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Abstract. Machines that efficiently and safely interact with the uncertainty of

the natural world need actuators with the properties of living creatures’ muscles.

However, the inherent nonlinearity of the static and damping properties that the

most promising of these muscle-like actuators have makes them difficult to control.

Our ability to accurately control these actuators requires accurate models of their

behavior. One muscle-like actuator for which no accurate models have been specifically

developed is the Peano muscle. This paper presents and validates a model generation

algorithm, Multivariable Arbitrary Piecewise MOdel REgression (MAPMORE), that

produces accurate models for predicting the static and damping force behavior of

Peano muscles, as well as of the popular McKibben muscle. MAPMORE builds a

training data processing, muscle-specific model term dictionary, and piecewise function

fusion framework around Billings et al ’s Forward Regression Orthogonal Least Squares

(FROLS) estimator algorithm. We demonstrate that MAPMORE’s static and damping

force models have a Normalized Root Mean Square Error (NRMSE) of 48% to 88% of

the NRMSE of the most accurate of Peano and McKibben muscles’ existing models.

The improved accuracy of MAPMORE’s models for these artificial muscles potentially

aids the muscles’ ability to be accurately controlled and hence is a step towards enabling

machines that interact with the real world. Further steps could be made by improving

MAPMORE’s accuracy through the addition of hysteresis operator and lagged terms

in the damping force dictionary.

Keywords: fluidic muscle, McKibben muscle, Peano muscle, MAPMORE, soft actuator,

static and damping behavior, modeling
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1. Introduction

Robotics can benefit, particularly in environments with an unpredictable stiffness,

from drive systems (actuators) with the inherent physical softness, or compliance

of biological muscles. Adding compliance to actuators can improve their ability to

safely absorb impacts and interact with objects [1]. Robots have traditionally used

actuators such as servo hydraulics or electric motors, which suited robots’ original

purpose of helping mankind by automating manual labor tasks such as manufacturing

and assembly. These tasks were confined to structured, predictable environments.

Now, the current challenge is to extend robots’ abilities to helping humans in less

constrained environments. Example applications include wearable robots that help with

the restoration or rehabilitation of people with disabilities [2–4]; automated vehicles that

find and rescue people from disaster zones [5]; and devices that operate in hazardous

areas [6]. These applications all put robots in unpredictable environments where an

unexpected interaction between the robot and an object could damage either of them.

This is particularly due to the rigid, high stiffness properties of traditional robots’

actuators and structures. A fail-safe solution to this problem is found in the wholly

soft and elastic design of biological muscles. This allows living creatures to safely and

repeatedly absorb unexpected impacts as well as effectively interact with hard and soft

environments [1].

Inspired by the success of biological muscles a large number of manmade artificial

muscles have been developed with the aim of mimicking muscles’ properties [7–15]. The

most commonly used artificial muscles are fluidic muscles, chosen for their soft form [16],

high forces [17], ease of manufacturing [18], and reliance on readily available materials

and power sources [19, 20].

A fluidic muscle consists of a variable volume pressure chamber. Pressurizing the

chamber with the fluid alters its volume, and the chamber’s structure couples its volume

change to an attached load so the muscle can perform mechanical work on that load.

Depending on the materials and geometry of the pressure chamber various movements

are possible: contraction [12–15], extension [21], torsion [22], bending [23], and combined

three-dimensional (3D) [24, 25].

The most popular fluidic muscle is the McKibben muscle [26, 27], chosen for its

simple construction, high force, and inherent compliance [28]. Figure 1a shows how it

consists of a rubber tube wrapped in a stiff fiber braid. Pressurizing the tube causes it

to increase in diameter, expanding and shortening the braid so the muscle contracts.

The Peano muscle [22], referred to elsewhere as the muscle-motor [14], pouch motor

[29], and flat Pneumatic Artificial Muscle (PAM) [30], also contracts when pressurized

and can produce high forces. These forces are proportional to its planform area, whereas

the McKibben muscle’s force scales with its cross-sectional area. Proposed by Mettam in

1959 [14], it is inherently compliant, yet, compared to a McKibben muscle, its pressure

chamber has no volume when deflated, potentially resulting in a more compact actuator

[31]. It is made of a row of side-by-side inelastic yet flexible tubes. When pressurized,
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the tubes’ flat deflated form transforms to a cylinder, shortening the length of the tube

structure (figure 1b).

Δl 

l0

Stiff fiber braid

Elastomer tube

(a)

Inelastic tube

Fluid flow via
channels

l0

Δl 

Tube-tube
connection

(b)

Figure 1: Operating principle of the McKibben (a) and Peano (b) muscles. Pressurizing

both muscles shortens them from an initial length l0 by a displacement ∆l. In the

McKibben muscle this is achieved by the use of a stiff fiber braid that couples radial

expansion of an internal elastomer tube to a contraction of its length. In the Peano

muscle, undeflated side-by-side tubes with a flat cross-section tend towards a circular

cross-section when pressurized, causing the tube assembly to contract.

The muscles used for testing the models in this work were the commercial McKibben

PAM shown in figure 2a (DMSP-20-88N-RM-RM, Festo AG & Co. KG, Esslingen am

Neckar, Germany) and the Peano muscle shown in figure 2b (four tubes 0.046m long

and 0.017 25m wide as in [31]).
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(a) (b)

Figure 2: The McKibben (a) and Peano (b) muscles used to validate the MAPMORE

model

The disadvantage to using artificial muscles such as McKibben and Peano muscles

is that they are harder to control than hydraulic and electric actuators. Compared to

the rigid materials of traditional actuators, their behavior is nonlinear and challenging

to predict [32, 33]. This arises from the complex physics and stochastic properties of

their flexible structure and soft materials [33, 34]. Improved control can be achieved

by modeling the muscles’ behavior, as muscle models can be used to predict how the

muscle should behave given a desired muscle behavior. However, the muscles’ nonlinear

behavior is also challenging to model accurately [33].

The primary contribution of this paper is aimed at producing more accurate models

of McKibben and Peano muscles. The hope is that these models will improve the

muscles’ controllability and hence make them more readily applicable in uncontrolled

environments. Specifically this paper presents the validation of Multivariable Arbitrary

Piecewise MOdel REgression (MAPMORE) generated static and damping force models

as more accurate than existing accurate models for Peano and McKibben muscles. It

also builds on our past work’s application of MAPMORE to static behavior [35] by

presenting the validated application of MAPMORE to generating muscle damping force

models.

The paper is organized as follows: section 2 overviews accurate fluidic muscle

static and damping force models; section 3 explains the MAPMORE algorithm and

its application to generating damping force models; section 4 presents the validation

methods; sections 5 and 6 describe the results and discussion; and section 7 summarizes

the conclusions of this work.
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2. Fluidic muscle modeling

What kind of model is suitable for accurately predicting the behavior of a fluidic muscle,

and particularly for its control? In addition to a model with a low prediction error, it

is also desirable to have a versatile and transparent model. Here a versatile model is

taken to be applicable to different types of fluidic muscles (for example McKibben and

Peano) and different types of behavior. Behaviors considered in this work are static,

nonhysteretic force generation for slow movements, and damping force generation for

fast, dynamic movements.

Static force, Fs, is the force a muscle produces for a given constant (steadystate)

length and pressure. Damping force, Fd, is the difference between the measured force

of a muscle, F , and the force it is predicted to produce based on a model of its static

force. The relationship between these quantities is simply F = Fs + Fd. Hence, if the

muscle is only producing static force, Fd = 0 and F = Fs. Otherwise Fd 6= 0.

Hysteresis is also an important muscle behavior [36, 37]. Whenever a muscle moves

there will be an energy loss resulting in a hysteresis loop, which varies in size and

shape with muscle type. Depending on the application of the muscle, this loop,

if unmodeled, may cause model inaccuracy that affects muscle control. Hysteresis

modeling’s complexity requires it to be treated separately and so it is assumed outside

the scope of this work. Potential models that could be considered for muscle hysteresis

modeling include those of Vo-Minh et al [36], Lin et al [37], and Van Damme et al [38].

A transparent model is desirable as it contains easily understood terms. These

are mathematically simple terms that allow the nature of the muscle’s behavior to be

interpreted by visual inspection. Additionally, they often have a low computation time

for fast execution on a real-time control system. Given these model characteristics, we

next survey approaches documented in the literature for the accurate static and damping

force modeling of McKibben and Peano muscles.

2.1. Static force models

Physics-based [26, 39, 40], empirical [41, 42], finite element [43], and system identification

[44] approaches have all been used to model the static behavior of the McKibben muscle

with varying degrees of accuracy. The most accurate of these is Martens and Boblan’s

[40] physics-based model with a maximum full-scale prediction error of 2.35%. Note that

full-scale error is the unsigned ratio of prediction error to the largest measured value in

the validation data. The next most accurate was Hošovskỳ et al ’s [44] adaptive neuro-

fuzzy inference system, a system identification approach modeling static force with a

full-scale prediction error under 3%. The empirical approach of Sárosi was similarly

accurate with a maximum full-scale error of 3.59% [40]. Other approaches tend to have

full-scale errors of 5% and higher [26, 39, 43].

Comparing these models’ transparency and suitability for control highlights that

Hošovskỳ et al ’s [44] modeling approach is nontransparent. Martens and Boblan’s [40]

model is specific to the physics of the McKibben muscle and therefore not directly
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applicable to the Peano muscle. Hošovskỳ et al ’s approach is considered nontransparent

as system identification constructs models by fitting general model terms and coefficients

to data. The resulting model can be very accurate, but it is difficult to use it to gain

insight into the physical system behind the data.

The Peano muscle’s static force has also been modeled using the physics-based

virtual work [14, 29], empirical [35, 41], and lumped parameter [31] methods. Maximum

full-scale errors with these methods were 8.5 [29], 7.5 [35], and 19.5% [45] respectively.

The most accurate of these is Sárosi’s model, which has been also demonstrated to

be relevant to the McKibben muscle [40]. The second most accurate, Niiyama et al ’s

model, is based on the physics of the Peano muscle, and hence is not relevant to the

McKibben muscle.

2.2. Damping force models

Damping force models in the literature for the McKibben muscle are limited to

combinations of physics-based and empirical terms with empirically fitted coefficients.

These are often combined with a static model to form a lumped parameter force model

[46]. As there are relatively few damping force models they are separately described.

This is also important because, as will be explained later, they have relevance to the

application of MAPMORE to damping. These damping force models are summarized

in table 1 and rely on linear and nonlinear functions of strain ǫ (where ǫ = ∆l/l0 with

reference to figure 1), strain rate ǫ̇, and pressure P .

Table 1: Terms used to calculate the damping force component in dynamic McKibben

PAM models from the literature. Note that these models use strain rate rather than

the muscle velocity used in the original source terms. This is for consistency with the

use of strain in static modeling of muscles in this work.

Name Terms

Linear viscous [47] B0ǫ̇

Pressure dependent viscous [48] B1P ǫ̇

First order pressure dependent viscous [46, 49] (B0 +B1P )ǫ̇

Hysteresis loss viscous [50]
(

2ζ(P )
√

|kt(P, ǫ)|m
)

ǫ̇

Kinetic friction [47] sgn(ǫ̇)
(

(B0 − B1)e
−ǫ̇
B2 +B1

)

Generalized kinetic friction [51] sgn(ǫ̇)

(

2
∑

k=0

Bk ǫ̇
k +B3e

−|ǫ̇|
B4

)

As shown in table 1, the simplest damping model in the literature is the linear

viscous term used by Tondu [47]. This is easily extended to Kerscher et al ’s [48] pressure
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dependent viscous term, and then the two combined in Reynolds et al ’s [46] first order

pressure dependent viscous model. Unlike the previous models, Reynolds et al fitted

separate damping term coefficients for the contraction and extension step responses of

a McKibben muscle. They achieved a mean full-scale error of 15% for their combined

static and damping force model. They observed an increase in damping with pressure

on contraction and a decrease in damping on extension. Similar observations were

made by Cao et al [49] who used the same first order pressure dependent viscous term

fitted separately to contraction and extension step response data. Cao et al further

distinguished a low and high pressure region. They fitted the pressure coefficients

for pressures 200 kPa and below, and above 200 kPa. Thus they used a two segment

piecewise version of Reynolds et al ’s term and fitted it separately to contraction and

extension data.

In contrast to the above mentioned empirical approaches, Sárosi et al [50] took a

physics-based approach with a hysteresis loss viscous term. They based their model

on static force models fitted to the upper and lower force-strain curves of a quasistatic

muscle load cycle experiment (quasistatic muscle unloading and loading at a constant

pressure). They multiplied the strain rate by the critical damping coefficient 2
√

|kt|m

and Lehr’s damping coefficient ζ(P ). Where m is the muscle inertial mass, and kt its

stiffness or the derivative of its static force model. Lehr’s damping coefficient is the

proportion of energy lost due to the rate-independent hysteresis during a load cycle

experiment. It occurs over the full stroke of the muscle at a given pressure. Veale et al

[45] have applied this McKibben muscle damping force model to a combined static and

damping force model of the Peano muscle. They obtained a maximum error under 15%

strain and a Root Mean Square Error (RMSE) of 2.6% strain.

In addition to Sárosi et al ’s damping model are Tondu’s [47] kinetic friction and

Peternel et al ’s [51] generalized kinetic friction viscous terms. They also have physically

meaningful coefficients. Specifically, the coefficient B0 represents static friction, and B1,

a limit kinetic friction. These terms are inspired by a combination of textile physics and

static-kinetic friction models.

Given this overview of McKibben static and damping force models, several were

selected as benchmarks for validating the accuracy of the static and damping models

generated by MAPMORE. As mentioned earlier, the focus is foremost on models

for control that are accurate, relevant to McKibben and Peano muscles, and have

transparent model terms. Thus, the static benchmark model from the literature is

that of Sárosi [41]. All the damping models discussed (as listed in table 1) will be

benchmarked due to the lack of available literature on their accuracy in modeling the

damping force component (accuracies are typically stated for the combined damping

and static models of a muscle).

3. The MAPMORE algorithm

MAPMORE is an algorithm that uses experimental data to build multivariable piecewise
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functions. It was introduced by Veale et al [35] for the accurate modeling of McKibben

and Peano muscle quasistatic force behavior. MAPMORE selects the mathematical

modeling terms that constitute its piecewise functions from a dictionary of user specified

terms and fits the terms to the data. The method that selects these terms is a slightly

modified version of Billings et al ’s [52, 53] Forward Regression Orthogonal Least Squares

(FROLS) estimator algorithm. Alternative term selection and fitting algorithms exist

[54–57], but FROLS was chosen for use with MAPMORE because it is computationally

efficient and simple to implement.

The novelty of MAPMORE lies in the framework it builds around the modified

FROLS algorithm so it can accurately model the static and damping force components

of McKibben and Peano muscles. This involves extraction, segmentation, and scaling

of training data; choice of suitable model terms; and multivariable piecewise function

fusion and extrapolation. In this work, the versatility of MAPMORE in accurate model

generation is extended beyond the quasistatic force model generation of Veale et al [35]

to dynamic situations where the damping force component of fluidic muscles is also

modeled.

Figure 3 and the explanation that follows outline how MAPMORE works when

applied to generating models of a fluidic muscle’s damping force component. Note that

the symbols in the MAPMORE algorithm referred to in this explanation are summarized

at the end of this section in table 2. Also note that the process used to generate

the static force component models in this paper is similar, and is described in detail

in [35]. In the first step in MAPMORE, in (a) of figure 3, data is collected. This

involves the measurement of muscle force F , pressure P , and contraction strain ǫ as it

performs contraction and then extension against a gravitational load in response to a

pressure step. A total of Np experiments are performed, each at a different pressure,

that cover the range of muscle operating pressures. Next, the data from each experiment

is segmented (b). Based on the work of Cao et al [49] and Reynolds et al [46], the data

is segmented by its motion direction; the rise and fall segments when the muscle is

contracting and extending respectively. From the vector of measured force data F the

training data damping force component Fdt is calculated (c). Using the force component

predicted by the static force model Fs (see [35] for details), an uncorrected training

component F′

dt
is calculated as F′

dt
= F− Fs. Then, steadystate static force modeling

errors are accounted for by subtracting the steadystate value of F′

dt
between the rise

and fall segments of each experiment, Fdt,ssv, from F′

dt
:

Fdt = F′

dt
− Fdt,ssv (1)

In this example there are 2Np segments of damping force component data, each

representing a different combination of pressure and muscle motion direction. The next

step (d) uses Billings et al ’s [52, 53] FROLS algorithm in combination with a dictionary

of user specified potential model terms to generate a function fi of the independent

variable x for each segment i.

Although figure 3 only shows fi as a function of ǫ̇, x may contain multiple elements,
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(a) Collect data (b) Extract rise and fall data segments (c) Extract damping components

(d) Generate segment functions (e) Define fusion weight functions
0

1

wij

x

xrs,ij

xre,ij xfs,ij

xfe,ij

0

1

P

wij

(f) Generate fusion weight functions

(h) Fuse pressure (i) Extrapolate

(g) Fuse motion direction

F

t

F

t

FallRise
t

Fall

Fdt

t
Rise

Fdt

fi (x)

Fd

ε̇

RiseFall

Fd

ε̇

RiseFall

f5(x)

P

dir

f6(x)

f3(x) f4(x)

f1(x) f2(x)

RiseFall

0

1
wij

dir
1-1 0 RiseFall

PFd

ε̇

y(x)
Rise

Fall

y(x)

PFd

ε̇

Rise

Fall

Figure 3: The MAPMORE algorithm used to model the damping force component of a

fluidic muscle. First, force data is collected from step response experiments conducted

at different pressures (a), the rise and fall transient damping components extracted (b,

c), and segment functions fi(x) for each pressure-motion direction combination built by

MAPMORE (d). MAPMORE then fuses these segments together with weight functions

(e) for switching between segment functions for rise and fall motion directions, and the

different training experiments’ pressures (f). The result is a set of smoothed functions

that predict the damping component in the different motion directions (g). These are

then fused with the pressure weight functions to predict damping force as a function

of pressure and strain rate (h). This is the final damping force model that can be

extrapolated into and beyond the dark grey zone (i).
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depending on the data available for generating fi(x). In this work, x includes pressure

and strain, and their first and second derivatives. These terms reflect that damping

terms in the literature benchmark terms (table 1) include P , ǫ, and ǫ̇; that it is worth

investigating whether higher derivatives contribute to model accuracy; and that ǫ̇ is

possibly required to model flow restriction in the muscle. Whether all of the values in

x are used by the generated model depends on the terms in the dictionary D(x) that

are selected. In this work D(x) consists of a second order polynomial combinations of

the elements of x, based on the second order combination of some of these variables

found in the literature (table 1). From D(x) FROLS selects the terms whose linear

combination best fits a segment’s training data and returns those terms’ indices, s, and

their corresponding coefficients θ.

Fusion of the segment functions is achieved with fusion weight functions wij. These

functions smooth the transition between the segments’ piecewise functions and are

defined for every independent variable with index j of x and for each segment with index

i. As shown in (e), each weight function acts as a switch that turns on its function fi
over the region between the rise start xrs,ij and rise end xre,ij, and off between the fall

start xfs,ij and fall end xfe,ij. Here, weights are used for the variables muscle motion

direction, dir, and pressure (f). The weight function for dir is an on/off toggle, reflecting

that the muscle can only be moving in two possible directions. The weight function for

pressure is an interpolation between the discrete pressures of the experiments for a given

motion direction. The weight functions for the other variables in x are set to zero as

they were not used to segment the data. When the weight functions are multiplied by

their corresponding piecewise functions they smooth them together (g, h), giving the

final model y(x), which predicts Fd. It is feasible that y(x) is used outside the range

of data used to train it. Provision is made for this by an extrapolation function E,

which determines the behavior of y(x) when y(x) is evaluated outside of the range of

the training data (i).

MAPMORE has the potential to generate accurate models for different types of

fluidic muscles and for static and dynamic behavior. Its versatility comes from the

user defined FROLS dictionary, which may include any input-output function the user

believes has value in describing fluidic muscle behavior. MAPMORE’s ability to combine

these functions in a piecewise manner improves overall model accuracy by acknowledging

that a muscle’s behavior can significantly change over its operating regime. The validity

of this approach has been verified for static behavior [35]. Also validating its applicability

to damping force component models in section 4 confirms its applicability to dynamic

behavior. In this work a dynamic model is simply the sum of the static and damping

force models’ predictions. The subsections to follow elaborate on the generation and

fusion steps of the MAPMORE algorithm.
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3.1. Piecewise Function Generation

The MAPMORE algorithm generates each segment function fi according to the

following steps and accompanying flow chart in figure 4 (note that parenthesized

alphabetic labels refer to those in figure 4):

(i) The segment’s independent and dependent variable training data Xt and yt are

linearly scaled to lie in the domain [−1, 0] or [0, 1] so the data fits in a unit square

and its trend passes through the origin (a). The training data consists of a matrix

of rows of xt or a vector of rows of yt. Each row corresponds to a new sample

of independent and dependent variable data. The independent variables’ scaling

slopes and intercepts are mx,i and cx,i. The slope and intercept to unscale the

dependent variable from this unit length domain to the original data units are my,i

and cy,i. This scaling is the only modification to Billings et al ’s FROLS algorithm.

Scaling the variables enables the selection and fitting of origin centered dictionary

terms to data offset from the origin, like McKibben and Peano muscles’ force-strain

curves [35].

(ii) The scaled independent variable training data Xts are evaluated for each of the ND

terms in the dictionary. The result is ND term vectors pa (b).

(iii) FROLS iteratively selects terms from D(x) that best match the trend in the scaled

dependent variable data yts and calculates the terms’ corresponding coefficients. In

each iteration b, the unselected dictionary terms pa are orthogonalized against the

previously selected dictionary terms oc. The result is the orthogonalized unselected

dictionary term qa (c). For the first iteration (b = 1) there are no previously

selected terms to orthogonalize pa against, so qa = pa. In successive iterations

(b > 1), the Gram-Schmidt method in (2) is used to orthogonalize pa.

qa = pa −
b−1
∑

c=1

p⊤

a oc

o⊤
c oc

oc (2)

(iv) Then (3) is used to calculate each term’s potential coefficient ga from qa and the

scaled dependent variable training data yts (d)

ga =
yts

⊤qa

q⊤
a qa

(3)

(v) Next the extent that the orthogonalized term vector explains the variation in the

dependent variable, as measured by the error reduction ratio (ERR), is calculated

(e),

erra = g2a
q⊤

a qa

yts
⊤yts

(4)

(vi) Steps (iii)–(v) are repeated for all the unselected dictionary terms

(vii) Then the index sb of the term with the highest ERR is found (f),

sb = argmax(err) (5)
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(viii) The orthogonalized dictionary term vector, coefficient, and ERR are saved to ob,

θb, and ERRb (g)

(ix) If the selected model terms’ combined ERR is within a specified tolerance ρ (h),

FROLS stops, otherwise it continues with steps (iii)–(viii) selecting additional

terms. The FROLS also stops if the number of selected dictionary terms b meets

the term limit bl (i). These termination conditions are described by equations (6)

and (7).

1−
b
∑

a=1

ERRa ≤ ρ (6)

(b− 1) ≥ bl (7)

The segment function produced by FROLS is then a linear sum of the selected

dictionary terms and their coefficients:

fi(x) = my,i





ND,i
∑

k=1

θkDsk(m
⊤

x,ix+ cx,i)



+ cy,i. (8)

Where ND,i is the number of selected terms in this segment function.

3.2. Piecewise Function Fusion

The segment functions are fused with the fusion weight functions wij, and extrapolation

function E to generate the overall model:

y(x) =
Ns
∑

i=1



fi (E(x,xll,xul,xlv,xuv))
Nx
∏

j=1

wij(xj, xrs,ij, xre,ij, xfs,ij, xfe,ij)



 . (9)

Where Nx is the number of independent variables and Ns is the total number of

segments. The extrapolation function, which is explained shortly, has the lower and

upper limits for x of xll and xul. When x goes beyond the lower and upper limits,

the extrapolation function saturates x to the values xlv and xuv. Also in (9) is the

weight function, which switches fi on in the rise transition zone xrs,ij < xj ≤ xre,ij,

and off in the fall transition zone xfs,ij < xj ≤ xfe,ij. Weight functions for segments at

the limits of the data domain only need one transition as there are no further adjacent

segments to transition to. Some simple ways of modeling this transition zone are the

linear, quadratic, and cubic transitions shown in figure 5.

The transition zones bridge adjacent segments. The width of these user selected

zones is set by the transition zone size zs, or the proportion of the segment that is

transitioning from its function to the function of the adjacent segment. Varying zs
affects the smoothness of the transition between segment functions (figure 5), but may

compromise model accuracy. The transition zones’ start locations xrs and xfs, or xs in

general, are calculated according to (10). In this equation, segi is the segment location,



Accurate MAPMORE models of fluidic muscle static and damping force 13

Start

Get training data

Scale training data

Calculate term vectors pa

Set b = 1

Set a = 1

Is term a
unselected?

Orthogonalize pa 

Calculate coefficient ga 

Calculate error reduction ratio

Increment a

Is a > number of 
dictionary terms?

Save term index with maximum 
error reduction ratio to sb

Save the coefficient, error reduction 
ratio, and orthogonalized p of term sb
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enough?
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(a)

(b)

(c)

(d)
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(h)
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True

False

False
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Figure 4: Operation of MAPMORE’s FROLS term selection and fitting algorithm.

The algorithm begins by evaluating (b) each of the dictionary terms with the scaled

training data (a). It then goes through a number of iterations selecting (f, g) the

previously unselected dictionary terms that best fit the training data. Within each

iteration it orthogonalizes (c) previously unselected dictionary term vectors, calculates

their potential coefficient (d), and calculates their fit (e), as measured by the error

reduction ratio. When the selected terms cumulatively fit the data well enough (h) or

their number reaches the term limit (i), the algorithm stops.
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Linear, zs= 0
Linear, zs= 0.25
Linear, zs= 0.5

Quadratic, zs= 0.25
Cubic, zs= 0.25
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Input xj

W
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Figure 5: MAPMORE currently supports linear, quadratic, and cubic transitions. The

type of transition affects the shape of a weight’s switch on and switch off transition zones,

where the quadratic and cubic types are smoother alternatives to the linear transition.

The width of piecewise function weights is defined by the transition zone size. The

transition zone size, or proportion of adjacent segments that the weight acts over is zs,

and can vary from 0 ≤ zs ≤ 0.5. This varies the sharpness of the transition from a

vertical step at a segment location to a gradual increase in weight beginning at halfway

through the first segment and ending halfway through the second.

and segi−1 and segi+1 are adjacent segment locations, as shown in figure 6. Similarly,

the end locations xre and xfe, or xe in general, are calculated according to (11).

xs = segi − zs(segi − segi−1) (10)

xe = segi + zs(segi+1 − segi) (11)

segi - 1 segi segi + 1xs xe

xj

wij

1

0

Figure 6: The start and end locations, xs and xe, of weight transitions such as wij are

placed either side of a segment location segi. They are calculated as a proportion of the

width of adjacent segments. Here these segment widths are defined by segi+1−segi and

segi − segi−1.

Completing the MAPMORE generated model is the extrapolation function E. It

allows the user to specify how the model processes inputs beyond the domain of its
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training data. Equation (12) shows how this works. When an input x exceeds an upper

limit xul, it will take the value xuv. If the input drops below the lower limit xll it will

take the value xlv.

E(x,xll,xul,xlv,xuv) = ∀j ∈ {1, 2, . . . , Nx}















xlv,j xj < xll,j

xj xll,j ≤ xj ≤ xul,j

xuv,j xul,j <xj

(12)

The limits are automatically determined from the domain of the training data, but

the limit values are user defined. Their definition determines the extrapolation behavior

of the model. For instance, if the model is to continue to evaluate normally outside of

the limit values, as in figure 7a, then xlv and xuv are set to x. Alternatively, if the

model is to saturate its output at the limit values (figure 7b), then xlv and xuv are

set to xll and xul. A third possibility is the model outputs zero when its inputs are

beyond the limits of the training data (figure 7c). This behavior is possible by setting

the relevant weight functions’ outermost transitions to zero at the limits of the training

data domain (figure 7d).

xll, j xul, j

fi(E(...))

(a)

xll, j xul, j

fi(E(...))

(b)

xll, j xul, j

fi(E(...))

(c)

1

0 xll, j xul, j

wij

(d)

Figure 7: Three possible extrapolation behaviors for a MAPMORE generated model.

In (a), the model is evaluated normally beyond the lower and upper limits of its input

training data domain xll,j and xul,j. The second option is to saturate the output at the

boundary values of the input domain, as in (b). Last, the model’s output can be forced

to zero beyond its training domain (c) by setting its outermost weight functions to zero

beyond the training data domain limits (d).

4. Model validation methods

The aim of the remainder of this work was to use experimental data to validate the
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Table 2: Definitions of the symbols used in the MAPMORE algorithm

Parameter Definition

a general index

b FROLS iteration

bl FROLS term selection limit

c selected term vector index

cx segment independent variables’ scaling intercepts

cy segment dependent variable unscaling intercept

D dictionary of candidate function terms

E extrapolation function

err orthogonalized term error reduction ratio

ERR selected term error reduction ratio

f segment function

g orthogonalized term potential coefficient

i segment index

j independent variable index

k selected dictionary term index

mx segment independent variables’ scaling slopes

my segment dependent variable unscaling slope

ND number of dictionary terms

Ns number of segments

Nx number of independent variables

o selected orthogonalized term vector

p term vector

q orthogonalized term vector

s indices of selected dictionary terms

seg segment location

w fusion weight function

x independent variable(s)

xe transition end location

xfe, xfs transition zone fall end and start

xll independent variables’ lower extrapolation limits

xlv independent variables’ lower extrapolation values

xre, xrs transition zone rise end and start

xs transition start location

Xt independent variable segment training data

Xts scaled independent variable segment training data

xul independent variables’ upper extrapolation limits

xuv independent variables’ upper extrapolation values

y MAPMORE generated model

yt dependent variable segment training data

yts scaled dependent variable segment training data

zs transition zone size

θ coefficients of selected dictionary terms

ρ FROLS ERR termination tolerance
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accuracy of models generated by the MAPMORE algorithm for capturing the static and

damping behavior of Peano and McKibben muscles. The remainder of this section will

list the benchmark models used in validation, give details on the experimental methods

used, outline the training methods and equations used for the static and damping force

benchmark models, and summarize the MAPMORE configuration used for validation.

MAPMORE’s models, if an improvement on existing models, could be useful for

the accurate and versatile simulation and hence model-based control of Peano and

McKibben muscles’ nonlinear behavior. The types of models validated in this work were

static force, damping force, and combined static and damping force models (a dynamic

model). These models’ Normalized RMSEs (NRMSEs) at predicting experimentally

measured muscle forces were each compared against the accuracy of accurate and

relevant benchmark models.

The static force benchmark models were Sárosi’s model and a second order

polynomial of muscle pressure and strain. This latter model was chosen as a general

reference model that captures the approximately quadratic dependence of static muscle

force on strain and linear dependence of static muscle force on pressure [12, 14]. Three

damping force models were used as benchmarks. First, Reynolds et al ’s [46] motion

direction dependent first order pressure dependent damping term (which also includes

the simpler linear and pressure dependent viscous terms). Second, Sárosi et al ’s [50]

hysteresis loss viscous term. Third, Peternel et al ’s [51] generalized kinetic friction

element (which is an extension of the kinetic friction term).

4.1. Experimental methods

Training and validation of the MAPMORE generated and benchmark static and

damping force models were performed with the McKibben PAM and Peano muscle

shown in figure 2. The McKibben PAM had a diameter of 0.02m and active length of

0.088m. The Peano muscle had four tubes 0.046m long and 0.017 25m wide. Load cycle

and step response experiments were carried out on these muscles using the conditions

summarized in table 3 and the test rig shown in figure 8. The rig used pressurized air to

pressurize water in a reservoir via an on/off solenoid valve and a flow restricting valve.

The water was then used to hydraulically actuate the muscle under test while measuring

its force, pressure, flow rate, and length. Quasistatic load cycle tests were conducted by

coupling the electrohydraulic actuator to the muscle. Decoupling the electrohydraulic

actuator and pressurizing the muscle enabled step response experiments to be carried

out. More details on the test rig are presented in table 4 and [58].

Data from the load cycle experiments was used for training and validation of the

static force component models, and step response experiment data was used for training

and validation of the damping force component models. As shown in table 3, for each

muscle and type of experiment, experiments with different combinations of pressure and

inertial mass were conducted. One experiment was done for each combination of test

conditions. All this experimental data was used to train the models except for that from
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Figure 8: The test rig used to conduct load cycle and step response experiments on the

McKibben and Peano muscles for validation of the MAPMORE models

Table 3: McKibben and Peano muscle test conditions

Conditions McKibben Peano

Training pressures

(kPa), step

response inertial

mass (N)

80, 42 80, 42

150, 66 200, 66

350, 213 500, 213

Validation pressures

(kPa), step response

inertial mass (N)

250, 115 350, 115
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Table 4: A summary of the key components used in the test rig in figure 8

Part Note

Brake Custom pneumatically actuated

bicycle disc brake

Electro-

hydraulic

actuator

1.5 kN ORO 230 V, BFT S.p.a, Schio,

Italy

Encoder A860-0300-T001, Fujitsu Fanuc Ltd.,

Tokyo, Japan

Full/re-

stricted

flow valve

Manually operated, Generic gate

household water supply type

Load cell 0.7%, Generic S-beam 20 kg, China

Pressure

sensor

26PCGNM6G, Honeywell, Morristown,

NJ

Pressuriza-

tion/

exhaust

valve

3/2 solenoid valve, Humphrey 320

12VDC, Humphrey Products Corp.,

Kalamazoo, MI

Venturi

flow

meter

Custom, with flow rate measured by

26PCDFA6D (Honeywell, Morristown,

NJ) differential pressure sensor

Water

reservoir

0.5L, Polyethylene terephthalate

(PET)

one of the experiments, which was kept aside for the models’ validations. Accuracy of

the validation data was quantified by the full-scale NRMSE. This is the RMS of the

error between the forces predicted by a model and the forces in the experimental data

divided by the maximum of the absolute value of the validation data forces F :

NRMSE =
RMS

max(|F |)
. (13)

Load cycle experiments, as described in section 4.3, were used to obtain sets of

upper and lower force-strain curves for various muscle pressures. As in [35], the average

of these upper and lower curves’ forces for a given muscle strain were used to train and

validate the models.

Step response experiments characterized the dynamic contraction and extension of

a muscle against an inertial mass at various pressures. In these experiments the vertical

muscle was held lightly tensioned (0.5N to 1N) against a stop with a weight (inertial

mass) hanging on it. The muscle was then suddenly pressurized while its force, strain,

and pressure were measured. After the muscle reached a steady state length the muscle
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was exhausted, allowing the inertial mass to re-extend it. This yielded force-time data

curves similar to those in figure 3a. The resulting data was used to build and validate

MAPMORE or benchmark damping models.

4.2. Static force benchmark models

Sárosi’s model [41] accurately predicts static muscle force as a function of pressure and

strain according to (14). Coefficients a1 − a6 fit the model to experimental data.

Fs(P, ǫ) = (a1P + a2)e
a3ǫ + a4ǫP + a5P + a6 (14)

The polynomial static force benchmark benchmark model is as follows:

Fs(P, ǫ) = a2,0ǫ
2 + a1,1ǫP + a1,0ǫ+ a0,1P + a0,0. (15)

It uses its coefficients a2,0, a1,1, a1,0, a0,1, and a0,0 to fit the model to data. In

this work, these models’ coefficients were fitted with Matlab’s Levenberg-Marquardt

numerical solver.

4.3. Damping force benchmark models

The first benchmark model, Reynolds et al ’s [46] first order pressure dependent damping

element predicts the damping force Fd according to (16). In this model, Br0, Br1,

Bf0, and Bf1 were fitted by comparing the predicted Fd with Fd measured in step

response experiments conducted at various pressures. As the model is motion direction

dependent, Br0 and Br1 were fitted to the rise portions of the experiments, and Bf0 and

Bf1 to the fall portions. Note that when this model was evaluated, the motion direction

dir, was calculated as a rise or fall value based on whether the pressure in the muscle

was increasing or decreasing.

Fd(ǫ̇, dir) =

{

(Br0 +Br1P )ǫ̇ dir = 1 (rise)

(Bf0 +Bf1P )ǫ̇ dir = −1 (fall)
(16)

In contrast to the other benchmark models, Sárosi et al ’s [50] hysteresis loss

damping element was fitted to quasistatic load cycle data. This data characterizes

how much force the muscle produces for a given strain and pressure. First, the muscle

under test is locked at an initial starting length and pressurized to a target pressure.

Second, it is allowed to slowly contract until its force reduces to zero. Last, it is slowly

extended to its starting length, and then depressurized. The result is a hysteresis loop

consisting of an upper and a lower curve made of force-strain data points.

Before the damping element could be calculated, Sárosi’s [41] static model was fitted

separately to upper and lower force-strain curves of training data collected at various

pressures. The experimental details are described in section 4.1. Thus, equations (17)

and (18) predict the static force according to the upper (Fsu) and lower (Fsl) training

curves with coefficients au,1 − au,6 and al,1 − al,6.

Fsu(P, ǫ) = (au,1P + au,2)e
au,3ǫ + au,4ǫP + au,5P + au,6 (17)



Accurate MAPMORE models of fluidic muscle static and damping force 21

Fsl(P, ǫ) = (al,1P + al,2)e
al,3ǫ + al,4ǫP + al,5P + al,6 (18)

Then the damping force component is

Fd(P, ǫ, ǫ̇) = −
(

2ζ(P )
√

|kt(P, ǫ)|m
)

ǫ̇, (19)

where m is the step response experiment inertial mass (listed in section 4.1), kt is

the muscle tensile stiffness, and ζ is the pressure dependent Lehr’s damping coefficient.

The muscle tensile stiffness is given in (20), and is based on the gradient of Fsu and the

deflated muscle length ntwt.

kt(P, ǫ) = (au,3(au,1P + au,2)e
au,3ǫ + au,4P ) /(ntwt) (20)

Lehr’s damping coefficient is

ζ(P ) =
Uu − Ul

Uu

, (21)

where Uu and Ul are the areas under the upper and lower static force-strain curves.

They were calculated between the minimum and maximum modeled strains ǫmin and

ǫmax of the muscle at a given pressure P:

Ul =

ǫmax
∫

ǫmin

Fsl(P, ǫ)dǫ, (22)

Uu =

ǫmax
∫

ǫmin

Fsu(P, ǫ)dǫ. (23)

The minimum strain was the same as ǫtmin, the minimum strain in the load cycle

training data (based on the muscle’s initial starting length in that experiment), which

should be the minimum strain for all the training load cycle experiments. The maximum

strain was the predicted free-strain and was calculated by solving Fsu(P, ǫ) = 0 for ǫ at

the given pressure.

The last damping force component benchmark model, Peternel et al ’s [51]

generalized kinetic friction damping element, predicts damping force as

Fd(ǫ̇) = sgn(ǫ̇)

(

2
∑

k=0

Bk ǫ̇
k +B3e

−|ǫ̇|
B4

)

. (24)

Coefficients B0 − B4 were fitted to the damping force component training data

using Matlab’s Levenberg Marquardt algorithm, which was also used to fit the other

benchmark models’ coefficients.
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4.4. MAPMORE default configuration

The variety of function generation, fusion, and extrapolation parameters of the

MAPMORE algorithm means that there are many possible options for configuring it to

generate models. Here we started with a configuration based on simplicity, mid-range

values, and inspection of the nonlinearity in the data to be modeled. This configuration

was not optimized. The static model was generated with four segments, a fourth order

polynomial dictionary of strain (D(x) = 1,x,x2,x3,x4), one model term, simple linear

transition zones of size zs = 0.25, and a simple continue extrapolation behavior (as in

figure 7a). The damping model was generated with a second order polynomial dictionary

of ǫ, ǫ̇, P , and Ṗ (excluding the constant term); one model term; a linear transition

zone with zs = 0.25; and a continue extrapolation behavior.

5. Results

The following sections present the results of comparing the MAPMORE generated

models’ accuracies with those of the benchmarks models with highlights of notable

results. First, the fit and accuracy of static force component models are compared,

then, the accuracy of different damping force component models is explored. Last, the

static and damping models are combined to predict the overall dynamic behavior of

McKibben and Peano muscles.

5.1. Static force component models

Figures 9 and 10 show that the fit of the MAPMORE generated and Sárosi’s static force

models are both good for validation data from the McKibben and Peano muscles. The

MAPMORE model is more accurate, with an NRMSE of 2.2% (compared to Sárosi’s

model’s 2.5%) for the McKibben muscle and an NRMSE of 1.1% (compared to Sárosi’s

model’s 1.6%) for the Peano muscle. The simple polynomial model had a higher, but

still fair NRMSE of 7% for the McKibben muscle and 2.8% for the Peano muscle. Its

accuracy tended to decrease at strains above 5% in the McKibben muscle (figure 9),

where it increasingly underestimated force with increasing strain.

5.2. MAPMORE damping force component model motion and pressure segmentation

Before proceeding with the comparison of the MAPMORE generated and benchmark

damping force models, an investigation was made into the effect of segmentation of the

different independent variables. That is, the accuracy of damping force models with and

without pressure dependency, and with and without motion direction dependency. In

a pressure dependent model, pressure is an independent variable of damping force, and

the model is built from a selection of step response experiments conducted at different

pressures, as shown in figure 3a. In a pressure independent model, damping force is

assumed to be independent of pressure and the model is trained from the step response
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(a)

(b)

Figure 9: Validation fit (a) and error (b) curves for static models of the McKibben

muscle. Shown are MAPMORE’s, Sárosi’s, and the simple polynomial models.

experiment with the highest pressure (if more than one training data experiment is

available). A motion direction dependent model has segment functions for the rise and

fall directions. It is trained from step response experimental data separated into these

rise and fall transient segments. If the model is motion independent, these rise and fall

data segments are combined and collectively used by MAPMORE to build a model that

does not have separate segment functions for each motion direction.

The results of this comparison are shown for the McKibben and Peano muscles

in figure 11. These results show that both muscles are most accurately modeled

by pressure independent, motion direction dependent MAPMORE generated models.

Removing pressure dependency from a model with motion direction dependency

decreased NRSME. The importance of motion direction dependency confirms previous

literature that separately modeled the motion direction of McKibben muscles [46, 49]. In
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(a)

(b)

Figure 10: Validation fit (a) and error (b) curves for static models of the Peano muscle.

Shown are MAPMORE’s, Sárosi’s, and the simple polynomial models.

general, figure 11 shows that adding pressure dependency to a model increased NRMSE

to about the same value of a static force model (that is, a force model assuming no

damping model, or Fd = 0). The exception was the Peano muscle with no motion

dependency (figure 11b).

The most accurate models for McKibben and Peano muscles were those with motion

direction segmentation and with no pressure segmentation. They and the MAPMORE

default configuration described in section 4.4 were used to generate the remainder of the

damping force models in this work. These damping models are summarized in table 5.

5.3. Damping force component models

Comparing the results of MAPMORE’s and the benchmarks’ damping models’ fits

and NRMSEs in figures 12 and 13 shows that MAPMORE’s models had the lowest
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(a)

(b)

Figure 11: Comparison of validation NRMSEs for McKibben (a) and Peano (b)

MAPMORE damping force models. Models are those with and without motion

dependent segmentation, and with pressure independent (PI) or pressure dependent

(PD) segmentation. These NRMSEs are referenced against the NRMSE assuming a

damping force of Fd = 0 (no model - NM).

Table 5: The damping force model terms generated by MAPMORE

Direction McKibben

muscle

Peano muscle

Rise Fd = −15.6 Ṗ ǫ̇ Fd = 0.202 Ṗ ǫ

Fall Fd = 34.9× 106 ǫ̇2 Fd = −16.6× 103 ǫ̇

NRMSEs (11.4% for the McKibben muscle and 12.0% for the Peano muscle), followed
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by Reynolds’ models (16.0% for the McKibben muscle and 25.1% for the Peano muscle),

and Peternel’s models (17.3% for the McKibben muscle and 26.0% for the Peano

muscle). Sárosi’s damping models had the highest NRMSEs (36.7% for the McKibben

muscle and 41.4% for the Peano muscle), higher than no damping model (31.8% for

the McKibben muscle and 27.3% for the Peano muscle with Fd = 0).

(a)

(b)

Figure 12: Validation fit curve (a) and NRMSE comparison (b) for damping models

of the McKibben muscle. Shown are MAPMORE’s, Reynolds’, Sárosi’s, and Peternel’s

damping models.

Referring to the fit of the McKibben muscle damping force models in figure 12a, all

the models but Sárosi’s fitted the fall region well, slightly underestimating and lagging

the positive damping force fall peak in the data. MAPMORE also modeled the negative

damping force rise peak accurately in magnitude and timing, whereas the benchmark

models’ rise peaks lagged the data and underestimated the peak’s magnitude. None of

the models captured the oscillation in the steadystate portion of the step response data.

MAPMORE’s model predicted no oscillation, and the benchmark models predicted a

3.4Hz oscillation with a similar magnitude to that shown in the data damping force,

but with a 90◦ phase lag.
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(a)

(b)

Figure 13: Validation fit curve (a) and NRMSE comparison (b) for damping models

of the Peano muscle. Shown are MAPMORE’s, Reynolds’, Sárosi’s, and Peternel’s

damping models.

In figure 13a the Peano muscle’s damping force fall region is approximately modeled

in magnitude and shape by MAPMORE’s and Reynolds’ models, but the models’ fall

peaks lag that of the data by 0.02 s. Only MAPMORE’s model predicted the timing

of the negative rise peak, but underestimated its magnitude and duration. None of the

models in the validation predicted the oscillations seen in the data between its rise and

fall peaks.

5.4. Dynamic force models

The final validation tests compared the accuracy of combined static and damping

models with the total muscle force measured during step response experiments. The

benchmark dynamic model was formed from the most accurate of the static and damping
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benchmark models (Sárosi’s and Reynolds’ models - see sections 4.2 and 4.3). The step

response experiments used for validation of the dynamic models were the same as those

used for validation of the damping models as described in section 4.1. Accuracy of the

dynamic models was calculated using equation (13), where the numerator was the RMS

of the errors between the measured force and the sum of the static and damping force

component predictions.

Comparing the dynamic models’ accuracies in figure 14 shows that both in the

McKibben and Peano muscles the addition of damping force models improved accuracy

compared to only a static force model. Figure 14 also shows that the combined static

and damping force model (dynamic model) of MAPMORE was more accurate than the

dynamic benchmark model for both muscle types.

(a)

(b)

Figure 14: Validation NRMSE comparison for static, and combined static and damping

models of the McKibben (a) and Peano (b) muscles. The benchmark models are Sárosi’s

static and Reynolds’ damping force models.

The validation fits (figure 15) show how the addition of a damping force model to

MAPMORE’s static model increased accuracy compared to a static only model. First,

the damping model reduced the static model’s overestimation of muscle force during the

rise region. Second, the damping model reduced the underestimation of muscle force

during the fall region compared to a static force only model.

In the McKibben muscle (figure 14a), the MAPMORE dynamic model had an
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(a)

(b)

Figure 15: Validation fits for MAPMORE static, and MAPMORE and benchmark

dynamic models of the McKibben (a) and Peano (b) muscles. The benchmark model

consists of Sárosi’s static and Reynolds’ damping force models.

NRMSE of 14.8% compared to the benchmark model’s 17.2%. Both these models did

not follow the overdamped trend of the rise and fall regions seen in this muscle’s step

response data. They did, however, converge towards the correct value of the steadystate

muscle force over the region between the rise and fall regions.

In the Peano muscle (figure 15b), the steadystate force error during the time

between the rise and fall regions remained constant, and could be due to muscle

hysteresis, which is outside the scope of modeling in this work. As with the McKibben

muscle, the MAPMORE dynamic model was more accurate, with an NRMSE of 7.3%

compared to that of 10.3% for the benchmark model (figure 14b). Both models followed

the trend and timing of the Peano muscle force in the rise and fall regions reasonably.
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6. Discussion

Validation of MAPMORE’s models in the previous section showed it models static

and dynamic McKibben and Peano muscle behavior with good accuracy compared to

accurate benchmark models. However, the validation results also raised a number of

questions, which are discussed here.

6.1. Static force component models

The results in figures 9 and 10 demonstrate the accuracy of MAPMORE’s models for

capturing the static behavior of McKibben and Peano muscles [35]. The second order

nature of the simplified polynomial static model has a limited complexity to its curvature

in the three dimensions it maps to the force-pressure-strain surface of the muscles’ static

behaviors. Higher order polynomial models can also be tried [42], but the risk is that

overfitting can occur. Overfitting can result in large prediction errors for independent

variable values significantly outside of the values used in the training data set [35].

Sárosi’s empirical model is accurate, but has the disadvantage compared to MAPMORE

of needing a initial values for its coefficients to be selected to ensure a good fit. This

process can be aided with methods such as a genetic algorithms, but at the expense of

an increased computation time for the model fitting process.

6.2. MAPMORE damping force component model motion and pressure segmentation

Segmentation by pressure of MAPMORE damping force models significantly increased

NRMSE, or at best only made a small decrease. One suggestion as to why, is the

difference in the method of conducting the dynamic experiments performed in this work

and those of Cao et al [49]. Cao et al maintained a constant pressure in the McKibben

muscle under test as it was suddenly stretched and then allowed to contract by another

actuator. This meant that for a given experiment the damping of the muscle was

modeled for a constant pressure. Many experiments were carried out with a range of

different test pressures to determine the effect of pressure on damping behavior.

In this work, the pressure was not held constant for a given experiment. Instead,

a pressure step was used to contract the muscle against the inertial mass. Hence

the pressure varied rapidly from 0 kPa up to the target pressure, remained constant

for a time, and returned rapidly to 0 kPa. Model segments were then fitted to each

experiment’s data. Thus a model segment for a target pressure of 80 kPa, for example,

was assumed to model the muscle’s damping at 80 kPa. The flaw in this compared to

Cao et al ’s approach is that it does not acknowledge that the data captured a range of

pressures (during the rise and fall of the pressure step from 0 kPa to 80 kPa and back

to 0 kPa in this example). This could affect model segment accuracy.

The difference in the pressure conditions used in this work’s experiments and those

in Cao et al ’s is significant and could explain why the pressure segmented MAPMORE

models in this work were not useful to significantly reducing NRMSE. A possible
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improvement would be to create the model based on dynamic perturbation experiments

like those of Cao et al ’s. In this case the muscle’s damping model segments would

be based on a dynamic experiment with a constant pressure. Fusion of these segments

could then be used for prediction of damping force in muscles with a constant or varying

pressure.

6.3. Damping force component models

MAPMORE’s models proved to be the most accurate at predicting the damping force

in the McKibben and Peano muscles. However, all damping models tested in this work

failed to capture the timing and shape of the oscillations between the rise and fall

peaks in the step response data. This could have been due to the fluid dynamics of the

fluid column in the 0.5m long tube connecting the pressure sensor to the muscle in the

experiment’s test rig. Hence, an improvement could be to mount the pressure sensor in

the muscle itself.

Another issue with MAPMORE’s models is that they tended to lag or lead the

rise and fall peaks, or not quite estimate the peaks’ durations correctly. A potential

improvement to MAPMORE’s models could be made by including time delayed (lag)

terms of the variables in the dictionary [59] to enable time delayed dynamics to be

incorporated in MAPMORE’s models.

A specific limitation of the benchmark models, highlighted by the faster moving

Peano muscle, is their inability to predict a nonzero damping force when ǫ̇ was zero.

This happened when the muscle volume was small and its internal pressure increased

rapidly before it began to move, as was the case with the low deadvolume of the Peano

muscle. This is shown in the first 0.09 s of the Peano muscle data (figure 13a). During

this time the muscle began to produce a rapidly changing force as it was pressurized,

but had not yet begun to move. Although the muscle was not moving, damping was still

relevant because of flow restriction and fluid dynamics in the muscle and in the tubing

supplying it with fluid. These dynamics explain, at least in part, the rapid changes in

muscle pressure during this time. Hence, the benchmark damping models need to be

used in tandem with a model of the pressurization system’s dynamics to capture this

kind of behavior. In contrast, MAPMORE correctly included a term independent of ǫ̇

(that is, the term Ṗ ǫ) in its Peano muscle model to account for the higher frequency

dynamics of the Peano muscle. This allowed it to model the rise peak more accurately.

6.4. Dynamic force models

The combined MAPMORE static and damping force models were validated as more

accurate than the most accurate of benchmark models for both the McKibben and

Peano muscle. In the results it was observed that dynamic modeling of the rise and fall

regions of the McKibben muscle could be improved. One possibility is addition of lag

terms and more direct pressure measurements, as mentioned previously.
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Dynamic modeling also showed that to model complete dynamic behavior of a

muscle in a step response experiment (and not just the transient rise and fall dynamics

as well as the static force), extra effects such as hysteresis need to be accounted for

[60]. Possible hysteresis modeling approaches could include the Bilinear [59], Backlash

operator [37] and Maxwell-slip virgin curve [36].

7. Conclusions and future work

Muscle-like actuators such as McKibben and Peano muscles have the potential to

improve the ability of robots to interact with, and operate in real-world situations.

However, their complex behavior makes them difficult to model and control. This work

presented the validation of models generated by the MAPMORE algorithm as more

accurate than existing accurate static and damping force models of Peano and McKibben

models. In particular, its static model’s NRMSE was 88% of the most accurate static

force benchmark model’s NRMSE in McKibben muscles, and 69% of the NRMSE of the

most accurate static force benchmark model in Peano muscles. MAPMORE generated

damping models that had an NRMSE of 71% and 48% respectively of the NRMSEs

of the most accurate damping force models for McKibben and Peano muscles. These

results demonstrate the accuracy of MAPMORE generated models and hint at their

potential versatility to model different types of muscle-like actuators’ static and dynamic

behaviors.

This work had experimental and modeling limitations. Experimental limitations

include the nonconstant pressure of the the dynamic and damping force model

experiments. This possibly reduced model accuracy. Also, the lack of lag terms in

MAPMORE’s damping model dictionary and the lack of a hysteresis model were further

factors that reduced the accuracy of MAPMORE’s models.

As suggested by the results in this work, there are a number of future

directions that could be taken to further improve MAPMORE. These include:

MAPMORE’s application to hysteresis modeling; validation of the usefulness of lag

terms in MAPMORE’s dictionary, particularly for modeling dynamic behavior; and

implementation and performance validation of MAPMORE’s models in a real-time

control platform for a physical muscle-like actuator.
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[42] Tóthová M, Pitel’ J, Hošovskỳ A and Sárosi J 2015 Int. J. Math. Comput. Simulat. 9 228–33

[43] Bertetto A M and Ruggiu M 2004 Mech. Res. Commun. 31 185–94
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