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Abstract

The flow of fluids through fractured porous media has been an important topic in the research of subsurface flow.

The several orders of magnitude in size between the fractures and the rock matrix causes difficulties for simulating

such flow scenario. The fluid velocities in fractures are also several orders of magnitude higher than that in the

rock matrix due to high permeability and porosity. If there exists pollutant such as nanoparticles in the fluids, the

pollutant may be transported rapidly and the rock matrix’s properties near the fractures are hence changed. In this

research, we simulate the transport phenomena of nanoparticles in the fluid flow through fractured porous media.

The permeability fields which contain different anisotropy angles are considered in the simulation. Fractures are

represented explicitly by volumetric grid cells and the numerical algorithm is parallelized in order to reduce the

simulation time. We investigate the effect of the appearance of fractures and rotated anisotropy on the transport of

nanoparticles, particles deposition, entrapment and detachment. The results show that flow directions are affected

by the direction of anisotropy and the transport of nanoparticles in the fractures is significantly faster than that in

rock matrix due to high fluid velocities. The direction of anisotropy distorted the pressure field and changed the

fluid flow directions, which determined the time needed for the pollutant front to reach the fractures. The parallel

efficiency of the overall algorithm is also discussed and the experimental results show that it is deeply affected by

the performance of the multigrid solver.

Keywords: Multipoint flux approximation, nanoparticle transport, algebraic multigrid, parallel computation

1. Introduction

Nanoparticles are particles that are between 1 and 100 nanometers in size. These materials are the basic build-

ing block of nanotechnology and are intensively used in electronic, biomedical, cosmetic, automotive products [1]

and others. Recently, nanomaterials have been proposed to be used in petroleum-related industries. There have

been ideas to using nanoparticles in various activities such as reservoir exploration, drilling and completion, pro-

duction and improved oil recovery as well as refinery [2]. The growing demand on nanomaterials has increased

their production and consequently their inevitable discharged into the environment. Nanoparticles have several

favourable properties including their effectiveness in surface phenomena because of the extremely larger surface

area they provide. Some nanomaterials provide bactericidal and antimicrobial effect such as silver, and zinc. They

can, therefore, serve as a versatile bactericide with a wide range of uses such as in fabrics, filtration membranes,

and surgical instruments [3]. Due to their high surface to volume ratio, nanoparticles become highly reactive or

catalytic and may impose a negative impact on the environment. It is noticed that even exposure of living organism

to ZnO nanoparticles may be toxic to many species including plants, animals and useful bacteria [4]. All these

situations raise the concern about the fate of these materials in their local environment and motivate the research on

the transport of nanoparticle in the environment. Several research works have been conducted to study the transport

of nanoparticles in subsurface groundwater reservoirs. Most of the research works conducted on the transport of

nanoparticles in the subsurface have considered only isotropic and homogeneous reservoirs. Recently, Salama et

al. [2; 5; 6; 7] considered more elaborate scenarios to account for anisotropy in permeability field. As transported

nanoparticles deposit, they deteriorate both the open space for the flow and reduce the permeability. The results of
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numerical simulations showed that the pressure, velocities and porosity fields are distorted by the direction of the

anisotropy. With large anisotropy angle, the deposition of the nanomaterials seemed to be severe and the minimum

permeability of the domain is reduced at a higher rate. In all the aforementioned works, the permeability fields

were generally uniform and didn’t consider heterogeneity caused, for example, by the existence of fractures in the

porous media.

Fractured porous media are in fact very common in consolidated rock systems with the fractures forming net-

works of interconnected and/or isolated sets of fractures. Most natural porous media contain fractures at various

scales and they have strong influence on the flow system because most of the flow takes place along them. Numer-

ical simulation of the flow in fractured porous media is a challenge task on account to the various length scales and

the fluid velocities within the rock matrix and inside the fractures, which differ by several orders of magnitude.

A higher resolution mesh is required in order to resolve the steep variations induced by the flow field and mass

transfer between rock matrix and the fractures accurately.

In general, there are two major approaches to simulate the flow and transport in the fracture-matrix system

based on the fracture intensity. In cases when the fracture intensity is relatively small such that it is feasible to con-

sider every single fracture as an individual entity, discrete fracture models (DFM) have been developed. In these

models, the fractures are considered as either part of the domain that are assigned much higher permeability or as a

lower dimensionality region in the study domain. When the intensity of the fractures, on the other hand, are higher

such that considering individual fractures becomes very expensive or infeasible, a multi-continuum description

may be considered. In this approach, all the complex features of the network of fractures are homogenised and a

dual- continuum is constructed, one for the matrix and one for the fractures. Each of the two continua has their

own porosity and/or permeability. It is, therefore, called dual porosity/permeability models. In this model, most

of the fluid storage is considered in the matrix with the large-scale flow occurring through the fracture continuum.

The interactions between the flows in the matrix and the fracture continua in dual continua models is described

by a mass transfer function. Such mass transfer functions are obtained through analytical expressions or using

empiricism involving some ad-hoc shape factors. While this may be easy to obtain for simple cases, other cases

involving, for example, compositional and compressible flows, may be difficult to establish such shape factors. The

interesting thing about the dual continua models, however, is that they require less computational efforts compared

with discrete fracture models. In the discrete fracture modelling approach, the flow problem is explicitly modelled

in each fracture and in the matrix using Darcys law. In the grid meshing, each fracture is represented explicitly and

individually using highly resolved Cartesian or unstructured grids, hence the expensive computational costs.

In this work, we study the problem of flow and transport of nanoparticles in anisotropic porous medium do-

main containing a set of discrete fractures. Each fracture is represented by volumetric cells. Several scenarios are

considered such as different angles of anisotropy and the location of the fractures. In order to handle the anisotropy

which does not align with the coordinate axes, the spatial variables are discretized using the multipoint flux ap-

proximation (MPFA) as in [2]. The algorithm is implemented in parallel using FORTRAN and the linear system

arising from the pressure equation is solved by the aggregation-based algebraic multigrid solver in [8; 9]. The rest

of the paper is organized as follows: In Section 2 we describe the transport models of nanoparticles, where the

governing equations for the transport and fluid flow are listed and reviewed. In Section 3 we discuss the numerical

algorithm for solving the governing equations, including some issues regarding the linear system solver and the

parallel implementation and processing of the numerical scheme. Section 4 describes the setting of the numerical

examples and the simulation results and observations are discussed in the final section.

2. Transport models of nanoparticles

Flow and transport in porous media are, usually, described within the framework of the continuum hypothesis

in which variables pertinent to porous media exist everywhere and behave in a continuous fashion in space and

in time. This framework allowed the description of several phenomena in porous media in the form of partial

differential equations. One of these equations is that which describes the movement of materials with the flow

in porous media. The what is called advection-dispersion equation is a second order partial differential equation
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which takes the form:

(1)
∂φC

∂ t
+∇ · (uC−φD∇C) = qc +R

where φ is the porosity, C is the concentration per unit volume of the fluid, u is Darcy velocity, D is the dispersion

tensor, qc is a source/sink term and R is a generation/depletion term. This equation describes wide spectrum of

phenomena in porous media involving chemical reactions, adsorption and desorption, deposition and remobiliza-

tion and several other interesting processes. While the terms in the left-hand side exist in almost all processes, the

terms in the right-hand side are exclusively what differentiate the different physical and chemical processes. In this

work we are mainly interested in the transport of nanomaterials, it is important to understand the physics involved

and how they may be incorporated in the above transport equation.

2.1. Filtration theory

When nanoparticles are transported with water in porous media in the form of colloids dispersed in the water

phase, they interact with each other due to collisions. If such collisions result in the aggregation of the nanopar-

ticles, deposition occur. If, on the other hand, the collisions among nanoparticles result in more dispersion, then

stabilized colloidal system is obtained. According to the DLVO theory, between every two nanoparticles there

exist attractions due to the Van der Waals forces and repulsions due to electrostatic effects. The overall behaviour

of the colloidal system depends on the resultant effect of these two forces. These forces in general may lead to

deposition of nanoparticles. Other forces may exist between nanoparticles and the porous skeleton which derives

adsorption/desorption processes. Hydrodynamic effects may also exist due to the flow velocity and could lead

to remobilization of deposited nanoparticles. Several models exist that describe the transport of nanoparticles in

porous media ([10; 11; 12; 13; 14; 15; 16; 17]). As discussed earlier the modelling of the generation term is impor-

tant so that the transport equation can be solved. Gargiulo et al.[14] and Goldberg et al.[15] have recently reviewed

a number of these models. The mass balance of nanoparticles may be described as

(2)
∂φC+S

∂ t
+∇ · (uC−φD∇C) = qc +R

where C is the concentration of nanoparticles in the water per unit volume of the water, φ is the porosity, qc is

a source/sink term, and S is the concentration of deposited nanoparticles per unit volume of the porous medium.

Within the framework of the filtration theory, the rate of deposition of nanomaterials may be proposed to depend

on the flux of nanomaterials. That is

(3)
∂S

∂ t
= γ|J|

where γ is a proportionality coefficient (1/L) and J is the advection flux of nanoparticles. This equation can,

therefore, be written as

(4)
∂S

∂ t
= γd |up|C− γr|up −ur|S

where up is Darcy velocity, ur is the critical velocity to entrain particles ([18]), γd and γr are coefficients for depo-

sition and remobilization, respectively. The complete model and the governing equations of flow and transport are

given in the next section.

2.2. The complete model

In porous media flows, the permeability is a measure of the ability of the medium to conduct fluids through

it. Most carbonate reservoirs are naturally fractured and the permeability in fractures is generally several orders

of magnitude larger than that in the rock matrix. On the other hand, anisotropy can be observed in almost all

subsurface formation due to the several physiochemical and mechanical processes that took place over the longer

geologic time scale. Cullen et al. [19] investigated the transport of carbon nanoparticles in a two-dimensional

heterogeneous anisotropic porous medium rectangular domain. The principle direction of the anisotropy is aligned

with the coordinate axes. In this case, two points flux approximation (TPFA) is sufficient to solve the system.
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However, when the anisotropy direction is not aligned with the coordinate axes, TPFA fails to account for the fact

that pressure gradient in one direction can cause flow in the other directions. In the case of the presence of full

permeability tensor, the more involved multipoint flux approximation (MPFA) methods (as will be explained later)

is needed in order to obtain the correct discretization as has been done by Salama et al. [2]. In this work, we extend

this framework to account for the effect of a set of discrete fractures on the transport of nanoparticles in anisotropic

medium.

The governing equations of fluid flow in porous media are given by the mass conservation equation and the

Darcys law. In the absence of source/sink term and in the case of incompressible fluids, the principle of mass con-

servation assumes that the mass inflow and outflow are equal when fluid flow crosses a certain region. Therefore,

we have

(5) ∇ ·u = 0

where u is the velocity obeying the Darcy’s law:

(6) u =−K

µ

(

∇p−ρg
)

.

In equation (6), K is the permeability tensor, µ is the fluid viscosity, ρ is the fluid density and g is the gravity.

Combining Eqs. (5) and (6), an equation in the pressure only is obtained, therefore

(7) ∇ · K

µ

(

∇p−ρg
)

= 0

The transport of nanoparticles is described by Eq. 2 in which the dispersion tensor D is calculated as

(8) D = Ddisp +DBr
i ,

where

(9) Ddisp = dt,w|u|I+
(

dl,w −dc,w

)uu

|u|

and

(10) DBr
i =

kBT

3πµdp,i
.

For simplicity we consider single size nanoparticles. In this work, we use the model in Gruesbeck and Collin

[20] which describes the process of deposition as a consequence of two interacting mechanisms, one at the pore

surface and one at pore throats, such that

(11) Ri =
∂ s1i

∂ t
+

∂ s2i

∂ t
,

where

(12)
∂ s1i

∂ t
=

{

γdi|u|ci, |u| ≤ uc

γdi|u|ci − γei(|u|−uci)s1i, |u|> uc
.

and

(13)
∂ s2i

∂ t
= γpt,i|u|c.

In Eq. (12) γdi and γei are rate coefficients for surface retention and entrainment of nanoparticles in interval i,

respectively. uc is the critical value for the magnitude of the velocity. With equations (12) and (13), the porosity

and permeability are updated:

(14) φ = φ0 −∑δφi = φ0 − (s1i + s2i)
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(15) K = K0

[

(1− fr)k fr + fr

φ

φ0

]l

.

From equations (12) - (15) s1 and s2 are the concentration of nanoparticles at the surface of the grains and entrapped

in pore throats, respectively. Furthermore, K0 and φ0 are initial permeability and porosity, k fr is a constant for fluid

seepage allowed by plugged pores. Finally, fr is the fraction of the original cross-sectional area open to flow and

is calculated as

(16) fr = 1− γ fr s2,

where γ fr is a constant.

Note that as the test problems of this work, the above simple model serves our purpose for assessing issues

regarding numerical algorithm for solving flow/transport problem in anisotropic porous media with fractures using

parallel processing. In future work we will assess similar problems on yet more complicated example, such as

nanoparticle transport in shale reservoirs ([21]), which involves two-phase (aqueous and gaseous) flow. Further-

more, this work can be extend 3D flow/transport problems ([22]).

3. Numerical algorithm

3.1. Multipoint flux approximation

As mentioned in the previous subsection, we use multipoint flux approximation (MPFA) method to discretize

the spatial variables on staggered grid in order to accurately describe the flow behaviour in the porous media whose

permeability is anisotropic, in which case the permeability tensor is full. For staggered grid in 2-D space, pressure

values are defined at the centre of the cells and velocity components are located on edges (see Fig. 1).
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Figure 1: Staggered grid divided by 4 processes (cores).

Consider the four quadrilateral cells Cl , l = 1, ...,4 in Fig. 2a with a common vertex at xC. MPFA method

builds the interaction region (dashed line in Fig. 2) that is centred on the four adjacent cells and there are four

fluxes that need to be calculated in each interaction region. Denote the cell centres by xk, and the edge midpoints

by x̄k, where i,k = 1,2,3,4. Lines are drawn between the cell centres and the midpoints of the edges (shown as

dashed lines in the figure). These lines bound an area around each vertex which is called an interaction volume. As

seen from the figure, there are four half cell edges (solid lines) in the interaction volume. To discretize the PDEs

(5) - (6) using MPFA, we first compute the flux of potential. The flux of a phase α through half cell edge S in an

interaction volume can be computed by

(17) f α =−
∫

S
(K∇Φα) · n̂ dS
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Figure 3: Six pressure values contribute to flux calculations in multipoint point flux approximation.

where φ is the phase potential (which is pressure in our case), K is the transmissibility tensor (permeability in our

example), and n̂ is the unit normal vector to the surface. For convenience we drop the phase index from now on

and the above formula is reduced to

(18) f =−
∫

S
(K∇Φ) · n̂ dS

The integral on the right hand side of (18) can be approximated by

(19) f ≈ ∑
l∈Ω

tlΦl

where tl and Φl are the transmissibility coefficient and the potential gradient at the centre of the cell-l, respectively.

The fluxes are conserved locally by assuming the inflow and outflow fluxes are equal. From Fig. 2, the flux f12 is

given by

f12 ≈ −txx
1 ( p̄1 − p1)− t

xy
1 (p̄4 − p1)

≈ −txx
2 (p2 − p̄1)− t

xy
2 (p̄2 − p2).(20)

The fluxes f23, f34 and f41 are obtained in a similar fashion. Notice that these fluxes contribute only half of the flux

calculations on the edges where they are located since the full flux calculations on an edge involve two adjacent

interaction regions to be considered as expressed in equation (19). From each interaction region, we would obtain

four systems of equations that need to be solved locally. Each full flux involves two interaction regions and hence

six pressure variables in neighbouring cells (see Fig. 3). It is clear that the construction of MPFA stencil is quite

complicated. The x-component of the flux, for example, may be expressed as

(21) fx = c1 p1 + c2 p2 + c3 p3 + c4 p4 + c5 p5 + c6 p6

where the coefficients cq, q = 1, ...,6 in the above equation include both the discretization and the permeability

information. The derivations of these coefficients require significant amount of computations. To resolve this
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difficulty Sun et al. ([23; 24]) developed experimenting field method to reduce the cumbersome calculations. In

experimenting field approach, the matrix coefficients are obtained by solving several local problems which involves

only neighbouring variables. The linear systems arising from local problems are smaller and much easier to solve.

The predefined experimenting pressure fields are designed and operated over the local problems such that the

global matrix coefficients are obtained. The linear system associated with the local problem for each node (i, j) of

the Cartesian grid shown in Fig. 2 is therefore

(22) A[u− v+ u+ v−]T = B[p1 p2 p3 p4]
T

(23) Ai, j =
1

4
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(24) Bi, j =
1

2
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.

Here ACi , ∆xCi
and ∆yCi

, i = 1, ...,4, are the area, the horizontal and vertical length of cell Ci, respectively, and

det(Ci) is the determinant of the hydraulic conductivity tensor of each cell. From (23) - (24) we obtain a system of

algebraic equations for solving the pressure variables

(25) Cp = b

where C is the matrix of coefficients, p is the vector of the unknown pressure field and b is the right hand side

vector which includes the source term and the boundary condition. For simulations with high resolution, matrix

C is sparse symmetric positive definite and the dimension is large. To solve a large sparse linear system, iterative

methods are better options than direct methods (generally using Gauss eliminations). Furthermore, iterative meth-

ods are generally easier to parallelize. Among iterative methods, multigrid methods have been proved to be one

of the most efficient algorithms to solve the elliptic type partial differential equations numerically. For solving the

linear system in (25), we employed the aggregation-based algebraic multigrid (AGMG) method in [8; 9].

It is worth noting that multipoint flux mixed finite element (MFMFE) method is closely related to the MPFA

method. In fact, one can view the O-version of the MPFA method (the one considered and presented in this work)

as a special case of the multipoint flux mixed finite element (MFMFE) method with a certain quadrature rule. In

this paper, we restrict our attention to MPFA for two reasons. Firstly, MPFA is more widely used than MFMFE

in engineering applications, and secondly, aggregation-based algebraic multigrid is more natural when applying

to MPFA as compared with MFMFE. A separate work (still in progress) will be devoted to aggregation-based

algebraic multigrid for MFMFE in near future and it will appear in another paper.

3.2. Aggregation-based algebraic multigrid

Consider the linear system Ax = b on a fine grid, where A represents the matrix and b the right-hand side vector,

and x is the solution vector that one seeks. In iterative algorithms we let x(i) denote the approximate solution to the

linear system at the ith iteration and decompose the corresponding error e(i) = x(i)−x into its Fourier components.

Classical relaxation schemes, such as weighted Jacobi or Gauss-Seidel methods, can quickly damp the high fre-

quency components of the error. For this reason these methods are called smoothers (see step 1 in Fig. 4 where xl
0,

rl and Sl
1 are the input vector, residual and pre-smoothing operator, respectively). Notice that the superscript l in
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Fig. 4 represents the multigird level. As the high frequency components are damped, the further smoothing itera-

tions on this level hardly attenuate the low-frequency components. To solve this, the multigrid methods use coarse

grid correction, that is, the low-frequency components of residual (step 2, Fig. 4) are restricted to a sufficiently

small grid (step 3, Fig. 4, where Rl is the restriction operator). On the coarser level few (one or two) relaxations

(step 1 at the next level, Fig. 4) can effectively reduce the error because the smoother components projected from

the fine level appear more oscillatory. The smoothing-restriction procedure can be carried out until the coarsest

grid is reached where the corresponding residual equation is inexpensive to solve directly by Gaussian eliminations

(step 4 at the coarsest level, Fig. 4). The coarsest grid solution (x̄l
2 at the coarsest level) is then interpolated back to

the finer levels (step 5, Fig. 4, where Pl is the interpolation operator) where further relaxation sweeps (step 6, Fig.

4, where Sl
2 is the post-smoothing operator) may be applied. Recursive application of the above procedure leads to

a multigrid V-cycle implementation, as shown in Fig. 4. Note that in Fig 4 the approximation in step 4 becomes

exact on the coarsest level where the system is directly solved.

1. Pre-smooth xl
1 = Sl

1(x0,r
l)

2. Residual rl
1 = rl −Alxl

1

3. Restriction r̃l
1 = Rlrl

1

4. Next level Ãl x̃2 ≈ r̄l
1

5. Prolongation xl
2 = Pl x̃l

2

6. Correction xl
3 = xl

1 + xl
2

7. Post-smooth xl
0 = Sl

2(x
l
3,r

l)
last

...

3

2

1
1 2 3 5 6 7

1 2 3 5 6 7

1 2 3 5 6 7

1 2 3 5 6 7

4

Figure 4: Multigrid algorithm (left) and illustration of V-cycle (right). Sl
1 , Sl

2, Pl and Rl are pre-smoothing, post-smoothing restricting and

prolongation operators at level l, respectively.

For coarse grid construction in AGMG algorithm the (say N) unknowns are subdivided into (say Nc) disjoint

small groups (aggregates) Ik, k = 1, ...,Nc which represent unknowns on next coarser level. In each aggregate, the

prolongation values are assumed to be uniform, that is, functions are piecewise constant. Therefore the prolonga-

tion operator P is of the form

(26) Pik =

{

1 if i ∈ Ik,
0 otherwise

(1 ≤ i ≤ N,1 ≤ k ≤ Nc).

P is an N ×Nc matrix with exactly one nonzero entry per row [9]. Consequently, the restriction operator is R = PT

and the coarse grid matrix Ac is obtained by Galerkin formula

(27) Ac = PT AP

where the entry (Ac)i j is calculated by

(28) (Ac)i j = ∑
k∈Ii

∑
l∈I j

akl .

Piecewise constant prolongation may attenuate the convergence property of the algorithm and a remedy is pro-

posed in [8], in which K-cycle instead of V-cycle is used in cycle strategy. In K-cycle the approximate solution x̃2

in Fig. 4 is obtained by one or two multigrid preconditioned Krylov subspace iterations (preconditioned conjugate

gradient or GMRES), where the multigrid preconditioner is the K-cycle implementation on the next coarser level.

The K-cycle strategy of the AGMG is described in detail in [8] and [9], respectively.

As one of the multigrid methods, aggregation-based algebraic multigrid can be very efficient because of its rel-

atively low setup time. However, even with K-cycle strategy it may still suffer slow convergence in some complex

cases. Specifically, the PDEs whose dispersion tensor is rotated anisotropic, appear to be a challenging problem

for aggregation-based algebraic multigrid methods. This is due to that for some rotation angle (e.g., π/6, π/3) the
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original aggregation algorithm generates parallelogram aggregates (4 nodes form an aggregate in 2D) rather than

preferred line aggregates. For this type of problems, Chen et. al. [25] proposed an improved aggregation strategy

to improve the convergence. In [25] a new automatic aggregation algorithm determines appropriate aggregates

based on eigenvectors associated with small eigenvalues of a block splitting matrix. The generated aggregates by

this approach mostly are lines and aligned with the direction of the rotated anisotropy. In this work the improved

aggregation algorithm is used in the simulation code.

3.3. Parallel implementation of the Solution Algorithm

In our simulation the space domain is divided into m×m = m2 blocks (m is a positive integer), each block

contains a fixed number of grid cells, as shown in Fig. 1 (where the domain is divided into 4 subdomains). In each

subdomain variables (velocities, pressure and porosity) are computed or updated by one process. For convenience,

we divide the domain along the horizontal and vertical edges. In this format each process needs to share variables

at the internal boundary with its neighbouring processes. For example, in Fig. 1 processes P1 and P2 share u while

P1 share v with P3 at the internal boundary (solid lines). In each time step the variables at cell centres (pressure,

permeability , hydraulic conductivity and concentration) next to the internal boundaries are communicated between

processes using MPI in order to compute the solution correctly. Furthermore, the construction of transmissiblity

matrix in experimenting field approach ([23]) also needs to communicate the residual values (at cell centres) be-

tween processes.

In the above computations only local communications with neighbours rather than global communications are

needed for computing the variables at the internal boundary. This reduces the impact of communication cost to the

parallel efficiency. After computing the transmissibility matrix, the resulted linear system in equation (25) is solved

by parallel aggregation-based algebraic multigrid to obtain the pressure field. The porosity and the permeability

are then updated.

However, there are several issues affect the parallel efficiency of multigird methods. These issues are par-

allel coarsening in setup phase, parallel smoothing and coarsest grid solving ([26; 27]). In parallel AGMG the

aggregation algorithm aggregates unknowns locally without information from neighbouring processes, therefore

the resulting prolongation operator, the associated coarse grid matrix and the smoother are different from their

counterpart in sequential AGMG. Furthermore, the parallel pre- and post-smoothing, which may involve inversion

of matrices, ignore the connection information with the variables which are not in current process. These factors

may affect the convergence of AGMG. To assess the impact of the above issues on linear system solving arising

from our numerical examples (described in the next section) we carried out some preliminary parallel run with

different number of processes (cores) to observe the convergence of AGMG multigrid solver in the first 1000 time

steps. We record the average multigrid cycles needed for solving the pressure field at each time step. The results of

the runs are shown in Table 1. From the table we see that the convergence of AGMG is not affected significantly

by the aforementioned first two issues for the numerical examples we studied in this work.

Table 1: Effect of parallelization on the convergence of AGMG. 16002 unknowns.

No. of processes # level AGMG iterations

(cores) θ = 0◦ θ = 30◦ θ = 45◦ θ = 60◦

1 7 14 14 14 14

4 7 14 14 14 14

16 7 14 15 14 15

64 7 14 15 15 15

256 7 15 15 15 15

1024 7 15 15 15 15

The coarsest grid solving is a critical step affecting the parallel efficiency [26] when the number of processes

(cores) is large (1024 in this research). The size of the portions of the operator stored in each processes at this

level is generally small, and the time required for communication may be higher than the time required to perform

the calculations on a single process. Furthermore, the coarsest grid operator may couple all pieces of the global

problem (i.e., it is dense, or nearly dense), and thus global communication of the right-hand side or other data may
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be necessary. To avoid excessive communication at the coarsest level, we use Jacobi preconditioned conjugate

gradient (PCG) to solve the coarsest grid system instead of Gauss eliminations (direct solving). Compared with

Gauss eliminations, the CG algorithms can be parallelized easily and the implementation only need few global

communications.

In all the coarsest grid solving of AGMG cycles, the PCG iterations stop when the 2-norm of the relative resid-

ual is less than a threshold. The computation of the threshold is as follow: For each visit of the coarsest grid, one

may expect that a defect reduction of ρ1/κ will be sufficient, where ρ denotes the expected multigrid convergence

factor and κ is the number of coarsest grid visits [27]. If the expected multigrid convergence factor is 0.15 and the

number of coarse grid visits is 192, the the threshold can be computed as
192
√

0.15 ≈ 0.99. Generally this threshold

can be reached easily by one or two preconditioned CG iterations, while the overall AGMG convergence was not

affected. Therefore in the actual implementation we let the threshold be 0.99.

In summary, the solution steps of the numerical algorithm (experimenting pressure field approach, parallel

implementation) described in this section are shown in Fig. 5.

v =−k∇p [u−,v+,u+,v−]T = A−1B[p1, p2, p3, p4]
T

u−,v+,u+,v−

u,v∇ ·v

−vB, pB q

Residual, Rp

experimenting

pressure fields

Constructing,

A, b

Parallel AGMG solver,

Ap = b

Obtain p

Obtain v

Do transport
Continue next

time step

Linear system

solving

MPI communication

MPI communication

Figure 5: Flow chart of the solution using the experimenting pressure field approach to calculate the velocity field.

4. Numerical example

In this work, we consider a set of 2D numerical experiments to investigate the transport of nanoparticles in

heterogeneous media which contains fractures. The physical domain is a square with side length of 3.2 meters and

consists of three zones, where the permeability in the middle zone is rotated anisotropic (lightly hatched region in

Fig.6). The whole domain is resolved by a mesh with size nx×ny = 6400×6400. The size of each cell is 0.0005 m
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× 0.0005 m. In an attempt to investigate the parallel efficiency, the unknowns are divided into various of numbers

of groups, with each number is an even power of 2. The largest number of processes used in this research is 1024.

The anisotropy is defined by two parameters. The first parameter is the angle that the principle direction of

anisotropy is making with the x-axis. The other is the anisotropy ratio, which is the ratio between the components in

the principle directions. The angles of anisotropy considered in this work are 0◦, 30◦, 45◦ and 60◦. The anisotropy

ratio is set to be ε = 0.1. Consequently the components of the initial permeability tensor in rock matrix is given by

the formula

(29)

[

Kxx Kxy

Kyx Kyy

]

=

[

K0(cos2(θ)+ ε sin2(θ)) K0(1− ε)cos(θ)sin(θ)

K0(1− ε)cos(θ)sin(θ) K0(sin2(θ)+ ε cos2(θ))

]

,

where K0 is a constant given by 9.869×10−14. The domain contains three fractures whose positions and lengths

are shown in Fig.6. The width of each fracture is resolved by 2 volumetric cells, which makes the fracture width

to be 0.001 m.

At the centre of the domain, a 0.46 m×0.46 m square region (cross hatched region in Fig. 6) serves as a source

of nanoparticle pollutant. The nanoparticles are emitted at an intensity 2×10−5 L/s. The fluid flow transports these

particles and certain amount of them deposit in the media. In the region where nanoparticles are injected, the de-

position of nanoparticles changes the homogeneity of the media so that the porosity reduces with respect to time.

All the simulations stop when the minimum porosity of the domain has reached 0.10 and the numerical data are

saved/recorded. Note that the value 0.10 is enough for us to observe the significant differences in fields (pres-

sure, porosity and velocity) for various cases, however there is nothing particularly significant about this value

and we are able to proceed further in time. For the boundary conditions, we impose velocity boundary condition

of 2× 10−6 m/s on the left edge of the domain. Moreover, at the same place the pressure is set to 1 atmosphere

(1.01325 bar). Initially, the pressure field is 0 except on the left side of the domain. No flow boundary condition is

assumed on the top and bottom of the domain.

The parameters for the transport model described in the previous section are listed in Table 2. For convenience

we made few assumptions. Firstly the nanoparticles are assumed not affecting the flow field. This assumption

allows the decoupling of flow and transport equations and simplifies the calculations. Secondly, we assume that

the permeability and the porosity are larger in the fractures. The permeability in the fracture is considered, ap-

proximately, 3 orders of magnitude than it is in the rock matrix. The initial porosity in fractures is assumed 0.9,

while in the matrix the porosity is considered 0.3. The larger permeability in fractures makes the entrapment of the

nanoparticles more difficult. We also assume that surface retention and entrainment of nanoparticles in fractures

to be smaller than that in the rock matrix. All the simulations use a fixed time step size of ∆t = 3.25×10−4 s.

0.74 m3.2 m

3.2 m

0.46 m

0.62 m

3 fractures

source of

nanoparticle

anisotropic zone

Figure 6: Schematic of the computational domain with the fracture system.
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Parameters Values

Initial permeability K0

in rock matrix

Isotropic layer

[

9.869 0

0 9.869

]

×10−14 m2

Anisotropic layer

0◦
[

9.869 0

0 0.987

]

×10−14 m2

30◦
[

7.649 3.846

3.846 3.208

]

×10−14 m2

45◦
[

5.428 4.441

4.441 5.428

]

×10−14 m2

60◦
[

3.208 3.846

3.846 7.649

]

×10−14 m2

Initial permeability

in fracture 750×9.896×10−14 m2

Parameters Values

Lx ×Ly 3.2 m × 3.2 m

nx ×ny 6400 × 6400

φ0 0.3

φ0 (in fracture) 0.9

DBr 2×10−9 m2s−1

µ 10−3 Pa s

γd 5 m−1

γd (in fracture) 0.025 m−1

γpt 1 m−1

γpt (in fracture) 0.005 m−1

γe 10 m−1

γe (in fracture) 0.05 m−1

γ fr 0.001 m−1

γ fr (in fracture) 5×10−6 m−1

k f 0.6

c0 0

cs1 0

cs2 0

qc 10−6 s−1

∆t 0.02 s

Table 2: Parameters for single nano-size particle transport simulations.

5. Simulation results

In this section we first investigate the physics delivered from the simulation results for the nanoparticle trans-

port in fractured media. The parallel simulations were carried out using 1024 cores. Secondly we assess the issue

for parallel efficiency by measuring the running time for the simulations with 1000 time steps using various number

(power of 2: 1, 4, 16, 64, 256 and 1024) of cores. All simulations were carried out on Shaheen II, a Cray XC40

delivering over 7.2 Pflop/s of theoretical peak performance. The system has 6,174 dual sockets compute nodes

based on 16 core Intel Haswell processors running at 2.3GHz. Each node has 128GB of DDR4 memory running at

2300MHz. Overall the system has a total of 197,568 processor cores and 790TB of aggregate memory. At the end

of 24 hours maximum execution time the restart mechanism implemented in the code saves the current numerical

data which is used for the next restarting simulation.

anisotropy angles 0◦ 30◦ 45◦ 60◦

no. of time steps 1940000 1810000 1850000 1820000

Table 3: Total number of time steps for the simulations to reach the minimum porosity threshold 0.10.

5.1. The evolution of minimum porosity

The change of the minimum porosity versus time for different scenarios are shown in Fig. 7. The number of

time steps to reach the minimum porosity threshold for each anisotropy angle are listed in Table 3. In all scenarios

the minimum porosity decreases with time as a consequence of the increase of deposition of nanoparticles. The

decreasing of minimum porosity becomes significantly after the time 1000 second. In the case for θ = 0◦ the

minimum porosity decreases slower than the others do. The decreasing rate is the largest for the cases θ = 30◦ and

θ = 60◦, where their time evolution profiles are pretty close. As we shall see later, the porosity profiles (Figs. 16)

exhibit that the minimum porosity happened inside the (square) nanoparticle emission region. The anisotropy an-

gles 30◦ and 60◦ exhibit a geometric symmetry to the square. The accumulation of the nanoparticles acts similarly
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Figure 7: Evolution of minimum porosity.

(a) 0◦ (b) 30◦

(c) 45◦ (d) 60◦

Figure 8: The decrease of the permeability component Kxx at the end of simulation.
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in these two cases.

Time evolution of the minimum values for each component of the permeability tensor [KxxKxy;KxyKyy] shows

almost the same as the porosity plot in Fig. 7 for various anisotropy angle. In particular, the minimum of the

permeability components decrease with time as a consequence of the increase of deposition of nanoparticles. Like

the minimum porosity, the decrease of the minimum permeability components becomes significant after the time

1000 second. The decrease of the permeability tensor component Kxx at the end of the simulation is shown at Fig. 8

(the figures of other permeability tensor components and their time evolution are not shown here due to limitation

of space). In the case for θ = 0◦ the minimum permeability components Kxx, Kxy and Kyy decrease more than the

others do. This may attribute to longer simulation time than the other cases.

5.2. Speed

The speed profiles sampled along the middle lines of the entire domain parallel to the coordinate axis for vari-

ous cases are shown in Figs. 9 - 12. Because the speeds at the fractures (≈ 10−3) are several orders of magnitudes

larger than that (≈ 10−5) in rock matrix, the y-axis is presented in terms of logarithmic scale. This should not be

surprising as the permeability in fractures is three orders of magnitude larger than that in the rock matrix.

Figure 9: Speed profile along the middle vertical and middle horizontal lines of the entire domain for θ = 0◦.

As seen from the figures, for all the anisotropy angles the speed profiles along the vertical middle line of the

entire domain exhibit two significant large values at two horizontal fractures, roughly 1000 times larger than that

at the rock matrix. On the other hand, along the middle horizontal line the fluid speed at the vertical fracture is 10

times larger than that in rock matrix. The speeds profiles also show that in the nanoparticle emission region (see

Fig. 6) the fluid flow slows down, correspond to the relatively significant decreasing of the permeability of that area.

5.3. Pressure, Porosity and concentration fields

In this work the primary concern is on how the fractures and the anisotropy of the middle region affect the

different variables such as pressure, porosity, flow velocities and concentration distribution of nanoparticles. In

this study, we consider the scenarios in which the deposition of nanoparticles changes the properties of porous

media. In particular, the deposition decreases the volume of the void space available for the flow and therefore,

the permeability also decreases. Since the velocity is set to be constant at the left boundary, the average pressure

changes as a consequence of the decrease of both the porosity and the permeability with time. In this section we

highlight these effects as per the different scenarios.
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Figure 10: Speed profile along the middle vertical and middle horizontal lines of the entire domain for θ = 30◦.

Figs 15 - 17 show the update of the various variables after the minimum porosity reached 0.10. First, we in-

vestigate the pressure field for each anisotropy scenario. From Fig. 15 one notices that the pressure field distorts

with the direction of anisotropy. As the anisotropy angle increases, the gradient of the pressure profiles along the

x-direction increases (Fig. 13). At the middle y-line of the domain, the pressure in the two horizontal fractures

is smaller than that in the rock matrix (Fig. 14). This is understandable since it is easier for the fluids to pass

through the fractures than they do in the rock matrix. Furthermore, Figs 13 and 14 show that the magnitude of the

maximum pressure at the left hand side of the domain increases as the anisotropy angle increases, which indicates

that large anisotropy angle hinders the fluid flow more significantly than small anisotropy angle does. Also notice

that the pressure is larger in the upper half domain than that in lower half domain when the anisotropy angle is not

zero, which again indicate the influence of the anisotropy angle on the pressure distribution.

The profiles of media’s porosity at the end of the simulation in all cases are shown in Figs 16. From the area

where the porosity is reduced, we see that the anisotropy affects the spread of the nanoparticles significantly. In

the area surrounding the injection region of the nanoparticles, the porosity fields are different in these four cases.

For the case θ = 0◦ the area with minimum porosity is rectangular (Fig. 16a) otherwise it rotates according to

the direction of anisotropy (Fig. 16b - 16d). Notice that the porosity in the fractures does not change significantly

during the simulation in all cases. This may be because the velocity in the fracture is large compared with that

in the rock matrix and therefore the rate of detachment is increased. One may also observe that nanoparticles

spread towards the two horizontal fractures for the cases θ = 30◦, θ = 45◦ and θ = 60◦. In these three cases the

spread of nanoparticles along the horizontal fractures reaches the fracture intersections. It is not surprising that

the horizontal fractures transport nanoparticles more rapidly than the rock matrix does. In the case θ = 30◦, the

spread of nanoparticles just barely reach the horizontal fractures when the simulation ends, so the transportation of

nanoparticles in fractures didn’t proceed long enough to see the similar effect appeared in the cases θ = 45◦ and

θ = 60◦.

Fig. 17 exhibits the concentration contours for different cases. Comparing with Fig. 16 the profiles of the con-

centration fields in all four cases match well with their corresponding porosity fields. From Fig. 17 the nanoparti-

cles spread out in broader range for the case θ = 60◦ than the other scenarios do. It can be seen that nanoparticles

are transported all the way to the fractures. After the pollutant is transported into the fractures, the concentration

near the area around the fractures increases gradually as the time evolves.
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Figure 11: Speed profile along the middle vertical and middle horizontal lines of the entire domain for θ = 45◦.

5.4. Parallel efficiency

In this section we assess the performance and parallel efficiency issues for the simulations. In each case the

execution times for linear system solving and the overall simulation are recorded. The core numbers used in simu-

lation for assessing parallel efficiency issue are 1, 4, 16, 64, 256 and 1024. The problem size is fixed (6400×6400

unknowns) and all the anisotropy angles (0◦,30◦,45◦,60◦) are considered. The simulation times for executing 1000

time steps from the restart file at a fixed time are measured. As mentioned in Section 3, the numerical algorithm

of simulation involves three parts: the construction of the matrix arising from MPFA discretization, solving the

resulted linear system for pressure field and the update of the variables such as velocity, porosity and concentration.

In attempt to assess the issue for the impact of the AGMG’s performance on the parallel efficiency of the overall

algorithm, the running times for both the overall simulation and linear system solving are compared.

The timing results are listed in Table 4 (for the whole simulation) - 5 (for linear system solving). The corre-

sponding parallel efficiency plots are shown in Figs. 18 - 19. The results in the tables show that the linear system

solving step takes from ∼ 5% (1 core) to ∼ 30% (1024 cores) of the overall simulation time for all the anisotropy

angles. The execution time for the linear system solving in the case 0◦ is the smallest among all scenarios. This

can be verified by the number of unknowns on each multigrid levels, which indicates that for the case 0◦ the re-

duction ratio from fine level to the next coarser level is the largest and therefore has the least computational cost

for smoothing and interpolation/prolongation among these cases.

As seen from Fig 18 the parallel efficiencies, either for the entire simulation or for linear system solving, do

not differ significantly in all anisotropy angles. For large number of cores (≥ 256) the parallel efficiency decreases

to below 50% for the overall simulation (see Fig. 18). This may attribute to the performance of linear system

solver. As seen from Fig. 19, the parallel efficiency for the linear system solving step reduces significantly in all

anisotropy angles for large number of cores (≥ 256).

6. Conclusion

In this work, we have simulated the flow and transport of nanoparticles in porous media. The domain is com-

posed of three vertical layers. The middle layer is assumed anisotropic with respect to permeability. A simple

system of fractures is also considered. Several scenarios of anisotropy of the permeability of the middle layer

are considered. Spatial variables were discretized using the multipoint flux approximation (MPFA) method. The

resulting linear system for pressure field is solved by aggregation-based algebraic multigrid (AGMG). We assume
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Figure 12: Speed profile along the middle vertical and middle horizontal lines of the entire domain for θ = 60◦.

Figure 13: Pressure profile along the middle x-line of the domain.

that the transportation of nanoparticles is less hindered in fractures hence the rate of particle retention and depo-

sition is small. The widths of the fractures are 1 mm. In order to represent the fractures by volumetric cells we

use high resolution mesh (6400×6400). The solution algorithm is parallelized so that the results can be obtained

in reasonable length of time. The fields for pressure, porosity, concentration and velocity are distorted by the

anisotropy. The direction of distortion follows the anisotropy angles. The fluid speed in fractures is several order

of magnitude larger than that in rock matrix. The fractures act as conduits which convey the nanoparticles much

faster than the rock matrix does. In this model the deposition of pollutant is not severe in the fractures due to the

high fluid velocity and hence increased rate of detachment.

The issues for parallel efficiency of the simulations are assessed. The efficiency is not affected significantly

by the anisotropy angles, which is expectable since the intensity of anisotropy in our study is relatively mild. The

performance and speed up of linear system solving (for pressure field) affect the overall parallel efficiency of the

simulation significantly. For large number of cores the linear system solving step becomes the bottleneck of the

performance and efficiency, as seen from the test results for AGMG’s parallel efficiency. This may attribute to

the communication cost for solving the coarsest grid problem (visiting 192 times in each multigrid cycle) and the

overhead arising from the setup phase in parallel AGMG.

To the best of our knowledge, this is the first attempt using parallel MPFA discretization and AGMG to simulate
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Figure 14: Pressure profile along the length of the rectangular domain (the middle y-line).

(a) 0◦ (b) 30◦

(c) 45◦ (d) 60◦

Figure 15: Pressure fields at the end of simulation.
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(a) 0◦ (b) 30◦

(c) 45◦ (d) 60◦

Figure 16: Porosity fields at the end of simulation.

(a) 0◦ (b) 30◦

(c) 45◦ (d) 60◦

Figure 17: Concentration fields at the end of simulation.
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0◦ 30◦ 45◦ 60◦

No.of processes (cores) time speedup time speedup time speedup time speedup

1 468524 479235 481930 478444

4 123520 3.79 124610 3.85 125542 3.84 124320 3.85

16 31120 14.10 32164 14.90 32333 14.9 31873 15.01

64 8433 55.55 8603 55.71 8572 55.22 8671 55.52

256 3058 153.21 3125 153.36 3128 154.07 3074 155.64

1024 952 495,15 1068 448.72 1047 460.31 1101 434.55

Table 4: The overall simulation time (in seconds) and speedup for running 1000 time steps.

0◦ 30◦ 45◦ 60◦

No.of processes (cores) time speedup time speedup time speedup time speedup

1 20497 22872 21811 23020

4 6160 3.33 6590 3.47 6371 3.42 6523 3.53

16 1846 11.11 2090 10.94 1950 11.18 2108 10.92

64 580 35.34 678 33.73 612 35.64 686 33.55

256 334 61.37 365 62.66 362 60.25 371 62.05

1024 263 77.93 309 74.02 298 73.19 304 75.72

Table 5: Execution time (in seconds) and speedup for linear system solving (for pressure field) in 1000 time steps.

and investigate the nanoparticle transport in porous media with fractures. The current work shed light on the new

approaches to tackle the complicated systems of nanoparticle transport with fractures and full-tensor permeability.

This work can be extended to multiphase flow in a rock containing fractures of various scales, which is a topic we

plan to work on in near future.

Acknowledgments

The research reported in this publication was supported in part by funding from King Abdullah University of

Science and Technology (KAUST) through the grant BAS/1/1351-01-01. Also the authors would like to thank Dr.

P. K. Jimack for constructive criticism of the manuscript.

References

[1] D. Lin, X. Tian, F. Wu, B. Xing, Fate and transport of engineered nanomaterials in the environment. J.

Environ. Qual. 39(2010), issue 6, pp. 1896-1908.

[2] A. Salama, A. Negara, M. El Amin, S. Sun, Numerical investigation of nanoparticles transport in anisotropic

porous media. J. Contaim. Hyro., 267 (2014), pp. 117-130.

[3] S. Lin, Y. Cheng, Y. Bobcombe, K. L. Jones, J. Liu, and M. R. Wiesner, Deposition of Silver Nanoparticles

in Geochemically Heterogeneous Porous Media: Predicting Affinity from Surface Composition Analysis

[4] H. Ma, P. L. William, S. A. Diamond, 2013. Ecotoxicity of manufactured ZnO nanoparticles - a review.

Environ. Pollut. 172 (2013), pp. 76-85.

[5] S. Sun, A. Salama, M. F. El-Amin, Matrix-oriented implementation for the numerical solution of the partial

differential equations governing flows and transport in porous media. Computer & Fluids, 68(2012), pp.38-

46.

[6] M. F. El-Amin, S. Sun, A. Salama, Modeling and Simulation of Nanoparticle Transport in Multiphase Flows

in Porous Media: CO2 Sequestration. SPE-163089. Mathematical Methods in Fluid Dynamics and Simula-

tion of Giant Oil and Gas Reservoirs 2012.

20



−100 0 100 200 300 400 500 600 700 800 900 1,000 1,100

0.4

0.6

0.8

1

No. of processes

P
ar

al
le

l
ef

fi
ci

en
cy

0◦

30◦

45◦

60◦

Figure 18: Strong scaling: parallel efficiency for the overall simulation.

−100 0 100 200 300 400 500 600 700 800 900 1,000 1,100
0

0.5

1

No. of processes

P
ar

al
le

l
ef

fi
ci

en
cy

0◦

30◦

45◦

60◦

Figure 19: Strong scaling: parallel efficiency for the linear system solver.

[7] M. F. El-Amin, A. Salama, S. Sun, Numerical and dimensional investigation of two-phase counter current

imbibition in porous media. J. of Comput. Appl. & Math., 242(2013), pp. 285-296.

[8] Y. Notay, An Aggregation-based Algebraic Multigrid Method. Elect. Trans. on Numer. Analy., 37 (2010), pp.

123-146

[9] A. Napov, Y. Notay, An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput.,

34, No. 2, A1079-A1109.

[10] P. R. Johnson, M. Elimelech, Dynamics of colloid deposition in porous media: blocking based on random

sequential adsorption. Langmuir 11 (1995), pp. 801-812.

[11] N. Tufenkji, M. Elimelech, Deviation from the classical colloid filtration theory in the presence of repulsive

DLVO interactions. Langmuir 20 (2004), pp. 10818-10828.

[12] J. F. Schijven, S. M. Hassanizadeh, R. H. de Bruin, Two-site kinetic modeling of bacteriophages transport

through columns of saturated dune sand. J. Contam. Hydrol. 57 (2002), pp. 259-279.

[13] S. A. Bradford, S. R. Yates, M. Bettahar, J. Simunek, 2002. Physical factors affecting the transport and fate

of colloids in saturated porous media. Water Resour. Res. 38 (2002), pp. 1327-1338

[14] G. Gargiulo, S. Bradford, J. Simunek, P. Ustohal, H. Vereecken, E. Klumpp, Bacteria transport and de-

position under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein. J.

Contam. Hydrol. 92 (2007), pp. 255-273

21



[15] E. Goldberg, M. Scheringer, T. D. Bucheli, K. Hungerbuhler, Critical assessment of models for transport of

engineered nanoparticles in saturated porous media. Environ. Sci. Technol. 48 (21), 2014, pp. 12732-12741.

[16] P. Bedrikovetsky, A. Santos, A. Siqueira, A. L. Souza, F. Shecaira, A stochastic model for deep bed filtra-

tion and well impairment. SPE 82230, 2003, European Formation Damage Conference in The Hague, The

Netherlands.

[17] A. Benamar, N. D. Ahfir, H. Q. Wang, A. Alem, Particle transport in a saturated porous medium: pore

structure effects. C. R. Geosci. 339 (2007), pp. 674-681

[18] B. Ju and T. Fan,Experimental study and mathematical model of nanoparticle transport in porous media.

Powder Technology, 192 (2009), issue 2, pp. 195-202

[19] E. Cullen, D. M. O’Carroll, E. K. Yanful, B. Sleep, Simulation of the subsurface mobility of carbon nanopar-

ticles at the field scale. Adv. Water Resour., 33 (2010), pp. 361-371.

[20] C. Gruesbeck, R. E. Collin, Entrainment and deposition of fine particles in porous media. Soc. Pet. Eng. J.

24 (1982), pp. 847-855.

[21] C. An, A. Masoud, B. Yan, J. E. Killough, A new study of magnetic nanoparticle transport and quantifying

magnetization analysis in fractured shale reservoir using numerical modeling. J. Nat. Gas Sci. and Eng., 28

(2016), pp. 502-521.

[22] C. An, B. Yan, A. Masoud, L. Mi, J. E. Killough, Z. Heidan, Estimating spatial distribution of natural

fractures by changing NMR T2 relaxation with magnetic nanoparticles. J. Pet. Sci. and Eng., 157 (2017), pp.

273-287.

[23] S. Sun, A. Salama, M. F. El-Amin, An equation-type approach for the numerical solution of the partial

differential equations governing transport phenomena in porous media. Procedia Comput. Sci., 9 (2012), pp.

661-669.

[24] A. Salama, S. Sun, M. Wheeler, Solving global problem by considering multitude of local problems: appli-

cation to flow in anisotropic porous media using the multipoint flux approximation. J. Comput. Appl. Math.

267 (2014), pp. 117-130.

[25] M. Chen, A. Greenbaum, Analysis of an aggregation-based algebraic two-grid method for a rotated

anisotropic diffusion problem, Numer. Lin. Alg. with Appl., 22 (2015), Issue 4, pp. 681-701.

[26] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro and U. M. Yang A survey of parallelization techniques for

multigrid solvers, Parallel Processing For Scientific Computing, SIAM, series on Software, Environments,

and Tools (2006).

[27] J. Linden, G. Lonsdale, H. Ritzdorf, A. Schuller, Scalability aspects of parallel multigrid. Future Generation

Computer Systems 10 (1994), pp. 429-439.

[28] F. He, M. Zhang, T. Qian, D. Zhao, Transport of carboxymethyl cellulose stabilized iron nanoparticles in

porous media: column experiments and modeling. J. Colloid Interface Sci. 334 (2009) , pp. 96-102.

22


