

This is a repository copy of *Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/137700/

Version: Supplemental Material

Article:

Nourafkan, E, Haruna, MA, Gardy, J orcid.org/0000-0003-1806-4056 et al. (1 more author) (2019) Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment. Journal of Applied Polymer Science, 136 (11). 47205. ISSN 0021-8995

https://doi.org/10.1002/APP.47205

© 2018 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Nourafkan, E., Haruna, M.A., Gardy, J. and Wen, D. (2019), Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment. J. Appl. Polym. Sci., 136, 47205, which has been published in final form at https://doi.org/10.1002/app.47205. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Improved rheological properties and stability of multi-walled carbon nanotubes/polymer in harsh environment

Ehsan Nourafkan^{1,*}, Maje Alhaji Haruna¹, Jabbar Gardy¹, Dongsheng Wen^{1,2}

¹ School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
² School of Aeronautic Science and Engineering, Beihang University, 100191, China
*Corresponding author. E. Nourafkan (<u>e.nourafkan@leeds.ac.uk</u>)

Fig. S1. Set-up for synthesis of co/ter polymers.

Fig. S2. ¹H-NMR spectra of different sample 3: (a) AA-ATAC monomers blend, (b) AA-ATAC copolymer, and sample 4: (c) AA-APSA-IAA monomers blend, (d) AA-APSA-IAA terpolymer.

Fig. S3. (a) Test tubes containing 1000 ppm of MWCNT and different concentration of polymer at the end of centrifuge operation: (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5.