed t-test, df = 60).

[INSERT FIGURES 4 AND 5]

Figure 4: Biplots of leave-one-out cross-validated observed versus predicted water table depth (left) and residual error plots (right) for the four model types under investigation. See text for model abbreviations. Orange points are model runs with all data, black points are model runs after the removal of samples with high residual values. For references to colour, readers are referred to the online version of the article.

Figure 5: Water table depth optima and tolerances (cm) for 64 taxa based on the WA-Tol (inv) model after the removal of outlying samples (n = 1730).

3.3. Testing model application

All four models were applied to independent palaeo records from Framboise and Lac Le Caron peatlands (Figure 1) and compared to reconstructions using the transfer function of Booth (2008), the most geographically extensive published transfer function from North America (Figure 6; Figure S3). All model types, as well as the Booth (2008) reconstructions, showed broadly similar patterns of change (Figures 6 and S3). WMAT K5 and ML reconstructions tended to reconstruct somewhat more abrupt (i.e. change over less samples) and extreme (i.e. higher and lower water table depth values at either end of the

scale) change, when compared to the WA-based models, a trend particularly evident in the Lac Le Caron reconstructions. In general, all four model types tended to co-vary within a range of 5 – 10 cm, however there were periods when particular reconstructions were more divergent. For example, at 10 cm depth at Framboise, the WMAT K5 model reconstructed a significant dry shift not seen in other models (Figure 6A) and at Lac Le Caron, the ML model produced wet shifts at 36 cm and around 215 cm that were not replicated by other models, as well as reconstructing generally wetter conditions for the lower ~150 cm of the profile (Figure 6B). However, when viewed as z-scores (Figure 6C and D; Swindles et al., 2015a), the majority of shifts were aligned, suggesting that all models are reliably reconstructing the main patterns of palaeohydrological change in the profiles.

[INSERT FIGURE 6]

Figure 6: Comparison of transfer function reconstructions from four model types. A and B are raw water table values (cm). C and D are z-scores. A and B include comparison to reconstruction from Booth (2008). A and C for Framboise bog, B and D for Lac Le Caron peatland. For all plots, higher y-axis water table depth or z-score values indicate drier conditions. Note varying y-axis scales.

The significance of all reconstructions was tested against models trained on random data (Telford and Birks, 2011b; Table 5). Reconstructions at Framboise for all model types were either significant (i.e. <0.05) or very close to significant (0.057 for ML). However, equivalent p values at Lac Le Caron were consistently insignificant, often to extremes. For example, ML had the lowest p value at 0.287 (despite having the highest value at Framboise), with both WA-based models having p values > 0.98, meaning their reconstructive ability was worse than almost all models trained on randomly generated data (see also Payne et al., 2016).

3.4. Eco-region variability and models

One-way PERMANOVA tests showed that there were significant differences in testate amoeba assemblages between factor eco-regions (p < 0.0001, F = 15.16). Species richness (i.e. number of taxa present) differed among eco-regions whereas eco-region mean species diversity values were typically more consistent (in the range 1.9 - 2, overall range for all samples 0.19 - 3.07), with the exception of the northwestern forested mountains and North American deserts regions (Table 3). Those eco-regions characterised by only a single site (tundra, North American deserts) had expectedly lower species richness, but, in the case of the tundra region, still displayed species diversity equivalent to the total dataset and to other regions (e.g. Swindles et al., 2009, 2014), despite being based on only seven samples. There were notable differences in species richness among regions with more comparable numbers of sites and samples. For example, eastern temperate forests (18 sites, 346 samples) contained 62 different taxa, whereas northwestern forested mountains (16 sites, 131 samples) contained only 42 taxa. In this case, the 20 fewer taxa in the northwestern forested mountains were often relatively rare taxa that were absent from multiple regions, however also included the absence of other relatively abundant taxa present in all other regions (e.g. Amphitrema wrightianum, Bullinularia indica, Difflugia oblonga, Difflugia pulex). Inter-regional assemblage differences were investigated by plotting taxa distributions across the eight eco-regions (Figure S5). Only eight of 64 taxa occurred in all eight ecoregions: Assulina muscorum, Nebela tincta type, Euglypha tuberculata, Hyalosphenia papilio, Corythion-Trinema type, Centropyxis cassis type, Euglypha rotunda type and Difflugia globulosa type. However, allowing for the reduced species richness in the less-sampled tundra and North American desert ecoregions (Table 3; regions 1 and 8 on Figure S5), 42 of 64 taxa occurred in six or more eco-regions. Of the 22 taxa that were present in five or less eco-regions, 14 were absent from the less-sampled tundra and North American desert regions, as well as the relatively taxa-poor northwestern forested mountains region. Of those 14 taxa, the most frequent were Physochila griseola (619 (out of 1884) occurrences), Bullinularia indica (519 occurrences) and Centropyxis ecornis type (376 occurrences). Taxa present in only two or three eco-regions were largely driven by low occurrence, with only *Nebela minor* of that group occurring in >100 samples (Figure S5).

488

489

490 491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507 508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

Taxa tended to occur on a continuum where their presence in samples and eco-regions, and local abundance, were broadly aligned (Figure S6). For example, common, locally abundant key hydrological indicator taxa such as Assulina muscorum, Trigonopyxis arcula type and Archerella flavum tended to occur in multiple (i.e. 6-8) eco-regions, whereas rare (in both occurrence and abundance) taxa such as Pseudodifflugia fasicularis type and Padaungiella lageniformis type tended to have more restricted ranges, occurring in only a few (i.e. 2-3) eco-regions. However, this overall trend also encompassed considerable variability. Relatively rare taxa could still be locally abundant and occur across multiple eco-regions. For example, Arcella hemispherica occurred in only 3% of samples, but had a maximum abundance of 63% and was present in six eco-regions. Taxa that were rare in both occurrence and abundance could still occur across multiple eco-regions. For example, Quadrulella symmetrica was present in only 3.6% of samples, never above 9% abundance, but was only absent from one eco-region (North American desert). The absence of Q. symmetrica from the North American desert eco-region is noteworthy given the recent discovery of a Quadrulella taxon in a Mexican desert (Pérez-Juárez et al., 2017). Finally, locally abundant taxa could also have more restricted ranges. For example, Difflugia oviformis type occurred in only two eco-regions (NF and ETF), but formed more than half of the assemblage in some samples in those regions.

To further test overall model performance and to further investigate internal biogeographical variability, we developed models for five eco-regions, using only the WA-Tol (inv) model type (cf. Amesbury et al., 2016; see Section 2.2). Eco-region model reconstructions varied notably (Figures 7 and S4), in terms of value, pattern and, less often, direction of change. Most notably, the northwestern forested mountains (NFM) model produced reconstructions, for both palaeo datasets, that had notably drier reconstructed water table depth values when compared to all other models (including the pruned WA-Tol (inv) model based on the full dataset; Figure 7A and B). Mean WTD for individual samples and the overall range of WTDs sampled for the NFM model were equivalent to other models (Table 3), suggesting these differences were not simply driven by poor characterisation of 'wet' conditions in the model. Even when viewed as z-scores, the NFM model appeared anomalous, with often conflicting patterns and direction of change, despite having lower RMSEPLOO and higher R² values than all other regional models (Table 3). The eastern temperate forest (ETF) model most closely resembled the WA-Tol (inv) reconstruction at both sites; this model had the highest number of samples and joint highest number of taxa of the ecoregion models (Table 3). Despite having a much lower R2, and higher maximum and average bias values (Table 3), the taiga reconstructions were broadly in line with the WA-Tol (inv) reconstruction at both sites. The northern forest (NF) model reconstructions, despite being based on a high number of species and taxa compared to most other eco-region models (Table 3), were variable in the extent to which they aligned with other models. At Framboise, a site within the NF eco-region, the NF reconstruction was closely aligned to the ETF and WA-Tol (inv) reconstructions, whereas at Lac Le Caron, it often exhibited differing patterns and direction of change, suggesting potential problems with supra-regional application of eco-region models (Turner et al., 2013). All eco-region model reconstructions at both sites were tested for significance against models trained on random data (Telford and Birks, 2011b; Table 5). P values for only two of ten reconstructions fell under the suggested significance cut-off value of 0.05 (NF and ETF models at Framboise, 0.015 and 0.007 respectively). Other p values ranged from 0.471 to 0.997 and no reconstructions at Lac Le Caron were significant. Taxa optima for the five eco-region models were compared to those of the full dataset (Figure S7). Taxa optima rank, cf. Figure 8, was not compared due to variable n for taxa in each eco-region model. Optima for individual taxa varied from 0.8 cm (A. wrightianum) to 42.5 cm (Difflugia rubescens), with a mean value of 11.6 cm and standard deviation of 7.3 cm.

[INSERT FIGURE 7]

537538

539

540

541

542

543

544

545 546

547

548

549

550 551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572573

574

575

576

577

578579

580

581

582

583

584 585 **Figure 7:** Comparison of transfer function reconstructions from five eco-region models. All panels include comparison to pruned continental WA-Tol (inv) model. A and B are raw water table values (cm). C and D are z-scores. A and C for Framboise bog, B and D for Lac Le Caron peatland. Model abbreviations in key: NF = northern forests; NFM = northwestern forested mountains; MWCF = marine west coast forest; ETF = eastern temperate forests. For all plots, higher y-axis water table depth or z-score values indicate drier conditions. Note varying y-axis scales.

3.5. Combined North American and European compilation

Model development began with a dataset of 52 taxa and 3675 samples. Data pruning removed 250 samples with residual values >20% of the range of measured water table depths (19.4 cm). The pruned, combined WA-Tol (inv) model (n = 3425) had an RMSEP_{LOO} of 7.94 cm and R² of 0.65, similar to continental North American (RMSEP 7.42 cm, R² 0.72; Table 4) and European (RMSEP 7.72 cm, R² 0.59; Amesbury et al., 2016) models, despite an almost doubling of sample numbers. Reconstructions using North American, European (Amesbury et al., 2016) and combined models for independent palaeo records in both Europe and North America were very similar when viewed as both reconstructed water table depth values and z-scores (Figure 8). Individual taxa water table depth optima, whether in cm or rank order, were not significantly different across the three models (comparing the European and North American data as the only completely independent variables; for optima r = 0.80, p < 0.05, for rank $r_s =$ 0.82, p < 0.05), confirming WTD as an ecologically important environmental variable (cf. Juggins, 2013). Despite the general consistency in WTD optima, some variability was evident. Most notably, Difflugia labiosa type was the wettest ranked taxa in the North American and combined models, with negative values indicative of standing water, but ranked 45 of 46 taxa in the European model (Amesbury et al., 2016) with a dry water table depth optima of ~25 cm. However, in the European dataset, D. labiosa was only found in one sample in one eco-region (Scandinavia) at very low abundance (0.7%; Amesbury et al., 2016) and was therefore poorly characterised. Its more extensive presence in the North American dataset (as D. oviformis type) in 60 samples spanning two eco-regions (northern forests and eastern temperate forests) with a maximum abundance of >50% provides better quality ecological data for this taxon and highlights the value of large, ecologically diverse datasets in improving modern analogue quality, as well as the persistent issue of taxonomic consistency (Payne et al., 2011). Other differences in optima and rank were less extreme, but varied by up to 15 ranking positions or approximately 10 cm in terms of water table optima (e.g. Nebela penardiana type, Assulina seminulum type). On average, taxa optima varied by 4.3 cm and 5.2 ranking positions across all three models (equivalent values of 3.8 cm and 4.4 ranking positions excluding the anomalous *D. labiosa* type).

[INSERT FIGURES 8 AND 9]

Figure 8: Comparison of transfer function reconstructions from European, North American and combined models. All models are pruned WA-Tol (inv). A and B are raw water table values (cm). C and D are z-scores. A and C for Framboise, B and D for Tor Royal Bog. For all plots, higher y-axis water table depth or z-score values indicate drier conditions. Note varying y-axis scales.

Figure 9: Comparison of water table depth optima (cm) for 46 taxa from European, North American and combined models, ordered by the combined model. Top panel: rank order of taxa (coloured spots) with range between highest and lowest rank (grey bars). Bottom panel: modelled optima (coloured spots) with range between highest and lowest optima (grey bars). For references to colour, readers are referred to the online version of the article.

4. Discussion

4.1. A new continental-scale transfer function for North America

Performance statistics (i.e. r² and RMSEP_{LOO}) for the North American model were equivalent to a recent European compilation (Amesbury et al., 2016) and a range of other regional-scale models within North America and Europe (Table S7, i.e. within mean $\pm 1\sigma$ of 20 reviewed models). Further statistical tests (sensu. Amesbury et al., 2013) showed that potential issues such as clustered sampling design and spatial autocorrelation had only minimal effect on model performance and output. Reconstructions on independent palaeo-data were comparable to a less sample-dense and more geographically restricted North American model (Booth, 2008). Taken together, these multiple strands of evidence suggest that our new model can be used as an effective tool to reconstruct peatland palaeohydrology throughout the North American continent. More ecologically bespoke regional models may still provide reliable reconstructions within and potentially even outside of their geographical limits (Turner et al., 2013; Willis et al., 2015) and have an important role to play in ongoing research where they suit specific research questions. However, the volume of data in the continental-scale compiled dataset provides improved modern analogues for many taxa. All four models tested performed similarly in statistical terms, however due to potential issues with spatial autocorrelation and the somewhat abrupt nature of some reconstructed shifts in WTD with WMAT K5 and ML (Figure 6), as well as the differing magnitude of ML reconstructions (Figure 6A and B), we favour WA-based models. A pruned WA-Tol (inv) model marginally outperformed WAPLS C2 and produced reconstructions slightly more aligned to the model of Booth (2008), so WA-Tol (inv) is our preferred model choice.

The variability of p values for significance testing of transfer function reconstructions (Telford and Birks, 2011b) between sites and models trained on the same data brings the use of the 'randomTF' test into further question (Amesbury et al., 2016; Payne et al., 2016). Across all model types and eco-regions, no reconstructions from Lac Le Caron had p values <0.05. Eco-region model reconstructions for Framboise varied widely between 0.007 and 0.782. At Framboise, NF and ETF model reconstructions were both significant (0.015 and 0.007 respectively), whereas MWCF and taiga model reconstructions were non-significant (0.471 and 0.485 respectively), despite showing extremely similar patterns of change (Figure 7; Table 5). Given that the efficacy of the 'randomTF' method has been recently reviewed and questioned (Amesbury et al., 2016; Payne et al., 2016), these results further call into question the usefulness of this test.

To make transfer functions more openly accessible to the research community and to facilitate users' own application of the model to fossil data, we provide the full compiled North American dataset along with R code to apply the WA-Tol (inv) model as supplementary information to this manuscript. In addition, site-based datasets preserving the original taxonomy of the individual studies are available through the Neotoma Paleoecological Database (www.neotomadb.org).

4.2. North-American regional variability

Biogeographical patterns that are evident in the dataset appear to be largely driven either by sampling frequency or restricted to particular eco-regions (e.g. NFM). Outside of these limitations, biogeographical differences occurred against a background of relative cosmopolitanism across the dataset. For example, the finding that *H. papilio* occurred across all eco-regions is particularly interesting given recent evidence suggesting that it displays geographical patterns of both genotypic and phenotypic diversity in other regions (Heger et al., 2013; Amesbury et al., 2016). This observation is reassuring for the broader applicability of transfer functions across large geographical areas. Although we used only a moderate taxonomic resolution (higher than for a European compilation; Amesbury et al., 2016) that did not allow us to identify the full complexity of biogeographic patterns, and hence may

have caused us to miss some discrepancies in taxa hydrological optima, this potential loss of information did not result in poor model performance. Even though a higher taxonomic resolution may permit the development of more precise transfer function models it appears that the taxonomic scheme currently used by ecologists and palaeoecologists is robust and the resulting model performance satisfactory.

Taxa optima were broadly consistent across eco-region models (Figure S7), with mean variability between eco-region models of 11.6 cm. Highly variable water table depth optima for individual taxa tended to be driven by poor characterisation. For example, Difflugia rubescens and Arcella gibbosa both had tightly clustered optima across a majority of models, with outlying values for the MCWF model only driving the two highest values for overall optima range; in that model, the optima for both taxa were driven by occurrence in a single sample (from 191 samples in the model; Table 3), both at <2%. Likewise, the outlying optima for Padaungiella lageniformis in the NF model was driven by only 6 occurrences (from 915 samples in the model; Table 3), never at >1% abundance. Thus, whilst the variability evident between taxa optima across eco-regions may be partly driven by genuine biogeographical differences, the overall consistency provides support for continental-scale compilation. The variability in eco-region model reconstructions illustrates a potential advantage of sample dense continental-scale compilations. In particular, the NFM model produced anomalous reconstructions that were significantly drier (i.e. higher WTD) than other eco-region models and also anomalous when viewed as z-scores. Although not clearly outlying and therefore included in the data analysis, this was the only region to be partly clustered in the NMDS analysis (section 3.1) and was relatively taxa poor. All sites in this eco-region were from the Rocky Mountains and, although Sphagnum-dominated, were typically fens and included sites that were fed by highly acidic and iron-rich groundwater (Booth and Zygmunt, 2005), which appears to have driven a distinct local flora. Although this produced anomalous results for a regionalscale model, when these data were included in a continental-scale model, potentially confounding factors did not overtly effect the magnitude or direction of change of the reconstruction (Figure 7), whilst valuable ecological information was maintained.

4.3. Spatial scales for transfer function development

Continental-scale models from North America and Europe, as well as a combined model, reconstructed independent test data from both continents identically, in terms of palaeohydrological interpretation. Despite some variability, water table depth optima were also broadly aligned between continents (Figure 9). Modelled water table depth optima and taxa distribution may vary on local or regional scales due to differences in peatland type (e.g. forested vs. non-forested; Beaulne et al., 2018), climatic context (Booth and Zygmunt, 2005) or the influence of non-linear processes such as permafrost (e.g. at the unpublished Scotty Creek and Toolik sites (Table 1); see also Lamarre et al., 2013). However, the relative position and ecological niches of taxa in respect to surface wetness is often more consistent (Booth and Zygmunt, 2005; Beaulne et al., 2018). Our comparison of water table depth optima and rank between European and North American compilations showed that, with the exception of a single anomalous taxon, differences were relatively small (Figure 9) and importantly, did not have a noticeable effect on reconstructions of test data from both within and outside of each continent, especially when viewed as residual values (Figure 8; Swindles et al., 2015a). Therefore, it appears that potentially confounding climatic or peatland type differences that may exist within continental-scale compiled datasets are compensated by more in-depth characterisation of the average ecological niche of each taxon.

These findings also support the recent assertion that transfer functions trained on very large datasets perform well due to the vastly increased number of analogues contained within them, which provide a better representation of testate amoeba ecology than less populated local- or regional-scale models where modern analogues may be either lacking or based on low numbers of samples for some taxa (Amesbury et al., 2016). In a test of regional and supra-regional application of transfer functions, the

only difference between reconstructions was in the absolute magnitude of change (i.e. in reconstructed water table depth values), with direction of change, the most reliable variable for palaeoclimatic interpretation, consistent (Turner et al., 2013; Swindles et al., 2015a). Given that the recent suggestion to display transfer function output as standardised z-scores (Swindles et al., 2015a; Amesbury et al., 2016) tends to mitigate magnitude differences, we therefore advocate the further development and use of continental-scale models that maximise modern analogue quality without losing reconstructive skill and provide standard reconstruction tools with directly comparable results.

Continental-scale models from North America (this study) and Europe (Amesbury et al., 2016) have similar performance statistics than regional- or local-scale models, but potentially offer additional scientific benefit. The compilation and taxonomic harmonisation of such datasets, alongside their archiving in freely available repositories (e.g. Neotoma), permits further community-driven effort towards a better understanding of wide-scale testate amoeba ecology and biogeography that can contextualise and enhance the interpretation of transfer function results. In addition, the lack of significant reduction in performance statistics and similarity of reconstructions produced by a combined North American and European model, when compared to the two continental-scale models suggests that any geographical limit of scale beyond which further compilation of peatland testate amoebae data would not be beneficial, has not yet been reached. We therefore call for the continued synthesis of modern testate amoeba data, particularly for Eurasia. Our results show that harmonisation of this data alongside existing datasets may permit a future Holarctic synthesis of peatland testate amoeba ecology and biogeography. A potential challenge when extending beyond the Holarctic realm is that additional Southern Hemisphere specific taxa (e.g. Alocodera, Apodera, Certesella) will need to be considered, while many characteristic taxa of northern peatlands will be missing (e.g. Planocarina, Hyalosphenia papilio).

5. Conclusions

684

685

686

687

688

689

690

691 692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708 709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727 728

729

730

731

732

We compiled a dataset of 1956 modern surface testate amoeba samples from 137 peatlands located throughout the United States of America and Canada. Following data management procedures, a reduced dataset of 1927 samples was used, following exploratory NMDS analysis, to develop continental-scale transfer function models. These models were tested using a range of statistical approaches and application to independent palaeo-data. Though all pruned models tested were valid, WA-Tol (inv) was selected as our preferred model choice. Our new model provides an effective, standardised tool for reconstructing peatland palaeohydrology throughout the North American continent. Using the compiled dataset and models based on EPA Level 1 eco-regions, we examined regional variability within the dataset. Some regions and taxa demonstrated differences in taxonomic diversity and/or biogeography, but these were set against a broad pattern of cosmopolitanism across the dataset. To examine the potential for a future Holarctic synthesis of peatland testate amoeba data, we combined our new North American dataset with an existing recent compilation from Europe to form a combined dataset of >3700 samples. Model outputs from this compilation were equivalent to the North American and European models independently, suggesting that there is scope for further merging of data to develop a future Holarctic dataset and transfer function. Such a dataset would be an extremely valuable community resource, allowing collaborative examination of peatland testate amoeba ecological and biogeographical patterns to an extent not currently possible.

Acknowledgements

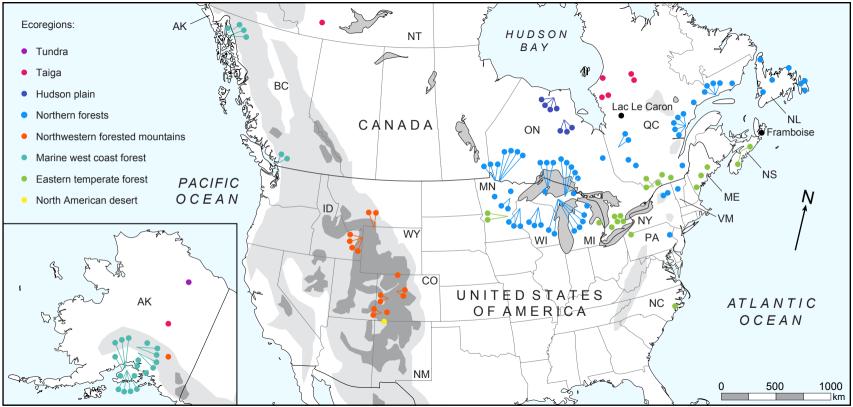
We gratefully acknowledge and thank the many landowners and data collectors that have helped to facilitate the many fieldwork campaigns that eventually led to our new database of North American testate amoebae, but who are too numerous to list individually here. Compilation of the individual datasets and their submission to the Neotoma Paleoecology Database was supported by EAR-1550716

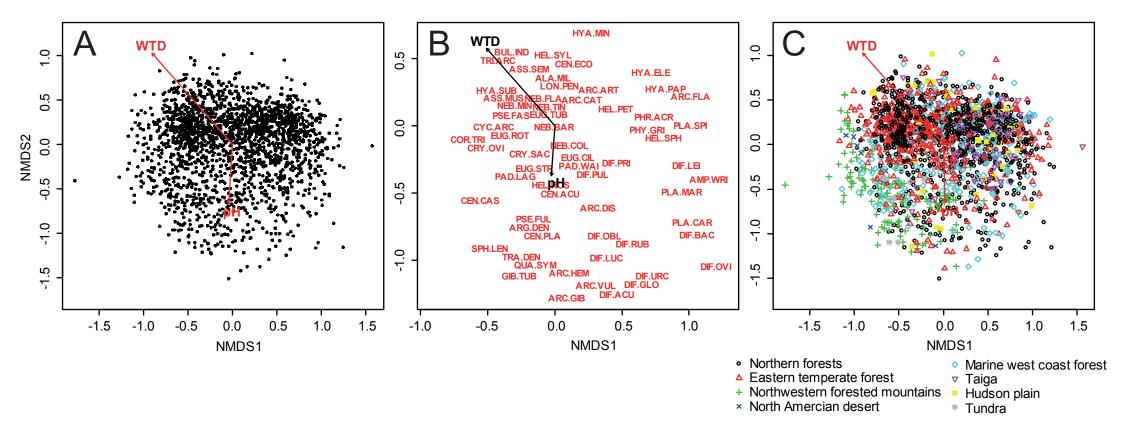
- 733 under the guidance of RKB. RKB was also funded by the National Science Foundation (EAR-0902441,
- 734 ATM-0625298) and the Untied State Geological Survey (USGS-DOI cooperative agreement
- 735 06ERAG0019). MJA, DJC, PDMH and HM were funded by the UK Natural Environment Research Council
- 736 (grants NE/G019851/1, NE/G020272/1, NE/G019673/1 and NE/G02006X/1). HM was also funded by a
- 737 UK Quaternary Research Association New Research Workers' Award. RJP was funded by the Russian
- 738 Science Foundation (grant 14-14-00891). EADM was funded by the University of Alaska Anchorage and
- 739 the Swiss National Science Foundation (grants 205321-109709/1 and 205321-109709/2). JT and NP
- 740 were funded by the National Sciences and Engineering Research Council of Canada (grant No: 2014-
- 741 05878)

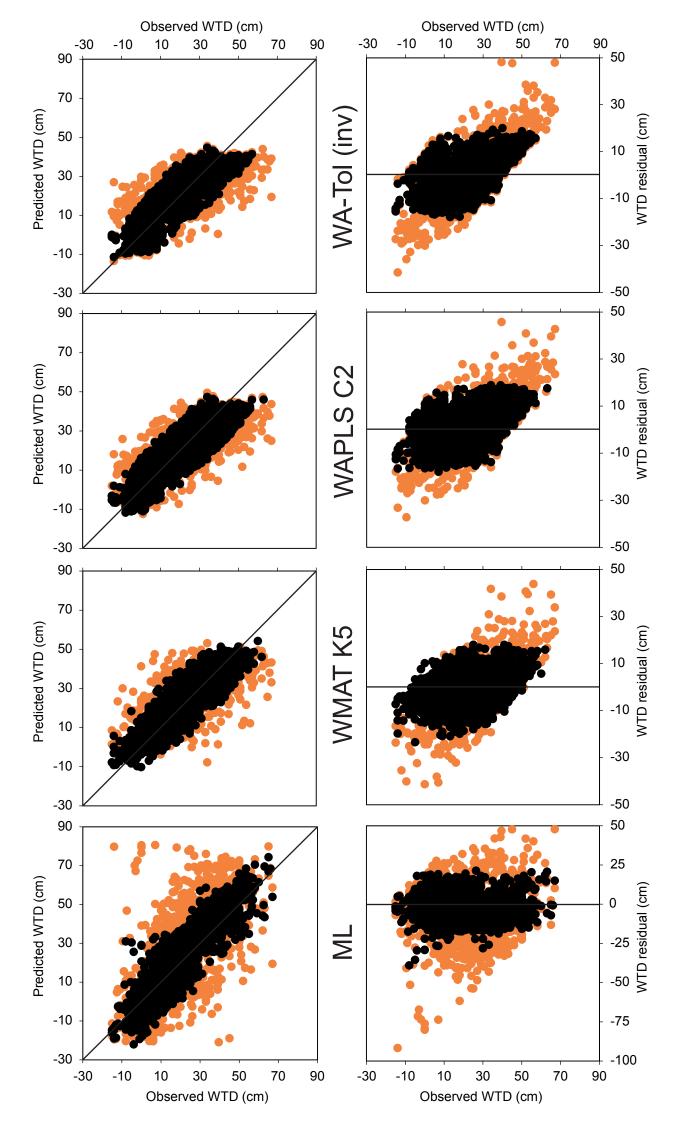
742743

References

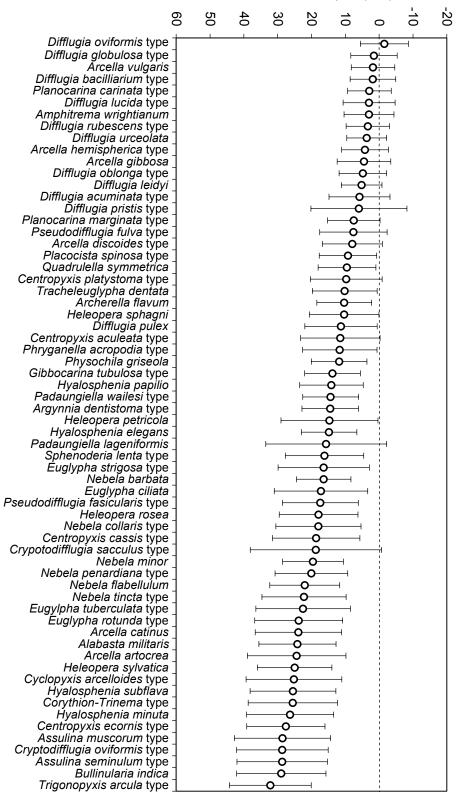
- Amesbury, M.J., Mallon, G., Charman, D.J., Hughes, P.D.M., Booth, R.K., Daley, T.J., Garneau, M., 2013.
- 745 Statistical testing of a new testate amoeba-based transfer function for water-table depth reconstruction
- on ombrotrophic peatlands in north-eastern Canada and Maine, United States. J. Quat. Sci. 28, 27–39.
- 747 Amesbury, M.J., Swindles, G.T., Bobrov, A., Charman, D.J., Holden, J., Lamentowicz, M., Mallon, G.,
- Mazei, Y.A., Mitchell, E.A.D., Payne, R.J., Roland, T.P., Turner, T.E., Warner, B.G., 2016. Development of
- 749 a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology.
- 750 Quat. Sci. Rev. 152, 132-151.
- 751 Baas Becking, L.G.M., 1934. Geobiologie of Inleiding tot de Milieukunde. The Hague: Van Stockum &
- 752 Zoon.
- 753 Beaulne, J., Magnan, G., Garneau, M., 2018. Evaluating the potential of testate amoebae as indicators
- of hydrological conditions in boreal forested peatlands. Ecol. Indic. 91, 386-394.
- Beyens, L., Bobrov, A., 2016. Evidence supporting the concept of a regionalized distribution of testate
- amoebae in the Arctic. Acta Protozool. 55, 197–209.
- 757 Bobrov, A.A., Charman, D.J., Warner, B.G., 1999. Ecology of testate amoebae (Protozoa: Rhizopoda)
- on peatlands in western Russia with special attention to niche separation in closely related taxa.
- 759 Protist 150, 125-136.
- 760 Booth, R.K., 2001. Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands:
- 761 implications for paleoecology and environmental monitoring. Wetlands 21, 564–576.
- 762 Booth, R.K., 2002. Testate amoebae as paleoindicators of surface-moisture changes on Michigan
- 763 peatlands: modern ecology and hydrological calibration. J. Paleolimnol. 28, 329-348.
- 764 Booth, R.K., 2008. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-
- dominated peatlands of North America. J. Quat. Sci. 23, 43–57.
- Booth, R.K., Sullivan, M.E., Sousa, V.A., 2008. Ecology of testate amoebae in a North Carolina pocosin
- and their potential use as environmental and paleoenvironmental indicators. Écoscience 15, 277-289.
- 768 Booth, R.K., Zygmunt, J.R., 2005. Biogeography and comparative ecology of testate amoebae inhabiting
- 769 Sphagnum-dominated peatlands in the Great Lakes and Rocky Mountain regions of North America.
- 770 Divers. Distrib. 11, 577-590.
- 771 Charman, D.J., Warner, B.G., 1997. The ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic
- 772 peatlands in Newfoundland, Canada: Modelling hydrological relationships for palaeoenvironmental
- 773 reconstruction. Écoscience 4, 555-562.
- 774 Charman, D.J., Blundell, A., ACCROTELM Members, 2007. A new European testate amoebae transfer
- function for palaeohydrological reconstruction on ombrotrophic peatlands. J. Quat. Sci. 22, 209–221.

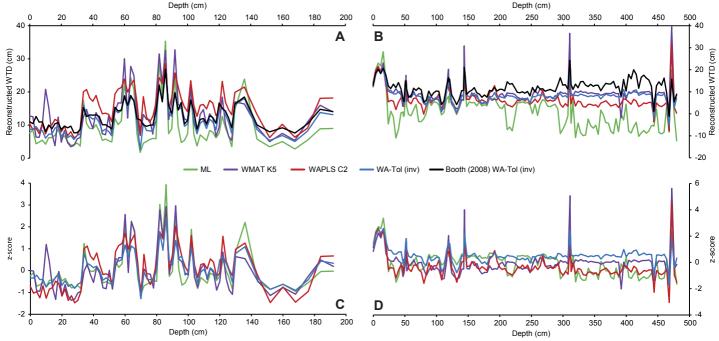

- 776 Charman, D.J., Warner, B.G., 1992. Relationship between testate amoebae (Protozoa: Rhizopoda) and
- 777 microenvironmental parameters on a forested peatland in northeastern Ontario. Can. J. Zool. 70, 2474-
- 778 2482.
- De Wit, R., Bouvier, T., 2006. "Everything is everywhere, but, the environment selects"; what did Baas
- 780 Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758.
- Duckert, C., Blandenier, Q., Kupferschmid, F.A.L., Kosakyan, A., Mitchell, E.A.D., Lara, E., Singer, D.
- 782 2018 in press. En garde! Redefinition of Nebela militaris (Arcellindia, Hyalospheniidae) and erection of
- 783 Alabasta gen. nov. Eur. J. Protistol.
- Fernández, L.D., Fournier, B., Rivera, R., Lara, E., Mitchell, E.A.D., Hernández, C.E., 2016. Water-energy
- balance, past ecological perturbations and evolutionary constraints shape the latitudinal diversity
- gradient of soil testate amoebae in south-western South America. Glob. Ecol. Biogeogr. 25, 1216–1227.
- 787 Foissner, W., 2006. Biogeography and dispersal of micro-organisms: A review emphasizing protists. Acta
- 788 Proto 45, 111-136.
- 789 Foissner, W., 2008. Protist diversity and distribution: some basic considerations. Biodivers. Conserv. 17,
- 790 235-242.
- 791 Fournier, B., Coffey, E.E.D., van der Knaap, W.O., Fernández, L.D., Bobrov, A., Mitchell, E.A.D., 2015. A
- 792 legacy of human-induced ecosystem changes: Spatial processes drive the taxonomic and functional
- 793 diversities of testate amoebae in Sphagnum peatlands of the Galápagos. J. Biogeogr. 43, 533–543.
- Geisen, S., Mitchell, E.A.D., Wilkinson, D.M., Adl, S., Bonkowski, M., Brown, M.W., Fiore-Donno, A.M.,
- Heger, T.J., Jassey, V.E.J., Krashevska, V., Lahr, D.J.G., Marcisz, K., Mulot, M., Payne, R., Singer, D.,
- Anderson, O.R., Charman, D.J., Ekelund, F., Griffiths, B.S., Rønn, R., Smirnov, A., Bass, D., Belbahri, L.,
- 797 Berney, C., Blandenier, Q., Chatzinotas, A., Clarholm, M., Dunthorn, M., Feest, A., Fernández, L.D.,
- Foissner, W., Fournier, B., Gentekaki, E., Hájek, M., Helder, J., Jousset, A., Koller, R., Kumar, S., La Terza,
- A., Lamentowicz, M., Mazei, Y., Santos, S.S., Seppey, C.V.W., Spiegel, F.W., Walochnik, J., Winding, A.,
- 800 Lara, E., 2017. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol. Biochem.
- 801 111, 94-103.
- Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for
- 803 education and data analysis. Palaeontol. Electron. 4, 9pp. http://palaeo-
- 804 electronica.org/2001_1/past/issue1_01.htm.
- Heger, T.J., Mitchell, E.A.D., Leander, B.S., 2013. Holarctic phylogeography of the testate amoeba
- 806 Hyalosphenia papilio (Amoebozoa: Arcellinida) reveals extensive genetic diversity explained more by
- 807 environment than dispersal limitation. Mol. Ecol. 22, 5172–5184.
- Juggins, S., 2013. Quantitative reconstructions in palaeolimnology: New paradigm or sick science? Quat.
- 809 Sci. Rev. 64, 20-32.
- 810 Juggins, S., 2015. Rioja: Analysis of Quaternary Science Data. R Package Version 0.9-5. https://cran.r-
- 811 project.org/web/packages/rioja/index.html.
- Kosakyan, A., Lahr, D.J.G., Mulot, M., Meisterfeld, R., Edward, A., Mitchell, D., Lara, E., 2016.
- Phylogenetic reconstruction based on COI reshuffles the taxonomy of hyalosphenid shelled testate
- amoebae and reveals the convoluted evolution of shell plate shapes. Cladistics 32, 606-623.
- 815 Laggoun-Défarge, F., Mitchell, E., Gilbert, D., Disnar, J.R., Comont, L., Warner, B.G., Buttler, A., 2008.
- 816 Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and
- 817 testate amoebae). J. Appl. Ecol. 45, 716–727.

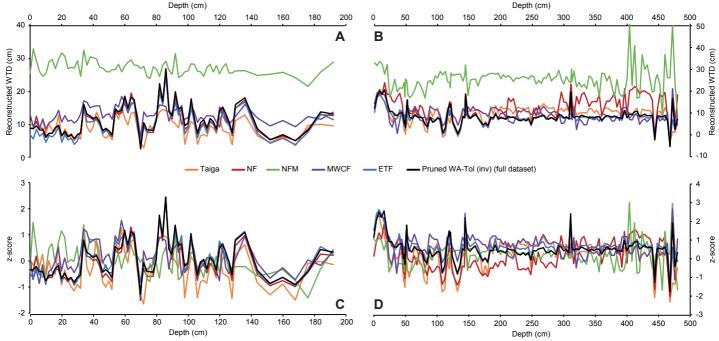

- 818 Lamarre, A., Garneau, M., Asnong, H., 2012. Holocene paleohydrological reconstruction and carbon
- accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik,
- 820 subarctic Québec, Canada. Rev. Palaeobot. Palynol. 186, 131-141.
- 821 Lamarre, A., Magnan, G., Garneau, M., Boucher, É., 2013. A testate amoeba-based transfer function for
- 822 paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quat.
- 823 Int. 306, 88-96.
- Lamentowicz, L., Lamentowicz, M., Gałka, M., 2008. Testate amoebae ecology and a local transfer
- function from a peatland in western Poland. Wetlands 28, 164–175.
- Lamentowicz, M., Mitchell, E.A.D., 2005. The ecology of testate amoebae (protists) in Sphagnum in
- north-western Poland in relation to peatland ecology. Microb. Ecol. 50, 48–63.
- 828 Lara, E., Roussel-Delif, L., Fournier, B., Wilkinson, D.M., Mitchell, E.A.D., 2016. Soil microorganisms
- 829 behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate
- 830 amoebae. J. Biogeogr. 43, 520-532.
- 831 Li, H., Wang, S., Zhao, H., Wang, M., 2015. A testate amoebae transfer function from Sphagnum-
- dominated peatlands in the Lesser Khingan Mountains, NE China. J. Paleolimnol. 54, 189–203.
- 833 Magnan, G., Garneau, M., 2014. Evaluating long-term regional climate variability in the maritime region
- 834 of the St. Lawrence North Shore (eastern Canada) using a multi-site comparison of peat-based
- paleohydrological records. J. Quat. Sci. 29, 209–220.
- Marcisz, K., Lamentowicz, Ł., Słowińska, S., Słowiński, M., Muszak, W., Lamentowicz, M., 2014. Seasonal
- 837 changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur. J.
- 838 Protistol. 50, 445-455.
- 839 Markel, E.R., Booth, R.K., Yangmin Qin, 2010. Testate amoebae and ¹³C of Sphagnum as surface-
- moisture proxies in Alaskan peatlands. The Holocene 20, 463–475.
- 841 Mitchell, E.A.D., Charman, D.J., Warner, B.G., 2008. Testate amoebae analysis in ecological and
- paleoecological studies of wetlands: Past, present and future. Biodivers. Conserv. 17, 2115–2137.
- Oliverio, A.M., Lahr, D.J.G., Nguyen, T., Katz, L. a., 2014. Cryptic diversity within morphospecies of
- testate amoebae (Amoebozoa: Arcellinida) in New England bogs and fens. Protist 165, 196–207.
- O'Malley, M.A., 2008. "Everything is everywhere: but the environment selects": ubiquitous distribution
- and ecological determinism in microbial biogeography. Stud. Hist. Philos. Sci. Part C Stud. Hist. Philos.
- 847 Biol. Biomed. Sci. 39, 314-325.
- O'Malley, M.A., 2007. The nineteenth century roots of "everything is everywhere." Nat. Rev. Microbiol.
- 849 5, 647-651.
- 850 Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., Hara, R.B.O., Simpson, G.L., Solymos,
- P., Stevens, M.H.H., Wagner, H., 2015. Package "vegan" version 2.3-1.
- Payne, R.J., Babeshko, K. V., van Bellen, S., Blackford, J.J., Booth, R.K., Charman, D.J., Ellershaw, M.R.,
- 853 Gilbert, D., Hughes, P.D.M., Jassey, V.E.J., Lamentowicz, L., Lamentowicz, M., Malysheva, E.A., Mauquoy,
- 854 D., Mazei, Y.A., Mitchell, E.A.D., Swindles, G.T., Tsyganov, A., Turner, T.E., Telford, R.J., 2016. Significance
- testing testate amoeba water table reconstructions. Quat. Sci. Rev. 138, 131–135.
- Payne, R.J., Kishaba, K., Blackford, J.J., Mitchell, E.A.D., 2006. Ecology of testate amoebae (Protista) in
- 857 south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies. The
- 858 Holocene 16, 403-414.

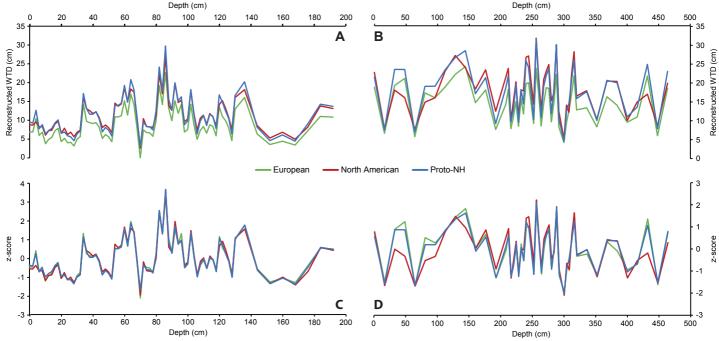

- 859 Payne, R.J., Mitchell, E.A.D., 2007. Ecology of Testate Amoebae from Mires in the Central Rhodope
- 860 Mountains, Greece and Development of a Transfer Function for Palaeohydrological Reconstruction.
- 861 Protist 158, 159-171.
- 862 Payne, R.J., Charman, D.J., Matthews, S., Eastwood, W.J., 2008. Testate amoebae as
- palaeohydrological proxies in Sürmene Ağaçbaşi Yaylasi peatland (northeast Turkey). Wetlands 28,
- 864 311-323.
- 865 Payne, R.J., Ryan, P.A., Nishri, A., Gophen, M., 2010. Testate amoeba communities of the drained Hula
- 866 wetland (Israel): Implications for ecosystem development and conservation management. Wetl. Ecol.
- 867 Manag. 18, 177-189.
- 868 Payne, R.J., Lamentowicz, M., Mitchell, E.A.D., 2011. The perils of taxonomic inconsistency in
- 869 quantitative palaeoecology: Experiments with testate amoeba data. Boreas 40, 15-27.
- Payne, R.J., Telford, R.J., Blackford, J.J., Blundell, A., Booth, R.K., Charman, D.J., Lamentowicz, M.,
- 871 Mitchell, E.A.D., Potts, G., Swindles, G.T., Warner, B.G., Lamentowicz, L., Woodland, W.A., 2012. Testing
- peatland testate amoeba transfer for clustered training-sets. The Holocene 22, 819–825.
- Pelletier, N., Talbot, J., Olefeldt, D., Turetsky, M.R., Blodau, C., Sonnentag, O., Quinton, W.L., 2017.
- 874 Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a
- peatland complex in northwestern Canada. The Holocene 27, 1391-1405.
- Pérez-Juárez, H., Serrano-Vázquez, A., Kosakyan, A., Mitchell, E.A.D., Rivera Aguilar, V.M., Lahr, D.J.G.,
- Hernández Moreno, M.M., Cuellar, H.M., Eguiarte, L.E., Lara, E., 2017. Quadrulella texcalense sp. nov.
- 878 from a Mexican desert: An unexpected new environment for hyalospheniid testate amoebae. Eur. J.
- 879 Protistol. 61, 253-264.
- Reczuga, M.K., Swindles, G.T., Grewling, Ł., Lamentowicz, M., 2015. Arcella peruviana sp. nov.
- 881 (Amoebozoa: Arcellinida, Arcellidae), a new species from a tropical peatland in Amazonia. Eur. J.
- 882 Protistol. 51, 437-449.
- 883 Roe, H.M., Elliott, S.M., Patterson, R.T., 2017. Re-assessing the vertical distribution of testate amoeba
- 884 communities in surface peats: implications for palaeohydrological studies. Eur. J. Protistol.
- 885 Roland, T.P., Amesbury, M.J., Wilkinson, D.M., Charman, D.J., Convey, P., Hodgson, D.A., Royles, J.,
- 886 Clauß, S., Völcker, E., 2017. Taxonomic implications of morphological complexity within the testate
- amoeba genus Corythion from the Antarctic Peninsula. Protist 168, 565-585.
- Singer, D., Kosakyan, A., Seppey, C.V.W., Pillonel, A., Fernández, L.D., Fontaneto, D., Mitchell, E.A.D.,
- 889 Lara, E., 2018. Environmental filtering and phylogenetic clustering correlate with the distribution
- patterns of cryptic protist species. Ecology 99, 904–914.
- 891 Smith, H.G., Bobrov, A., Lara, E., 2008. Diversity and biogeography of testate amoebae. Biodivers.
- 892 Conserv. 17, 329-343.
- 893 Smith, H.G., Wilkinson, D.M., 2007. Not all free-living microorganisms have cosmopolitan distributions
- the case of Nebela (Apodera) vas Certes (Protozoa: Amoebozoa: Arcellinida). J. Biogeog. 34, 1822-
- 895 1831.
- 896 Sullivan, M.E., Booth, R.K., 2011. The potential influence of short-term environmental variability on the
- composition of testate amoeba communities in Sphagnum peatlands. Microb. Ecol. 62, 80–93.
- 898 Swindles, G.T., Charman, D.J., Roe, H.M., Sansum, P.A., 2009. Environmental controls on peatland
- 899 testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: Implications for Holocene palaeoclimate
- 900 studies. J. Paleolimnol. 42, 123-140.

- 901 Swindles, G.T., Lawson, I.T., Matthews, I.P., Blaauw, M., Daley, T.J., Charman, D.J., Roland, T.P., Plunkett,
- 902 G.M., Schettler, G., Gearey, B.R., Turner, T.E., Rea, H.A., Roe, H.M., Amesbury, M.J., Chambers, F.M.,
- Holmes, J., Mitchell, F.J.G., Blackford, J.J., Blundell, A., Branch, N., Holmes, J., Langdon, P.G., McCarroll,
- J., McDermott, F., Oksanen, P.O., Pritchard, O., Stastney, P., Stefanini, B., Young, D., Wheeler, J., Becker,
- 905 K., 2013. Centennial-scale climate change in Ireland during the Holocene. Earth-Science Rev. 126, 300-
- 906 320.
- 907 Swindles, G.T., Reczuga, M., Lamentowicz, M., Raby, C.L., Turner, T.E., Charman, D.J., Gallego-Sala, A.,
- Valderrama, E., Williams, C., Draper, F., Honorio Coronado, E.N., Roucoux, K.H., Baker, T., Mullan, D.J.,
- 2014. Ecology of testate amoebae in an Amazonian peatland and development of a transfer function
- 910 for palaeohydrological reconstruction. Microb. Ecol. 68, 284–298.
- 911 Swindles, G.T., Holden, J., Raby, C.L., Turner, T.E., Blundell, A., Charman, D.J., Menberu, M.W., Kløve, B.,
- 912 2015a. Testing peatland water-table depth transfer functions using high-resolution hydrological
- 913 monitoring data. Quat. Sci. Rev. 120, 107–117.
- 914 Swindles, G.T., Morris, P.J., Mullan, D., Watson, E.J., Turner, T.E., Roland, T.P., Amesbury, M.J., Kokfelt,
- 915 U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D.J., Sanderson, N., Garneau, M., Carrivick, J.,
- 916 Woulds, C., Holden, J., Parry, L., Galloway, J.M., 2015b. The long-term fate of permafrost peatlands
- 917 under rapid climate warming. Nat. Sci. Reports. 5:17951. doi: 10.1038/srep17951.
- 918 Swindles, G.T., Amesbury, M.J., Turner, T.E., Carrivick, J.L., Woulds, C., Raby, C.L., Mullan, D.J., Roland,
- 719 T.P., Galloway, J.M., Parry, L.E., Kokfelt, U., Garneau, M., Charman, D.J., Holden, J., 2015c. Evaluating
- the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands.
- 921 Palaeogeogr. Palaeoclimatol. Palaeoecol. 424, 111-122.
- 722 Talbot, J., Richard, P.J.H., Roulet, N.T., Booth, R.K., 2010. Assessing long-term hydrological and ecological
- responses to drainage in a raised bog using paleoecology and a hydrosequence. J. Veg. Sci. 21, 143-156.
- 924 Telford, R.J., Birks, H.J.B., 2005. The secret assumption of transfer functions: Problems with spatial
- autocorrelation in evaluating model performance. Quat. Sci. Rev. 24, 2173–2179.
- 926 Telford, R.J., Birks, H.J.B., 2009. Evaluation of transfer functions in spatially structured environments.
- 927 Quat. Sci. Rev. 28, 1309–1316.
- 728 Telford, R.J., Birks, H.J.B., 2011a. Effect of uneven sampling along an environmental gradient on transfer-
- 929 function performance. J. Paleolimnol. 46, 99–106.
- 730 Telford, R.J., Birks, H.J.B., 2011b. A novel method for assessing the statistical significance of quantitative
- reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278.
- 732 Telford, R.J., 2015. palaeoSig: Significance Tests for Palaeoenvironmental Reconstructions. R Package
- 933 Version 1.1-3. https://cran.r-project.org/web/packages/palaeoSig/.
- 734 Turner, T.E., Swindles, G.T., Charman, D.J., Blundell, A., 2013. Comparing regional and supra-regional
- 935 transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr.
- 936 Palaeoclimatol. Palaeoecol. 369, 395-408.
- 937 van Bellen, S., Garneau, M., Booth, R.K., 2011. Holocene carbon accumulation rates from three
- 938 ombrotrophic peatlands in boreal Quebec, Canada: Impact of climate-driven ecohydrological change.
- 939 Holocene 21, 1217-1231.
- van Bellen, S., Mauquoy, D., Payne, R.J., Roland, T.P., Daley, T.J., Hughes, P.D.M., Loader, N.J., Street-
- Perrott, F.A., Rice, E.M., Pancotto, V. a., Bellen, S.V.A.N., 2014. Testate amoebae as a proxy for
- reconstructing Holocene water table dynamics in southern Patagonian peat bogs. J. Quat. Sci. 29, 463-
- 943 474.


- van Bellen, S., Mauquoy, D., Hughes, P.D., Roland, T.P., Daley, T.J., Loader, N.J., Street-Perrott, F.A., Rice,
- 945 E.M., Pancotto, V.A., Payne, R.J., 2016. Late-Holocene climate dynamics recorded in the peat bogs of
- 746 Tierra del Fuego, South America. The Holocene 26, 489–501.
- 947 Warner, B.G., 1987. Abundance and Diversity of Testate Amoebae (Rhizopoda, Testacea) in Sphagnum
- 948 Peatlands in Southwestern Ontario, Canada. Arch. fur Protistenkd. 133, 173–189.
- 949 Warner, B.G., Charman, D.J., 1994. Holocene changes on a peatland in northwestern Ontario
- 950 interpreted from testate amoebae (Protozoa) analysis. Boreas 23, 270–279.
- 951 Willis, K.S., Beilman, D., Booth, R.K., Amesbury, M.J., Holmquist, J., MacDonald, G., 2015. Peatland
- 952 paleohydrology in southern West Siberian Lowlands: Comparison of multiple testate amoeba transfer
- 953 functions, sites, and Sphagnum ¹³C values. The Holocene 25, 1425–1436.
- 954 Woodland, W.A., Charman, D.J., Sims, P.C., 1998. Quantitative estimates of water tables and soil
- moisture in Holocene peatlands from testate amoebae. The Holocene 8, 261–273.
- 256 Zhang, H., Piilo, S.R., Amesbury, M.J., Charman, D.J., Gallego-Sala, A. V., Väliranta, M.M., 2018. The
- 957 role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change
- over the last millennium. Quat. Sci. Rev. 182, 121–130.







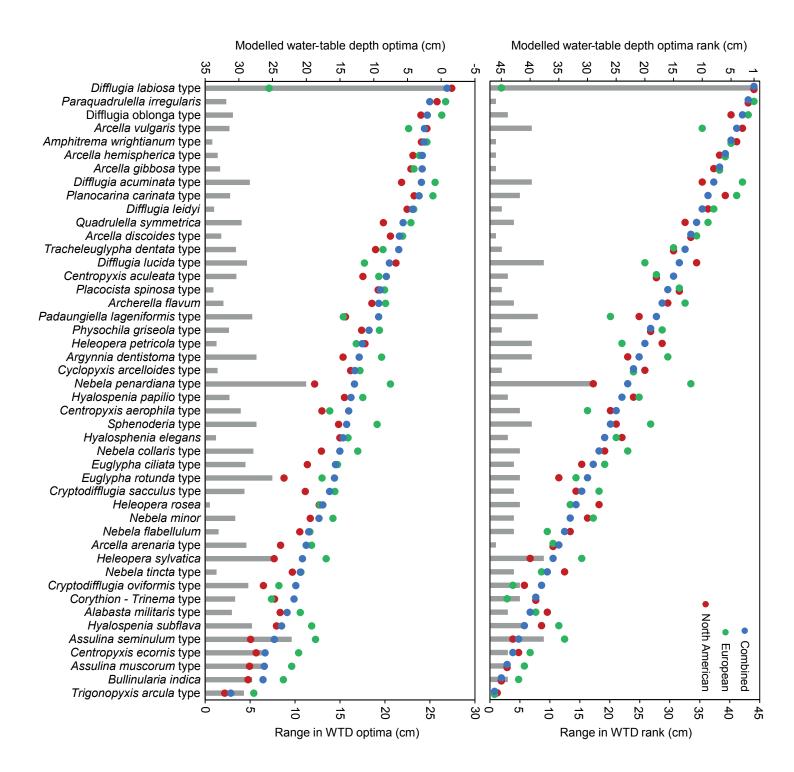

Water table depth (cm)

Table 1: Site details and meta-data. Data ordered by year of publication/surname and listed alphabetically by site name. For Warner and Charman (1994), sample codes could not be confidently linked to specific sites, so only the total number of samples in the dataset is shown.

Reference	State/Province, Country	Site name	Lat (°)	Long (°)	Number of samples
Warner (1987)	Ontario, Canada	Chesney	43.226	-80.644	4
Warner (1987)	Ontario, Canada	Ellice Huckleberry Marsh	43.481	-80.949	2
Warner (1987)	Ontario, Canada	Kossuth	43.449	-80.359	3
Warner (1987)	Ontario, Canada	Sifton	42.970	-81.323	6
Warner (1987)	Ontario, Canada	Summit Muskeg Preserve	43.231	-80.052	7
Charman and Warner (1992)	Ontario, Canada	Wally Creek	49.076	-80.537	108
Warner and Charman (1994)	Minnesota, USA	Beckman Lake	45.421	-93.186	
Warner and Charman (1994)	Ontario, Canada	Buriss	48.666	-93.632	
Warner and Charman (1994)	Minnesota, USA	Cedar Lake	45.412	-93.198	
Warner and Charman (1994)	Ontario, Canada	Emo	48.702	-93.825	
Warner and Charman (1994)	Ontario, Canada	Fort Frances Airport	48.545	-93.398	49
Warner and Charman (1994)	Ontario, Canada	Kehl Lake	48.579	-93.576	
Warner and Charman (1994)	Ontario, Canada	Pinewood	48.754	-94.290	
Warner and Charman (1994)	Ontario, Canada	Rainy River	48.758	-94.533	
Warner and Charman (1994)	Ontario, Canada	Stratton	48.680	-94.124	
Booth (2001), Booth (2002)	Michigan, USA	Grand Traverse Bay	47.166	-88.255	40
Booth (2001), Booth (2002)	Michigan, USA	Tahquamenon	46.475	-84.995	55
Booth (2002), Booth (2008)	Michigan, USA	Adam's Trail	46.547	-86.06	21
Booth (2002)	Michigan, USA	Au Train	46.548	-86.059	23
Booth (2002)	Michigan, USA	Independence	47.419	-88.01	29
Booth (2002), Booth (2008)	Michigan, USA	Minden	43.61	-82.836	43
Booth (2002), Booth (2008)	Michigan, USA	North Rhody	46.583	-86.073	24
Booth (2002)	Michigan, USA	Partridge	47.42	-88.008	22

Booth (2002), Booth (2008)	Michigan, USA	South Rhody	46.565	-86.075	32
Booth (2002)	Michigan, USA	Uncle Sam	47.419	-88.016	8
Booth (2002)	Michigan, USA	West Adam's Trail	46.553	-86.105	4
Booth and Zygmunt (2005)	Colorado, USA	Burro Bridge	37.846	-107.727	8
Booth and Zygmunt (2005)	New Mexico, USA	Chatanooga	36.961	-107.693	14
Booth and Zygmunt (2005)	Wyoming, USA	East Lily	44.954	-109.696	10
Booth and Zygmunt (2005)	Colorado, USA	Henderson A	39.367	-106.583	5
Booth and Zygmunt (2005)	Colorado, USA	Henderson B	39.354	-106.603	8
Booth and Zygmunt (2005)	Colorado, USA	Keystone	38.867	-107.04	9
Booth and Zygmunt (2005)	Wyoming, USA	Lilypad	44.164	-111.008	15
Booth and Zygmunt (2005)	Wyoming, USA	Little Moose	44.976	-109.757	12
Booth and Zygmunt (2005)	Idaho, USA	Lizard	44.156	-111.071	5
Booth and Zygmunt (2005)	Wyoming, USA	Robinson	44.167	-111.071	15
Booth and Zygmunt (2005)	Colorado, USA	Shafer	40.866	-106.605	9
Booth and Zygmunt (2005)	Colorado, USA	South Mineral	37.816	-107.723	8
Booth and Zygmunt (2005)	Colorado, USA	Splain's Gulch	38.834	-107.076	7
Booth and Zygmunt (2005)	Colorado, USA	Wager Gulch	37.878	-107.369	9
Booth and Zygmunt (2005)	Idaho, USA	West Robinson	44.167	-111.075	5
Payne et al. (2006)	Alaska, USA	Bicentennial Park	61.160	-149.743	28
Payne et al. (2006)	Alaska, USA	Clam Gulch	60.239	-151.375	3
Payne et al. (2006)	Alaska, USA	Houston	61.640	-149.863	9
Payne et al. (2006)	Alaska, USA	Jigsaw Lake	60.739	-150.490	18
Payne et al. (2006)	Alaska, USA	Kachemak	59.792	-151.169	8
Payne et al. (2006)	Alaska, USA	Moose Pass	60.509	-149.442	8
Payne et al. (2006)	Alaska, USA	Sheep Creek	62.003	-150.055	9
Payne et al. (2006)	Alaska, USA	Sterling	60.528	-150.518	8
Booth (2008)	Michigan, USA	Big Red Pine	46.253	-86.623	10
Booth (2008)	New York, USA	Bloomingdale	44.383	-74.139	19

Booth (2008)	Wisconsin, USA	Crystal	46.007	-89.605	13
Booth (2008)	Minnesota, USA	Ely	47.446	-92.436	9
Booth (2008)	Wisconsin, USA	Falliston	45.995	-89.613	15
Booth (2008)	Michigan, USA	Grimes	46.276	-86.65	10
Booth (2008)	Michigan, USA	Herron	45.102	-83.639	10
Booth (2008)	Michigan, USA	Hole-in-bog	47.3	-94.249	14
Booth (2008)	Wisconsin, USA	Hornet	46.077	-92.12	15
Booth (2008)	Michigan, USA	Island Camp	46.272	-86.647	11
Booth (2008)	Michigan, USA	Kentucky Trail	46.247	-86.601	10
Booth (2008)	Maine, USA	Orono	44.871	-68.727	18
Booth (2008)	Vermont, USA	Peacham	44.292	-72.873	12
Booth (2008)	Michigan, USA	Small Red Pine	46.238	-86.617	5
Booth (2008)	Wisconsin, USA	Small Sarracenia	46.093	-92.115	10
Booth (2008)	New York, USA	Spring Pond	44.368	-74.499	26
Booth (2008)	Wisconsin, USA	Spruce	46.095	-92.112	8
Booth (2008)	Minnesota, USA	Toivola A	46.927	-92.795	13
Booth (2008)	Minnesota, USA	Toivola B	46.986	-92.888	6
Booth (2008)	Wisconsin, USA	Trout Lake	46.004	-89.594	68
Booth (2008)	Michigan, USA	Upper Twin	46.276	-86.647	10
Booth et al. (2008)	North Carolina, USA	Catfish Pocosin	34.919	-77.088	35
Markel et al. (2010)	Alaska, USA	Brown's Lake	60.471	-150.728	38
Markel et al. (2010)	Alaska, USA	Canaday	64.519	-146.911	8
Markel et al. (2010)	Alaska, USA	Caswell	62.004	-150.060	5
Markel et al. (2010)	Alaska, USA	Funny River	60.415	-150.901	8
Markel et al. (2010)	Alaska, USA	Gate Creek	62.333	-150.545	8
Markel et al. (2010)	Alaska, USA	Jake Lake	62.430	-150.704	7
Markel et al. (2010)	Alaska, USA	Gas Field	60.445	-151.246	24
Markel et al. (2010)	Alaska, USA	Marathon B	60.603	-151.211	5

Markel et al. (2010)	Alaska, USA	No Name	60.640	-151.08	5
Markel et al. (2010)	Alaska, USA	Parks Highway	63.081	-149.527	7
Markel et al. (2010)	Alaska, USA	Richardson	62.604	-145.448	3
Markel et al. (2010)	Alaska, USA	Teardrop Lake	60.472	-150.700	6
Sullivan and Booth (2011)	Pennsylvania, USA	Tannersville	41.037	-75.266	47
Sullivan and Booth (2011)	Pennsylvania, USA	Titus	41.952	-79.759	20
Amesbury et al. (2013)	Newfoundland, Canada	Burnt Village	51.126	-55.927	25
Amesbury et al. (2013)	Nova Scotia, Canada	Colin	45.108	-63.895	27
Amesbury et al. (2013), Charman and Warner (1997)	Newfoundland, Canada	Crooked	49.139	-56.111	14
Amesbury et al. (2013)	Quebec, Canada	Kegaska	50.211	-61.25	4
Amesbury et al. (2013), Lamarre et al. (2013)	Quebec, Canada	Lebel	49.123	-68.292	19
Amesbury et al. (2013), Lamarre et al. (2013)	Quebec, Canada	Manic	49.123	-68.292	30
Amesbury et al. (2013)	Newfoundland, Canada	Nordan's Pond	49.161	-53.598	20
Amesbury et al. (2013), Charman and Warner (1997)	Newfoundland, Canada	Ocean Pond	47.427	-53.438	9
Amesbury et al. (2013)	Nova Scotia, Canada	Petite	45.144	-63.937	16
Amesbury et al. (2013), Lamarre et al. (2013)	Quebec, Canada	Plaine	50.27	-63.54	21
Amesbury et al. (2013)	Maine, USA	Saco	43.553	-70.471	26
Amesbury et al. (2013), Charman and Warner (1997)	Newfoundland, Canada	Sam's River	46.731	-53.519	6
Amesbury et al. (2013)	Quebec, Canada	Sept Isles	50.202	-66.601	6
Amesbury et al. (2013)	Maine, USA	Sidney	44.388	-69.788	24
Amesbury et al. (2013), Charman and Warner (1997)	Newfoundland, Canada	Stephenville	48.55	-58.434	6
Amesbury et al. (2013)	Quebec, Canada	Tourbiere de l'Aeroport	50.275	-63.614	7
Amesbury et al. (2013), Charman and Warner (1997)	Newfoundland, Canada	Witless Bay	47.337	-53.017	4
Lamarre et al. (2013)	Quebec, Canada	Abeille	54.115	-73.327	6
Lamarre et al. (2013)	Quebec, Canada	Baie-M	49.093	-68.243	11
Lamarre et al. (2013)	Quebec, Canada	Baie Commeau	49.097	-68.244	7
Lamarre et al. (2013)	Quebec, Canada	Frontenac	45.966	-71.139	10
Lamarre et al. (2013)	Quebec, Canada	Kuujuarapik	55.226	-77.696	10

Lamarre et al. (2013)	Quebec, Canada	La Grande Bog	53.65	-77.726	10
Lamarre et al. (2013)	Quebec, Canada	La Grande Fen	53.677	-78.216	10
Lamarre et al. (2013)	Quebec, Canada	Lebel-G	49.101	-68.219	10
Lamarre et al. (2013)	Quebec, Canada	Matagami 1	49.752	-77.657	6
Lamarre et al. (2013)	Quebec, Canada	Matagami 2	49.685	-77.732	10
Lamarre et al. (2013)	Quebec, Canada	Morts	50.264	-63.669	17
Lamarre et al. (2013)	Quebec, Canada	Pylone	53.797	-73.327	3
Lamarre et al. (2013)	Quebec, Canada	Roma	50.298	-63.693	25
Lamarre et al. (2013)	Quebec, Canada	Val d'Or	48.187	-77.595	10
Lamarre et al. (2013)	Quebec, Canada	Verendrye	47.303	-76.855	4
Roe et al. (2017)	Ontario, Canada	Alfred	45.494	-74.805	47
Roe et al. (2017)	Ontario, Canada	Mirabel	45.685	-74.045	40
Roe et al. (2017)	Quebec, Canada	Mer Bleue	45.402	-75.486	58
Clifford (unpublished)	British Colombia, Canada	Burns	49.123	-122.970	12
Clifford (unpublished)	British Colombia, Canada	Eagle Creek	58.284	-134.521	12
Clifford (unpublished)	British Colombia, Canada	Fish Creek	58.336	-134.554	12
Clifford (unpublished)	British Colombia, Canada	Point Bridget	58.647	-134.934	12
Clifford (unpublished)	British Colombia, Canada	Point Lena	58.386	-134.746	12
Clifford (unpublished)	British Colombia, Canada	Surrey	49.204	-122.747	12
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Attawapiskat River 1	52.845	-83.927	16
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Attawapiskat River 2	52.720	-83.940	11
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Attawapiskat River 3	52.712	-84.174	5
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Sutton River 1	55.752	-84.525	2
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Sutton River 2	54.676	-84.599	5
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Sutton River 3	54.610	-84.609	5
Finkelstein/Bunbury (unpublished)	Ontario, Canada	Sutton River 4	54.599	-84.640	3
Swindles (unpublished)	Alaska, USA	Toolik	68.624	-149.580	7
Talbot (unpublished)	Ontario, Canada	Folly	45.272	-75.466	1

Talbot (unpublished)	Quebec, Canada	Mont St. Bruno	45.335	-73.215	2
Talbot (unpublished)	Northwest Territories, Canada	Scotty Creek	61.307	-121.298	21
				TOTAL:	1956

 Table 2: Full taxonomy applied in this study.

#	Abbreviation	Full name	Also includes
1	ALA MIL	Alabasta (Nebela) militaris type	
2	AMP WRI	Amphitrema wrightianum type	Amphitrema stenostoma
3	ARC ART	Arcella artocrea	
4	ARC CAT	Arcella catinus type	Arcella arenaria type
5	ARC DIS	Arcella discoides type	
6	ARC GIB	Arcella gibbosa type	
7	ARC HEM	Arcella hemispherica type	Arcella rotundata
8	ARC VUL	Arcella vulgaris type	Arcella crenulata
9	ARC FLA	Archerella flavum	
10	ARG DEN	Argynnia dentistoma type	Nebela dentistoma Nebela vitraea type
11	ASS MUS	Assulina muscorum	The section of the se
12	ASS SEM	Assulina seminulum type	Assulina scandinavica
13	BUL IND	Bullinularia indica	
14	CEN ACU	Centropyxis aculeata type	
15	CEN CAS	Centropyxis cassis type	Centropyxis aerophila type Centropyxis constricta type
16	CEN PLA	Centropyxis platystoma type	
17	CEN ECO	Centropyxis ecornis type	Centropyxis delicatula type Centropyxis laevigata type
18	CON PON	Conicocassis pontigulasiformis	
19	COR TRI	Corythion - Trinema type	Corythion dubium

			Corythion complanatum
			Trinema enchelys
			Trinema lineare
			Trinema sp.
20	CRY OVI	Cryptodifflugia oviformis type	
21	CRY SAC	Cryptodifflugia sacculus	
22	CYC ARC	Cyclopyxis arcelloides type	Cyclopyxis kahli type
23	CYP AMP	Cyphoderia ampulla type	Cyphoderia calceolus
24	DIF ACU	Difflugia acuminata type	Difflugia bacillariarum type
25	DIF BAC	Difflugia bacillifera type	
26	DIF GLO	Difflugia globulosa type	
27	DIF LEI	Difflugia leidyi	
28	DIF LUC	Difflugia lucida type	
29	DIF OBL	Difflugia oblonga type	Difflugia lanceolata
30	DIF OVI	Difflugia oviformis type	Difflugia lithophila type Netzelia (Difflugia) tuberculata type
31	DIF PRI	Difflugia pristis type	
32	DIF PUL	Difflugia pulex type	
33	DIF RUB	Difflugia rubescens type	
34	DIF URC	Difflugia urceolata type	
35	EUG CIL	Euglypha ciliata type	Euglypha compressa Euglypha cristata
36	EUG ROT	Euglypha rotunda type	
37	EUG STR	Euglypha strigosa type	
38	EUG TUB	Euglypha tuberculata type	
39	GIB TUB	Gibbocarina (Nebela) tubulosa type	
40	HEL ROS	Heleopera rosea	
41	HEL PET	Heleopera petricola	
42	HEL SPH	Heleopera sphagni	
43	HEL SYL	Heleopera sylvatica	

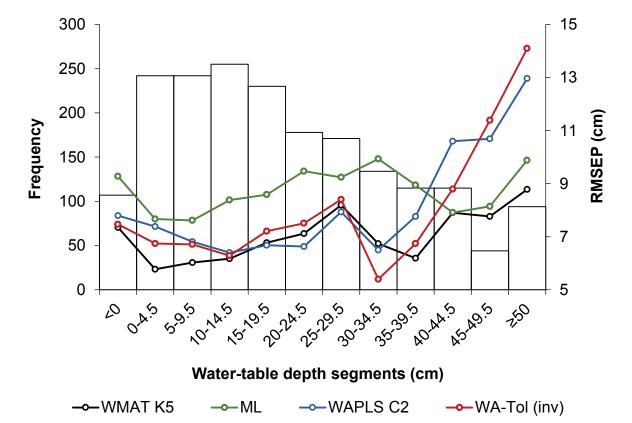
_		T.	
44	HYA ELE	Hyalosphenia elegans	
45	HYA MIN	Hyalosphenia minuta	
46	HYA PAP	Hyalosphenia papilio	
47	HYA SUB	Hyalosphenia subflava	
48	LES EPI	Lesquereusia epistomum	
49	LES MOD	Lesquereusia modesta type	Lesquereusia spiralis type
50	NEB BAR	Nebela barbata	
51	NEB COL	Nebela collaris type	Hyalosphenia ovalis
52	NEB FLA	Nebela flabellulum	
53	NEB MIN	Nebela minor	
54	NEB PEN	Nebela penardiana type	
55	NEB TIN	Nebela tincta type	Nebela bohemica Nebela parvula
56	PAD LAG	Padaungiella (Nebela) lageniformis	Nebela parvula
57	PAD WAI	Padaungiella (Nebela) wailesi	
58	PAR IRR	Paraquadrula irregularis	Paraquadrula sp.
59	PHR ACR	Phryganella acropodia type	r araqaaaraa sp.
60	PHY GRI	Physochila griseola type	(Nebela griseola type)
61	PLA CAL	Plagiopyxis callida type	(TOZOLA B.IOCOLA SYPE)
62	PLA SPI	Placocista spinosa type	Placocista lens
63	PLA CAR	Planocarina (Nebela) carinata type	Gibbocarina (Nebela) galeata type
64	PLA MAR	Planocarina (Nebela) marginata type	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
65	PSE FUL	Pseudodifflugia fulva type	
66	PSE FAS	Pseudodifflugia fasicularis type	
67	PYXI	Pyxidicula type	Pyxidicula patens Pyxidicula sp.
68	QUA SYM	Quadrulella symmetrica	
69	SPH LEN	Sphenoderia lenta	
70	TRA DEN	Tracheleuglypha dentata	

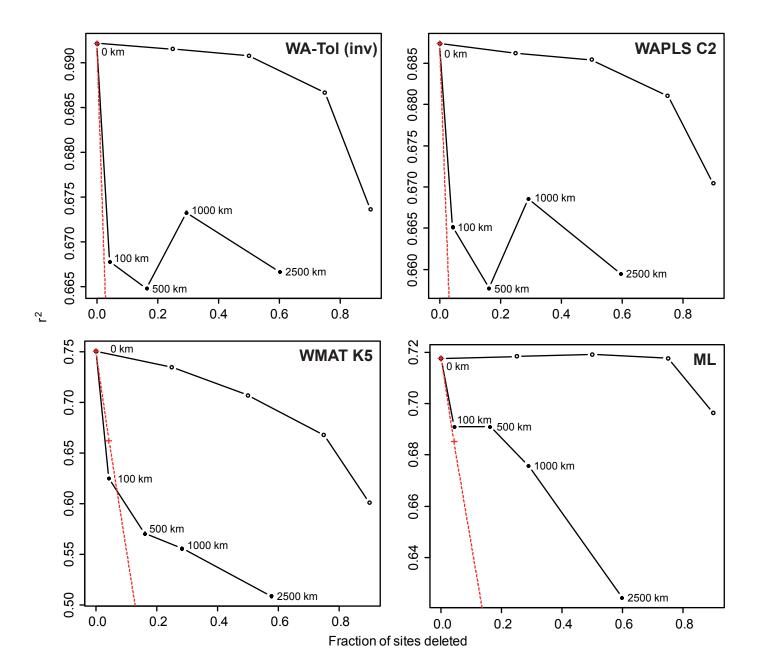
71	TRI ARC	Trigonopyxis arcula type	Trigonopyxis minuta type
72	WAI EBO	Waileseila eboracensis	

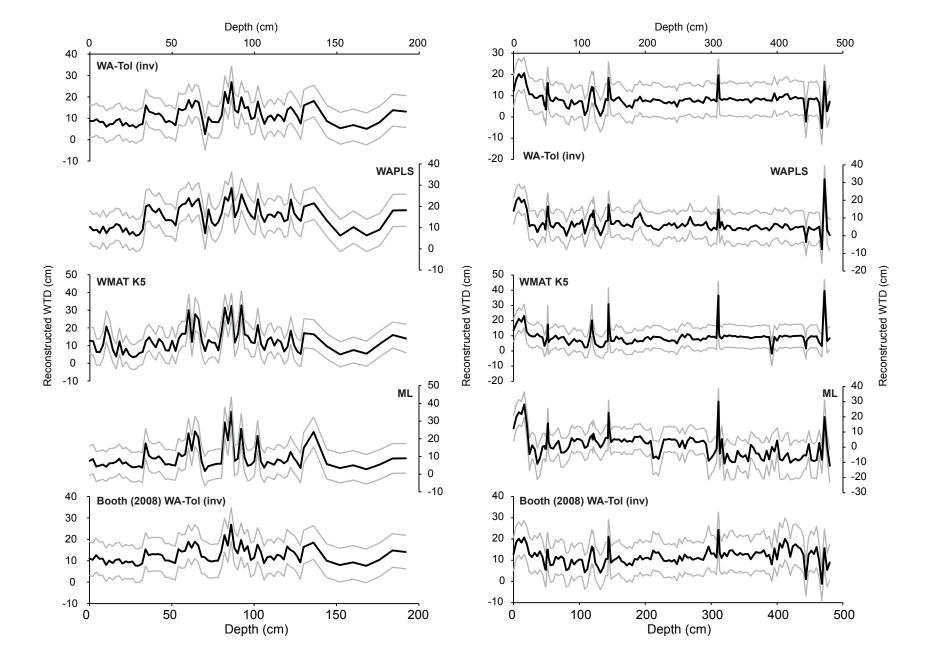
Table 3: Numbers of sites, samples and taxa in different EPA eco-regions, along with information on water table depth (WTD) values for all samples within each region and basic performance statistics for eco-region transfer functions derived from the pruned WA-Tol (inv) model dataset (n = 1696). Comparable data for all samples is shown in top row for reference. SD = standard deviation. SWDI = Shannon Wiener diversity index. Dashed lines indicate where no performance statistics are available as models were not run for all eco-regions due to low sample sizes.

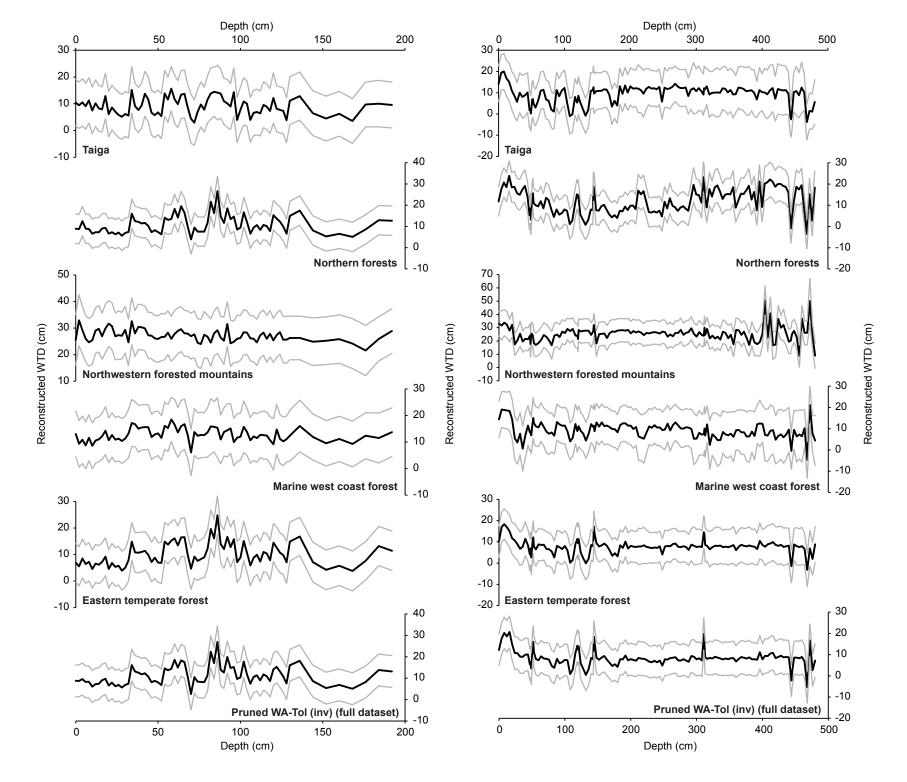
Ecoregion	Number of samples	Number of sites	Number of taxa	Mean WTD ± 1 SD (cm)	WTD range (min – max) (cm)	SWDI ± 1 SD	RMSEP _{LOO}	R ²	Maximum bias	Average bias
ALL SAMPLES	1696	126	64	18.3 ± 14.1	72 (-15 - 57)	1.95 ± 0.44	7.42	0.72	13.87	0.02
Tundra	7	1	25	11.7 ± 10	29 (1 - 30)	1.96 ± 0.24	-	-	-	-
Taiga	64	6	56	12 ± 10.1	49 (-3 - 46)	2.01 ± 0.49	8.06	0.36	32.52	0.71
Hudson plain	32	7	44	15 ± 14.2	47 (-4 - 43)	1.90 ± 0.43	-	1	-	-
Northern forests	915	55	62	18.2 ± 14.2	71 (-15 – 56)	2.01 ± 0.41	6.90	0.76	15.53	0.46
Northwestern forested mountains	130	16	42	18.4 ± 15.2	55 (-5 - 50)	1.70 ± 0.55	6.87	0.80	13.89	0.29
Marine west coast forest	191	22	59	18.1 ± 13.7	69 (-15 - 54)	1.91 ± 0.36	8.30	0.63	18.37	0.19
Eastern temperate forests	346	18	62	20 ± 13.8	65 (-8 - 57)	1.94 ± 0.46	7.12	0.73	15.96	0.05
North American deserts	11	1	18	29.5 ± 17	50 (0 - 50)	1.47 ± 0.62	-	-	-	-

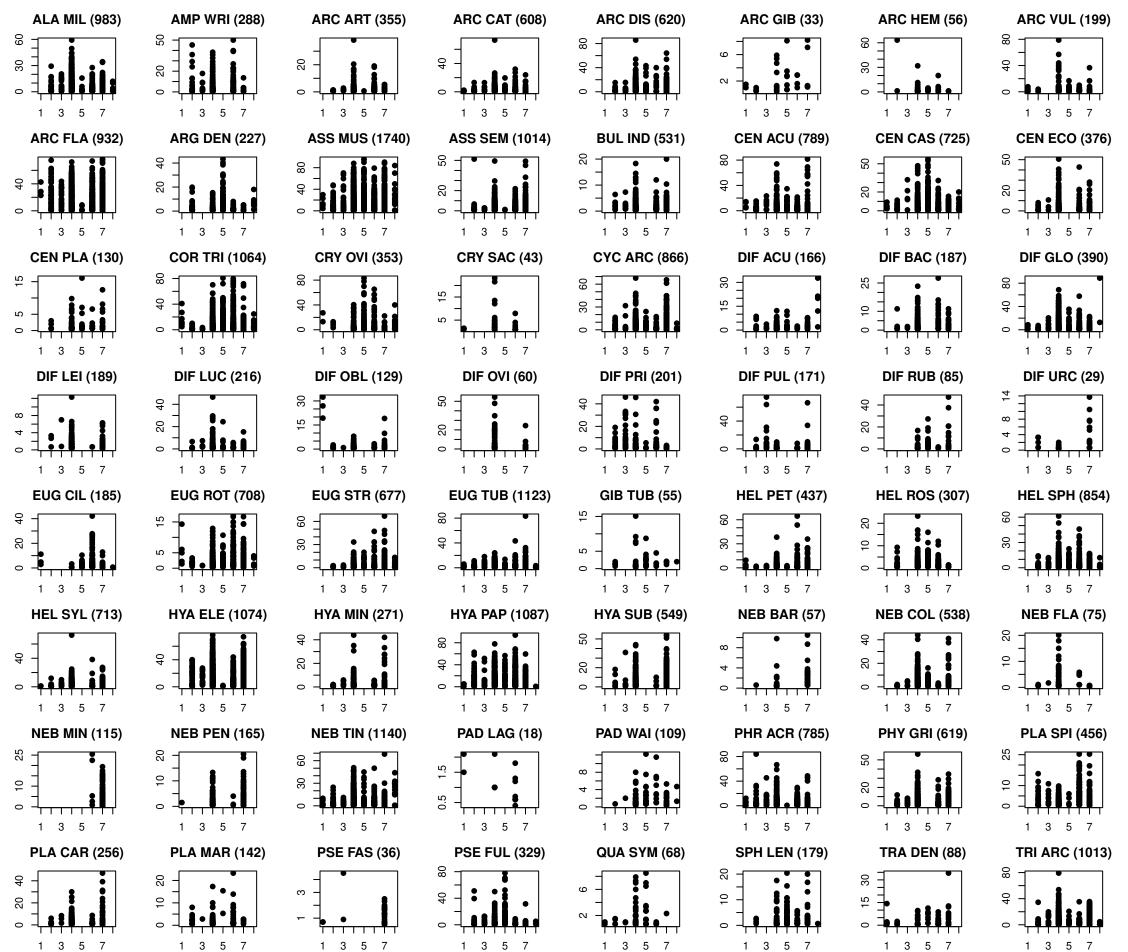
Table 4: Performance statistics for all transfer function models for water-table depth based on leave-one-out (RMSEP_{LOO}), leave-one-site-out (RMSEP_{LOSO}) and segment-wise (RMSEP_{SW}) cross validation methods. Results are in order of performance as assessed by RMSEP_{LOO} of the pruned model run. Results for RMSEP_{LOO} are given for both pre- and post-removal of samples with high residual values (see text for details; figures in parentheses show performance statistics after the removal of outlier samples). Results for RMSEP_{LOSO} and RMSEP_{SW} are only given for pruned models. Relative decreases in model performance are between RMSEP_{LOO} of the pruned models to RMSEP_{LOSO} and RMSEP_{SW}. SD is the standard deviation of all water-table measurements included in each model after the removal of outliers. Results are only shown for the best performing version of each model type. WA-Tol (inv) = weighted averaging with tolerance downweighting and inverse deshrinking; WAPLS C2 = second component of weighted averaging partial least squares; ML = maximum likelihood; WMAT K5 = weighted averaging modern analogue technique with five nearest neighbours.

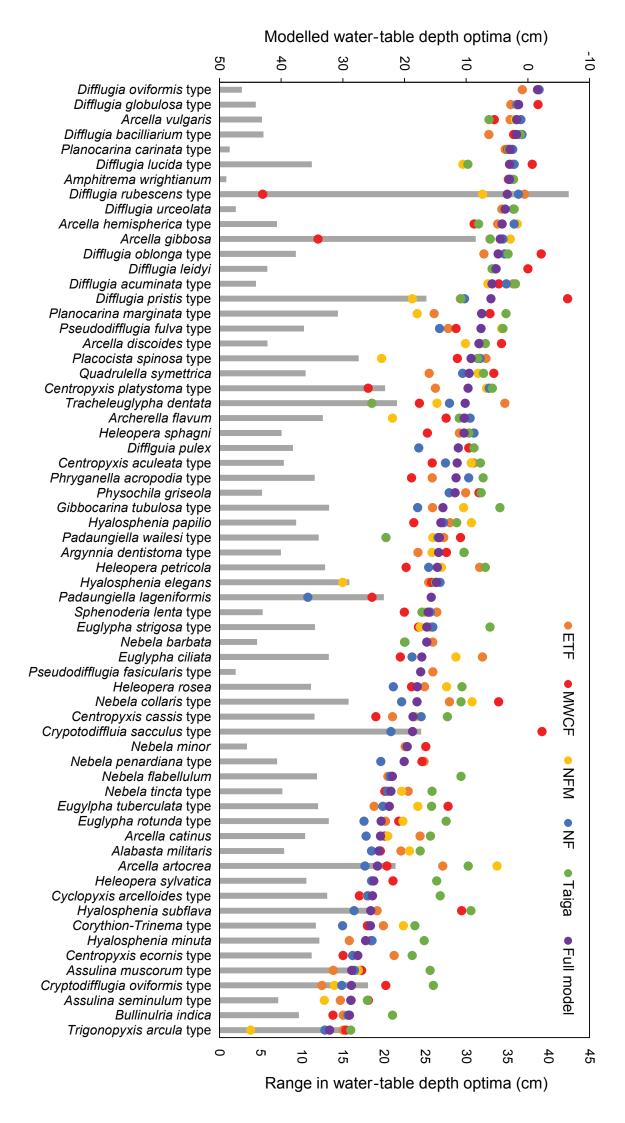

Model type	RMSEP _{LOO}	R ² (LOO)	Maximum bias (LOO)	Average bias (LOO)	RMSEP _{LOSO}	Relative decrease LOO - LOSO	RMSEP _{sw}	Relative decrease LOO - SW	Number of outlier samples removed	n for post- outlier removal model	SD
WMAT K5	9.38 (6.83)	0.64 (0.79)	22.97 (10.84)	-0.79 (-0.73)	8.21	0.201	7.07	0.034	161	1767	14.85
WA-Tol (inv)	10.20 (7.42)	0.57 (0.72)	28.48 (13.87)	0.03 (0.02)	7.70	0.037	8.06	0.086	197	1730	14.10
WAPLS C2	10.10 (7.53)	0.58 (0.71)	27.38 (14.38)	0.02 (0.02)	7.85	0.042	8.18	0.086	190	1737	14.11
ML	14.76 (8.60)	0.53 (0.77)	10.31 (6.95)	-3.00 (-1.18)	8.67	0.008	8.75	0.017	410	1517	15.72


Table 5: PalaeoSig p values for the significance of reconstructions against models based on randomly generated data for the pruned versions of four model types and five eco-region models, against two independent test sets. See Tables 3 and 4 for further statistics on all models.


Model	Framboise	Lac Le Caron
WA-Tol (inv)	0.013	0.987
WAPLS C2	0.015	0.984
WMAT K5	0.002	0.709
ML	0.057	0.287
Taiga	0.485	0.943
Northern forests	0.015	0.729
Northwestern forested mountains	0.782	0.997
Marine west coast forest	0.471	0.871
Eastern temperate forests	0.007	0.940


Supplementary figure captions


- **Figure S1:** Summary results for the calculation of segment-wise RMSEP. Histograms show sampling distribution in 12 segments for the full dataset (n = 1927). Coloured lines show RMSEP for each individual segment for the four main model types under investigation.
- **Figure S2:** Spatial autocorrelation diagrams for the four model types under investigation. Plots show effect on r^2 of deleting sites at random (open circles), from the geographical neighbourhood of the test site (filled circles labelled with corresponding distances) or that are most environmentally similar (crosses) during cross-validation. Note variable y-axis scales.
- **Figure S3:** Water table depth reconstructions, with error, from two independent test sites for four different model types and the WA-Tol (inv) model of Booth (2008). Left-hand column is for Framboise bog, right-hand column is for Lac Le Caron peatland.
- **Figure S4:** Water table depth reconstructions, with error, from two independent test sites for five different eco-region models, compared to the pruned WA-Tol (inv) model based on the full dataset. Left-hand column is for Framboise bog, right-hand column is for Lac Le Caron peatland. Model abbreviations in key: NF = Northern forests; NFM = Northwestern forested mountains; MWCF = Marine west coast forest; ETF = Eastern temperate forests.
- **Figure S5:** Distribution of all taxa (ordered alphabetically) across eight eco-regions. Eco-regions codes (x-axes): 1 = Tundra, 2 = Taiga, 3 = Hudson Plain, 4 = Northern forests, 5 = Northwestern forested mountains, 6 = Marine west coast forest, 7 = Eastern temperate forests, 8 = North American deserts. Y-axes show % abundance of the named taxon in all samples in which it occurs. Number of occurrences in 1884 samples shown in brackets after each taxon code. For taxa name abbreviations, see Table 2.
- **Figure S6:** Comparison of occurrence (i.e. % presence in all samples; black bars), abundance (i.e. maximum % abundance in any one sample; grey bars) and presence in n eco-regions (red line) for all 64 taxa included in the full dataset.
- **Figure S7:** Comparison of water table depth optima (cm) for 64 taxa from the full dataset and five ecoregion models (see text for details), ordered by the full dataset. Coloured spots represent optima of individual taxa in different models, grey bars represent range between the highest and lowest optima for each taxon. For references to colour, readers are referred to the online version of the article.



%

Table S1: Rare taxa removed from complete dataset, occurring in <1% of the total number of samples (i.e. <19).

Name	Abbreviation	Number of occurrences	Maximum abundance (%)
Conicocassis pontigulasiformis	CON PON	2	1.5
Cyphoderia ampulla	CYP AMP	8	1.9
Lesquereusia epistomum	LES EPI	1	0.5
Lesquereusia modesta type	LES MOD	6	12.4
Paraquadrula irregularis	PAR IRR	4	13.4
Plagiopyxis callida type	PLAGIO	2	1.1
Pyxidicula sp.	PYXI	9	10.1
Waileseila eboracensis	WAI EBO	2	0.8

Table S2: Samples removed where taxonomic merging or deletion of results only identified to species level resulted in a percentage total <90%.

Reference	Sample ID	Site	Remaining %
Finkelstein/Bunbury (unpublished)	M4	Attawapiskat River 1	89.1
Finkelstein/Bunbury (unpublished)	M17	Attawapiskat River 1	87.5
Finkelstein/Bunbury (unpublished)	M23	Attawapiskat River 1	85.6
Finkelstein/Bunbury (unpublished)	M24	Attawapiskat River 1	86.3
Finkelstein/Bunbury (unpublished)	M25	Attawapiskat River 1	79.8
Finkelstein/Bunbury (unpublished)	M28	Attawapiskat River 1	88.9
Finkelstein/Bunbury (unpublished)	M11	Attawapiskat River 2	89.0
Finkelstein/Bunbury (unpublished)	M42	Sutton River 2	88.2
Charman and Warner (1992)	1142	Wally Creek	89.2
Charman and Warner (1992)	1212	Wally Creek	88.4
Charman and Warner (1992)	12C12	Wally Creek	84.3

Table S3: Samples removed with extreme water-table depths (WTDs) (i.e. those below the 0.5th or above the 99.5th percentiles).

Reference	Sample ID	Site	WTD (cm)
Warner and Charman (1994)	NWO-BB	Unknown	82.0
Warner and Charman (1994)	NWO-N	Unknown	68.0
Warner and Charman (1994)	NWO-D	Unknown	100.0
Warner and Charman (1994)	NWO-E	Unknown	100.0
Warner and Charman (1994)	NWO-F	Unknown	100.0
Warner and Charman (1994)	NWO-G	Unknown	74.0
Roe et al. (2017)	MER17	Mer Bleue	82.0
Roe et al. (2017)	ALF18	Alfred	72.0
Sullivan and Booth (2011)	TA28	Tannersville	-16.5
Markel et al. (2010)	AK93	Brown's Lake	-17.0
Markel et al. (2010)	AK84	Brown's Lake	-16.5
Markel et al. (2010)	AK48	Gas field	-18.0
Booth (2002)	1020B	Au Train Bay	-27.0
Booth (2001)	967ada	Tahquamenon Bay	-21.0
Booth (2001)	968ada	Tahquamenon Bay	-26.0
Booth (2001)	832ada	Grand Traverse Bay	-21.0
Booth (2001)	832bda	Grand Traverse Bay	-37.0
Booth (2008)	AL06	Herron	75.0

Table S4: Rare taxa removed from the combined North American and European dataset, occurring in <1% of the total number of samples (i.e. <37).

Name	Abbreviation	Number of occurrences	Maximum abundance (%)
Arcella mitrata	ARC MIT	2	0.9
Campascus minutus	CAM MIN	11	19.7
Conicocassis pontigulasiformis	CON PON	2	1.5
Difflugia gramen type	DIF GRA	24	4.1
Lagenodifflugia vas	LAG VAS	8	3.7
Lesquereusia epistomum	LES EPI	15	3.3
Plagiopyxis type	PLAGIO	10	11.0
Pontigulasia elisa	PON ELI	1	0.7
Pseudodifflugia gracilis	PSE GRA	3	2.2
Pyxidicula type	PYXI	31	12.1
Waileseila eboracensis	WAI EBO	2	0.8

Table S5: Samples removed from the combined North American and European dataset where taxonomic merging resulted in a percentage total <90%.

Reference	Sample ID	Site	Remaining %
Bobrov et al. (1999)	KATIN_6	Katin Moch	53.4
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK14	Wierzchołek	53.8
Lamentowicz et al. (2008)	CHL23	Chlebowo	59.1
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK6	Wierzchołek	59.6
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK11	Wierzchołek	59.8
Lamentowicz et al. (2008)	CHL22	Chlebowo	68.8
Finkelstein/Bunbury (unpublished)	M25	Attawapiskat River 1	69.7

Lamentowicz et al. (2013); Jassey et al. (2014)	WEK2	Wierzchołek	70.2
Lamentowicz et al. (2008)	CHL7	Chlebowo	72.6
Lamentowicz et al. (2013); Jassey et al. (2014)	RUR23	Rurzyca	75.6
Lamentowicz et al. (2010)	72	Lej Nair	75.8
Lamentowicz et al. (2010)	71	Lej Nair	78.1
Finkelstein/Bunbury (unpublished)	M23	Attawapiskat River 1	78.8
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK13	Wierzchołek	79.0
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK5	Wierzchołek	79.3
Finkelstein/Bunbury (unpublished)	M28	Attawapiskat River 1	79.6
Bobrov et al. (1999)	STAR_1	Staroselia	80.1
Lamentowicz et al. (2008)	CHL1	Chlebowo	80.4
Bobrov et al. (1999)	KATIN_7	Katin Moch	80.7
Finkelstein/Bunbury (unpublished)	M24	Attawapiskat River 1	81.2
Swindles et al. (2015)	C1	Crash	82.4
Charman and Warner (1992)	12C12	Wally Creek	84.3
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK10	Wierzchołek	85.4
Turner et al. (2013)	TM85	Malham Tarn Moss	85.5
Mallon (unpublished)	GAL_3	Gallseredsmossen	85.7
Finkelstein/Bunbury (unpublished)	M44	Sutton River 2	87.0
Lamentowicz et al. (2013); Jassey et al. (2014)	WEK12	Wierzchołek	87.2
Finkelstein/Bunbury (unpublished)	M17	Attawapiskat River 1	87.5
Lamentowicz et al. (2013); Jassey et al. (2014)	KAZ3	Kazanie	87.9
Finkelstein/Bunbury (unpublished)	M42	Sutton River 2	88.2
Lamentowicz et al. (2013); Jassey et al. (2014)	RUR10	Rurzyca	88.4
Charman and Warner (1992)	1212	Wally Creek	88.4
Bobrov et al. (1999)	Q92_1	Tverskaya Reserve	88.6
Mallon (unpublished)	S11_8	South	89.0
Finkelstein/Bunbury (unpublished)	M11	Attawapiskat River 2	89.0
Swindles et al. (2009)	M06	Moninea	89.0
	1	1	

Lamentowicz (unpublished)	K 09	Kuźnik	89.1
Finkelstein/Bunbury (unpublished)	M4	Attawapiskat River 1	89.1
Charman and Warner (1992)	1142	Wally Creek	89.2
Swindles et al. (2009)	MO32	Moninea	89.3
Lamentowicz et al. (2013); Jassey et al. (2014)	RUR15	Rurzyca	89.3
Lamentowicz et al. (2013); Jassey et al. (2014)	RUR22	Rurzyca	89.3
Lamentowicz (unpublished)	K 07	Kuźnik	89.7
Bobrov et al. (1999)	KATIN_5	Katin Moch	89.7
Swindles et al. (2009)	MO27	Moninea	89.9

Table S6: Samples removed from the combined North American and European dataset with extreme water-table depths (WTDs) (i.e. those below the 0.5th or above the 99.5th percentiles).

Reference	Sample ID	Site	WTD (cm)
Turner et al. (2013)	TM91	Malham Tarn Moss	-60
Turner et al. (2013)	TM61	Malham Tarn Moss	-50
Booth (2001)	832bda	Grand Traverse Bay	-37
Booth (2002)	1020B	Au Train Bay	-27
Booth (2001)	968ada	Tahquamenon Bay	-26
Lamentowicz (unpublished)	K 14	Kuźnik	-25
Booth (2001)	832ada	Grand Traverse Bay	-21
Booth (2001)	967ada	Tahquamenon Bay	-21
Lamentowicz et al. (2013); Jassey et al. (2014)	CZS14	Czarci Staw	-20
Lamentowicz et al. (2010)	30	Mauntschas	-20
Turner et al. (2013)	TM62	Malham Tarn Moss	-20
Markel et al. (2010)	AK48	Gas field	-18
Lamentowicz et al. (2013); Jassey et al. (2014)	WAG22	Wagowo	-17

Markel et al. (2010)	AK93	Brown's Lake	-17
Markel et al. (2010)	AK84	Brown's Lake	-16.5
Sullivan and Booth (2011)	TA28	Tannersville	-16.5
Turner et al. (2013)	TM69	Malham Tarn Moss	83
Lamentowicz (unpublished)	SŁ26	Słowińskie Błoto	84
Lamentowicz (unpublished)	SŁ27	Słowińskie Błoto	84
Lamentowicz (unpublished)	SŁ28	Słowińskie Błoto	84
Lamentowicz (unpublished)	SŁ29	Słowińskie Błoto	84
Turner et al. (2013)	ThM189	Thornton Moor	85
Mitchell et al. (1999)	S 22	Les Pontins	100
Mitchell et al. (1999)	S 23	Les Pontins	100
Mitchell et al. (1999)	S 44	Le Bois des Lattes	100
Warner and Charman (1994)	NWO-D	Unknown	100
Warner and Charman (1994)	NWO-E	Unknown	100
Warner and Charman (1994)	NWO-F	Unknown	100
Mitchell et al. (1999)	S 16	Le Cachot	120
Mitchell et al. (1999)	S 17	Le Cachot	120
Mitchell et al. (1999)	S 18	Le Cachot	120
Mitchell et al. (1999)	S 19	Le Cachot	120
Mitchell et al. (1999)	S 20	Le Cachot	120
Mitchell et al. (1999)	S 21	Le Cachot	150
Mitchell et al. (1999)	S 41	Le Bois des Lattes	150

Table S7: Summary of published peatland testate amoeba transfer functions in North America and Europe. RMSEP_{LOO} and R² values are for the best performing model as selected by the authors of each publication (as shown in model type column). Data for number of sites and samples is for data-pruned version of model if this information is available, if not, then values are for the complete dataset. For model type: WA-Tol (inv) = weighted averaging with tolerance downweighting and inverse deshrinking; WA-Tol = weighted averaging with tolerance downweighting, no deshrinking method specified; WAPLS C2 = second component of weighted averaging partial least squares; WA = weighted averaging, no deshrinking method specified, WA (inv) = weighted averaging with inverse deshrinking, ML = maximum likelihood.

Continent	Location	Number of sites	Number of samples	Model type	RMSEP _{LOO} (cm)	R ²	Reference
North America	North America	126	1730	WA-Tol (inv)	7.42	0.72	This study
North America	Newfoundland	14	60	WA-Tol	6.32	0.71	Charman and Warner (1997)
North America	Michigan	2	74	WAPLS C2	7.48	0.61	Booth (2001)
North America	Michigan	11	139	WAPLS C2	7.51	0.74	Booth (2002)
North America	Alaska	8	101	WAPLS C2	9.7	Not given	Payne et al. (2006)
North America	Mid-continental and eastern USA	31	369	WAPLS C2	6.6	0.83	Booth (2008)
North America	North Carolina	1	33	WA	5.8	0.62	Booth et al. (2008)
North America	Alaska	12	126	WAPLS C2	4.6	0.86	Markel et al. (2010)
North America	Atlantic Canada and NE USA	18	225	WA-Tol (inv)	5.66	0.87	Amesbury et al. (2013)
North America	Québec	18	165	WA (inv)	5.44	0.8	Lamarre et al. (2013)
Europe	Europe	113	1302	WA-Tol (inv)	7.72	0.59	Amesbury et al. (2016)
Europe	Europe	8	119	WAPLS C2	5.6	0.71	Charman et al. (2007)
Europe	Great Britain	9	163	WA-Tol	3.93	Not given	Woodland et al. (1998)

Europe	Western Russia	6	31	WAPLS C2	5.16	0.83	Bobrov et al. (1999)
Europe	North-western Poland	3	45	WA-Tol	9.89	0.91	Lamentowicz and Mitchell (2005)
Europe	Greece	4	57	ML	2.48	0.68	Payne and Mitchell (2007)
Europe	Turkey	1	42	ML	7.1	0.81	Payne et al. (2008)
Europe	Western Poland	1	30	WA	6.99	0.4	Lamentowicz et al. (2008)
Europe	Northern Ireland	3	95	WA-Tol	4.99	0.83	Swindles et al. (2009)
Europe	England	6	116	WA-Tol (inv)	7.36	0.71	Turner et al. (2013)
Europe	Northern Sweden	9	59	WA-Tol (inv)	5.25	0.87	Swindles et al. (2015c)

STANDARD DEVIATION: 1.76

MEAN: 6.33 0.74 0.13