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Abstract. MnBi is unusual for having a magnetic anisotropy energy which
increases with temperature. Recent theoretical works have studied how the lattice
effects the anisotropy. However the role of spin fluctuations has been hitherto
overlooked, even though this is the primary mechanism for the temperature
dependence of anisotropy in magnetic materials. We have created a model of
MnBi including all anisotropy terms which are indicated from experiments and
theory. Parameterizing based on experimental measurements we used Callen-
Callen theory to calculate the temperature dependence of the magnetic anisotropy
due to spin fluctuations. An excellent agreement is found with experiments, across
the entire temperature range. Our results indicate the driving force to be the
competition between in-plane single ion and out of plane two-ion anisotropies.

‡ Deceased December 26, 2015



The role of spin fluctuations in the anomalous anisotropy of MnBi 2

1. Introduction

MnBi has been studied for over 65 years [1] and was initially a candidate material
for magneto-optical recording applications [2]. There has been a recent resurgence
in interest prompted by the desire to create rare-earth free permanent magnets [3].
MnBi is a candidate material due to its relatively large uniaxial anisotropy at room
temperature. Contrary to most magnetic materials, the magnetic anisotropy energy
of MnBi increases with temperature, reaching a maximum of 2.2 MJ/m3 at 450 K,
approximately 130% of NdFeB at the same temperature [4] and even 60% of the
value of FePt [5]. Recent efforts to understand the origins of this anisotropy and
the anomalous temperature dependence have focused on how lattice expansion and
phonons effect the magnetic anisotropy [6, 7, 8, 9]. Somewhat surprisingly the
effect of the thermal spin fluctuations has not been investigated, despite being the
primary cause of the temperature dependence of anisotropy in magnetic materials.
Here we construct an empirical model of the microscopic magnetic anisotropy
contributions which exist in MnBi. We take care to clarify the difference between the
macroscopic, K1,2,3, anisotropy coefficients which can be measured experimentally and
the microscopic mechanisms which are associated with specific spin correlations and
have a well defined temperature dependence described by Callen-Callen theory [10].
Parameterizing the model using existing experimental data from the literature gives
a remarkable agreement of the anisotropy energy across the whole temperature range.
We also use numerical techniques to confirm the validity of the applicable Callen-
Callen scaling laws across the temperature range and when multiple anisotropies are
present in the system.

In the so-called low temperature phase (LTP) MnBi has the NiAs structure
with alternating planes of Mn and Bi (figure 1). The Mn sites posses a large
magnetic moment of 4.02 µB and the Bi has almost no net moment at -0.1µB.
Throughout this work we will therefore ignore spin fluctuations of the Bi spins. The
temperature evolution of the anisotropy contains several features. In the ground state
the magnetization lies in the a-plane with an total anisotropy energy of −0.25 MJ/m3

. At 90 K the magnetisation moves abruptly into an easy cone state [11]. Further
heating reduces the cone angle gradually and at TSR = 142 K the system becomes
uniaxial with the magnetization along the c-axis [12]. Most unusually, the magnitude
of the uniaxial anisotropy continues to increase with temperature, reaching a maximum
of 2.2 MJ/m3 at 450 K beyond which it slowly decreases. There is no Curie point, the
magnetic phase transition from ferromagnetism to paramagnetism, because at 628 K
a peritectic decomposition to Mn1.08Bi and liquid Bi occurs, giving the so-called ‘high
temperature phase’ [13].

Recent theories point to lattice effects being the underlying cause of the
unusual behaviour of the magnetic anisotropy. Possibilities considered include the
effect of anisotropic thermal expansion [6] and magnetoelastic and magnetostrictive
coupling [7]. First principles calculations have shown a spin reorientation can occur
due to changes in magneto-crystalline anisotropy with changing lattice constants, but
at a temperature much higher than found experimentally and without the subsequent
large increase in anisotropy [7, 8]. The inclusion of the on-site Coulomb term into
such calculations can give a better agreement with experiments [9]. However, all of
these works explicitly state they do not include thermal spin fluctuations. This is
something which must therefore be investigated as the inclusion of spin fluctuations
would not only renormalise the athermal ab initio results significantly, but could play
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Figure 1. Structure of MnBi which has alternating planes of Mn and Bi.

an important role in the temperature dependence.

2. Theoretical background: Callen-Callen theory

In the Heisenberg, local spin picture of magnetism, temperature causes fluctuations
of the atomic scale magnetic moments. The fluctuations give rise to, for example, the
temperature dependence of magnetization as the atomic moments become thermally
distributed about the field direction, reducing the net projection of the magnetization.
The thermal energy also causes the total magnetization to precess in a stochastic
manner about the energy minimum. Hence, at non zero temperatures the system
explores a finite area of the free energy surface. Thermodynamic quantities are
therefore an average over the thermal distribution. This is the process by which spin
fluctuations lead to an apparent temperature dependance of the magnetic anisotropy.
This is separate from extrinsic considerations such as expansion of the lattice altering
the electronic structure of the material. The sampling of the free energy surface from
spin fluctuations is described by the theory of Callen and Callen [10] which defines
the temperature dependence of the anisotropy in terms of the reduced magnetization
m = M(T )/M(0). Most well known is that the anisotropy scales in power laws of the
magnetization, although this is derived in the low temperature limit. In principle
the scaling can be calculated for arbitrary temperatures, however the derivation
assumes no spin-wave interactions which become increasingly important at elevated
temperatures. Therefore we later use numerical calculations to check the scaling
behaviours across the complete temperature range.

An important distinction must be made between the macroscopic anisotropy
energy which is often measured and the the microscopic origin of magnetic anisotropies.
The macroscopic uniaxial anisotropy energy is often expressed as

E(θ) = K1 sin2 θ + K2 sin4 θ + K3 sin6 θ, (1)

where θ is the azimuthal angle, or sometimes given by the total effective anisotropy
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Keff = K1 + K2 + K3. The temperature dependence of the ‘K’ coefficients has no
general form which can be derived because many different anisotropies in the system
are mixed together, such as different orders of magneto-crystalline anisotropy, dipole
interactions, magneto-elastic effects and so on [14]. Callen-Callen theory on the other
hand derives the temperature dependence of these individual terms which can be
expressed in polynomials of the spin components. In the low temperature limit the
temperature dependence of an anisotropy that is an lth order polynomial in the spin
components is

κl(T ) = κl(0)[m(T )]l(l+1)/2. (2)

for example, the first order single-ion uniaxial anisotropy is described by the second
order Legendre polynomial κ2(3S2

z,i − 1)/2 and therefore scales proportionally to m3.
Identifying the multiple contributions to anisotropy from experimental data is not

straight forward. Anisotropies of different origins are indistinguishable when they have
the same angular dependence - except if they have a difference in their characteristic
temperature dependence. This is the key to interpreting the anomalous behaviour of
MnBi. By identifying the different origins of magnetic anisotropy in MnBi and using
the characteristic temperature dependence of each term from Callen-Callen theory,
we can build a phenomenological model of the contribution of spin fluctuations to the
temperature dependence of the anisotropy. We do not try to identify how different
electronic effects contribute to the anisotropy constants, assuming that changes in
the electronic structure with temperature are less significant than the role of spin
fluctuations. For example it is known that there is a strong Mn-d – Bi-p hybridization,
however this could be responsible for single ion and two ion anisotropies, but we cannot
identify this definitively and leave this to ab initio works [9].

3. Phenomenological model of MnBi

Uniaxial anisotropy constants K1, K2 and K3 have been measured in experiments [15],
and so we include single ion anisotropy contributions to third order. The higher order
terms are quite small and are likely to be from magnetocrystalline anisotropy. The K1

term presumably also contains some magnetocrystalline anisotropy, but probably also
a large magneto-elastic contribution due to the extraordinarily large magnetostriction
of MnBi [16] . The single-ion contributions are expressed by Legendre polynomials in
Sz

H1 =
∑

i

κ2

2

(

3S2
z,i − 1

)

(3)

+
κ4

8

(

35S4
z,i − 30S2

z,i + 3
)

(4)

+
κ6

16

(

231S6
z,i − 315S4

z,i + 105S2
z,i − 5

)

. (5)

Now it becomes clear that the K’s contain contributions of κ’s of multiple orders,
for example, K1 is the coefficient for terms in S2

z which are present in the second,
fourth and sixth order polynomials, κ2, κ4 and κ6 [15]. These three terms have the
magnetization dependence

κ2(T )

κ2(0)
= m3 κ4(T )

κ4(0)
= m10 κ6(T )

κ6(0)
= m21. (6)
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The layered structure of MnBi has broken cubic symmetry which leads to a dipole-
dipole contribution to the anisotropy. This is described by the Hamiltonian term

Hdipole = −
µs,iµs,jµ0

4π

∑

i 6=j

3(Si ∙ rij)(Sj ∙ rij)

r5
ij

−
Si ∙ Sj

r3
ij

(7)

where µs is the magnetic moment, µ0 = 4π × 10−7 N/A2 is the permeability of free
space and rij is the vector between spins i and j. This is a property of the bulk lattice
and is different from the demagnetizing fields which depend on the shape of the sample.
We calculated the value numerically for a bulk system using an Ewald summation,
finding a uniaxial Kdip

1 = 0.16 MJ/m3 at T = 0 K. Dipole anisotropy drives the spin
reorientation transition in Mn2Sb [17]. However, in MnBi this contribution is an order
of magnitude smaller than the peak of the anisotropy energy and is thus too small to
be the dominant mechanism. In principle the temperature dependence of this term
depends on the fluctuations of pairs of spins. However these can be factored out as
independent in the low temperature regime and is expected to scale with m2 [10]. We
check the scaling across the whole temperature range numerically using constrained
Monte Carlo [18] in Fig. 4(b). We the m2 scaling is valid at any temperature. We will

refer to the dipole anisotropic energy as δ
(2)
z .

The final anisotropy energy contribution we include is a two-ion anisotropy of the
form,

H2 = −
∑

ij

d(2)
z Sz,iSz,j . (8)

The motivation for this term is two fold. The presence of the Bi between the Mn
layers is likely to give rise to a significant two-ion exchange between the Mn layers
as with other material such as FePt. Magneto-elastic coupling also gives rise to two-
ion terms. In a hexagonal system the symmetry allows a uniaxial term proportional
to

√

3/2(Sz,iSz,j − 1
3Si ∙ Sj) [19]. Within Callen-Callen theory the magnetoelastic

anisotropies give rise to the same scaling behaviour as a magnetocrystalline terms and
therefore we cannot make a distinction between them within this phenomenological
model. The two-ion term is also indistinguishable from the dipole term as it has both
the same angular dependence and m2 temperature dependence.

The final equations for the macroscopic K coefficients are

K1(m) = −
3

2
(κ2m

3 + ∆2m
2) − 5κ4m

10 −
21

2
κ6m

21 (9)

K2(m) =
35

8
κ4m

10 +
189

8
κ6m

21 (10)

K3(m) = −
231

16
κ6m

21 (11)

where ∆2 = δ
(2)
z + d

(2)
z . ∆2, κ2,4,6 are defined at zero temperature and only these four

parameters are required.
Disregarding effects from the sample shape or impurities within the bulk, we have

included all magnetic anisotropy contributions which have experimental or theoretical
evidence for existence. We now parameterize the model using the torque measurements
of Stutius et al. [15] for K1,2,3 (figure 2). Using only the lowest temperature (T = 4 K)
data points, we begin with the highest order term K3 this uniquely defines the single-
ion κ6 term giving a value of κ6 = 0.0169MJ/m3 . In a similar wayK2 is a combination
of only κ6 and κ4 and hence we deduce κ4 = −0.0062MJ/m3 . More problematic is the



The role of spin fluctuations in the anomalous anisotropy of MnBi 6

-0.5

0.0

0.5

1.0

1.5

0 50 100 150 200 250 300

K1

K2

K3

in-plane easy-axis

K
(M

J
/m

3
)

T (K)

ea
sy

-c
o
n
e

(a)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400 500 600

K
e
ff

(M
J
/m

3
)

T (K)

(b)

Figure 2. (a) Solid lines - temperature dependence of K1,2,3 coefficients from
the Callen-Callen model compared to experimental torque measurements [15].
The easy magnetization direction is labelled as found in Fig. 3. (b) Solid line -
Total effective anisotropy Keff = K1 + K2 + K3 from the Callen-Callen model
compared to experimental measurements [15].

K1 term as it is the sum of κ2,4,6, dipole and two-ion terms. However, at the peak in
Keff at 450 K, κ4 and κ6 are very small and the peak value is defined by the sum of ∆2

and κ2. The different temperature scaling κ2 ∝ m3 and∆2 ∝ m2 must therefore be the
reason for both the change in sign of K1 and the peak. The two-ion term must give rise
to the uniaxial anisotropy as it has the weaker temperature dependence. This implies
the single-ion κ2 is negative, giving an in-plane anisotropy which is initially slightly
larger than than the two-ion term. Our analysis gives the values of κ2 = 10 MJ/m3

- an in-plane anisotropy and δ
(2)
z + d

(2)
z = 14.854 MJ/m3 . These values are quite

large for anisotropy energies but of the same order of magnitude as predicted by ab
initio calculations when the spin-orbit interaction of the Bi is included [9]. There is
also a qualitative agreement with ab initio calculations which find a large in-plane
magnetocrystalline anisotropy at T = 0 K [9, 20].

For the temperature dependence of magnetization we use the data of Guo et
al. [21] (red circles in figure 4a) fitted by the general equation for magnetization
of Kuz’min [22] (red line in figure 4a). Using the equations 9-11 we calculate the
temperature dependence of K1,2,3 due to spin fluctuations according to Callen-Callen
theory. The results in figure 2a show an excellent agreement the experimental data [15].
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The sign change and large increase in K1 is caused by the rapid diminution of the
κ6 energy and the competition between two-ion and single-ion contributions which
have opposite sign. The only significant deviation is in the behaviour of K2 after
the reorientation transition. However in this region the experiments were unable to
saturate the magnetization and the ability to differential K1 and K2 in their analysis
is limited. The cusp around TSR is also not reproduced and it is not clear if this is
due to the relatively flat energy landscape or the lattice distortion which has been
measured [6].

In figure 2b the total anisotropy energy Keff = K1 + K2 + K3 of our model
is compared with the experimental measurements [15]. Again a good agreement is
found. The model is parameterized from experiments as T ≈ 0 and 450 K so we
expect to reproduce these values. However, that the rest of the curve is in agreement
with experiment implies the power laws of the underlying anisotropies are correctly
identified. The down turn of Keff above 450 K is dominated by the m2 term and
serves as strong justification for its inclusion.

The existence of a spin reorientation transition is not explicitly guaranteed to
occur within our model and no information concerning the reorientation was used
to inform our parameterization. Nevertheless, the competition between the in-plane
and uniaxial anisotropies and the difference in temperature dependence does lead to
the spin reorientation transition. This is caused by the change in sign of K1 due
to the different temperature dependence of κ2 and ∆2. Also, the small κ4 and κ6

contributions also play an important role, producing additional minima in the free
energy landscape (see figure 3) which causes the easy-cone state. At the start of the
spin reorientation transition (T = 65 K) the first order uniaxial terms combined into
K1 almost completely cancel each other. This leaves a triple minima energy landscape
formed by the higher order κ4 and κ6 terms. With increasing temperature the two-ion
contribution begins to overcome the single-ion in-plane term and the global minimum
at θ = 90◦ (in-plane) rises in energy causing the two satellite minima at θ = 30◦ and
θ = 150◦ to suddenly become the global energy minima. This causes the magnetization
to abruptly reorient from an easy-plane to easy-cone configuration as shown in figure
3b and just as observed in experiments [11]. In a small temperature regime the angle
of the easy-cone configuration decreases with increasing temperature until at T = 88K
theK1 term changes sign and the system becomes uniaxial. The entirety of this process
is qualitatively identical to that which was found experimentally [11, 23, 15], although
the transition temperatures in this model are slightly lower. A different subset of the
experimental literature finds that the ground state is not completely in-plane and the
spin-reorientation proceeds as a gradual canting from in-plane to easy-axis [12, 24, 25].
Within our model we find that small differences in the values of κ4,6 can change the
reorientation behaviour so it is likely that small differences in sample preparation or
composition could give different characteristic behaviour, without a significant change
in TSR which is strongly determined by the values of κ2 and ∆2.

The lattice expansion of MnBi with temperature is anisotropic, with the c/a
ratio increasing at higher temperatures. It has been suggested that a sudden jump
in the lattice expansion [26] close to TSR maybe be the cause of the reorientation.
In principle the lattice expansion can have several effects on the magnetic system.
These may have a bearing on the spin fluctations in the Callen-Callen picture because
of the modification of the interactions in the Hamiltonian. Firstly, the dipole-dipole
anisotropy will increase slightly as the c/a ratio increases. However, given the already
small energy contribution from this term, it cannot be regarded as a significant effect.
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The lattice expansion is also known to modify the magnetocrystalline anisotropy,
which has been studied previously through ab initio techniques, although without
regard to the spin fluctuations. Most works have found that the changes in MCA are
insufficient to describe the large peak of Keff at high temperatures [7, 8] or cannot
describe the change in sign [27]. In more recent first principles work [9], although
Keff(T ) was found in good agreement to experiments, the energy landscapes found do
not agree with the experimental measurements of K1, K2, and K3. However, if the
in-plane κ2 anisotropy used within the Callen-Callen model reduced, in real terms, as

the lattice expanded, then the absolute values of κ2 and d
(2)
z would not need to be so

large to reproduce the peak. The last term which would be impacted is the exchange
interactions. The effect of lattice expansion on the zero temperature isotropic exchange
is small in most magnetic materials with ‘good’ local moments. The isotropic part of
course has no bearing on the anisotropy also. However the two-ion contribution may
well be modified, especially because it is the c-axis which is being elongated. That we

cannot easily discriminate the κ2 and d
(2)
z except for their temperature dependence has

the potential to hide some of the effects of the lattice expansions. Having said that,
the good agreement between of Keff with the Callen-Callen scaling for the interim
region between TSR and the peak of Keff suggests that the temperature dependence
of the Hamiltonian due the lattice expansion is less significant than the effect of the
spin fluctuations.

4. Numerical validation of Callen-Callen theory

The Callen-Callen scaling we have used throughout this work is based on the
low temperature limit. While the theory also allows one to calculate the general
temperature dependence this still assumes spin wave interactions are negligible. We
instead have calculated the scaling numerically using the constrained Monte-Carlo
method [18]. This allows us to also confirm that there is no anomalous behaviour
caused by the presence of multiple anisotropy terms or the spin reorientation.

Williams et al. [28] have determined the Heisenberg exchange constants of
MnBi using inelastic neutron scattering. They found a long ranged exchange
interaction where the nearest neighbours along the c-axis have a coupling with the
antiferromagnetic sign, although the total exchange gives a ferromagnetic ground state.
It is not a priori clear if these details could also have an effect on the temperature
dependence of the anisotropy. We have constructed an atomic scale simulation based
on the Heisenberg Hamiltonian which we augment with the anisotropy interactions
defined in the preceding sections

H = −
1

2

∑

〈ij〉

JijSi ∙ Sj + H1 + H2 + Hdipole (12)

where 〈ij〉 indicates a limited sum over the interactions upto sixth nearest neighbours
as given in Ref. [28]. The very small Bi moments are ignored. The macroscopic torque
is then calculated with the magnetization constrained to an azimuthal constraint angle
(θ). Note that no applied field is used to enforce the constraint, it is maintained by
the Monte Carlo sampling method. The anisotropy coefficients at a given temperature
can then be found by fitting

∂E

∂θ
= T (θ) = sin 2θ

(

K1 + 2K2 sin2 θ + 3K3 sin4 θ
)

. (13)
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Figure 3. (a) Free energy surface through the reorientation transition for
temperatures 60K to 90K at 5K intervals. The red points mark the global energy
minimum of the free energy surface at each temperature. (b) The azimuthal angle
of the free energy minimum as a function of temperature. The green coloured lines
denote the temperatures of the curves in (a).

In figure 4a we present the temperature dependent magnetization calculated using
the exchange constants from the neutron scattering. The results agree well with the
experimental results [21]. The transition to the high temperature phase means a true
Curie temperature cannot be measured in experiments, but extrapolation based on
Kuz’min’s equation for magnetization gives a value of 707 K compared to 750 K in
the calculation. As the neutron measurements where made at 5 K this suggests that
lattice expansion has a negligible effect at least on the exchange constants.

The magnetization scaling of the different Hamiltonian terms is given in Fig. 4b
and the solid lines are the power laws from the low temperature limit of Callen-Callen
theory. The numerical results show the low temperature approximation is good across
the entire temperature range for the dipole and two-ion terms. The κ4 and κ6 terms
show some deviation at higher temperatures, but only once the the value has already
decreased by 2 orders of magnitude. Therefore the use of the Callen-Callen scaling
relationships within the empirical model is justified.
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Figure 4. (a) Temperature dependence of MnBi magnetization. Red points are
experimental data from Ref. [21] and the solid red line is a fit of the empirical
equation of Kuz’min [22], TC = 707 K. The green line is calculated using
classical Monte-Carlo simulations where the exchange has been calculated ab
initio, TC = 750 K. (b) Magnetization scaling of the anisotropy terms calculated
with constrained Monte Carlo (points). Lines show the low temperature scaling
from Callen-Callen theory.

5. Conclusion

We have formed an empirical spin Hamiltonian of MnBi including anisotropy terms
which have been identified in experiments. Using numerical simulations we have
verified that the Callen-Callen theory can be applied in terms of simple power laws on
the magnetization. From the model it is clear that spin fluctuations must be considered
in understanding the temperature dependence of the anisotropy in MnBi. In this
work, changes in the anisotropy due to lattice expansion has not been considered, but
it is clear that ab initio results which represent zero temperature properties, must
also include the effect of spin fluctuations to successfully understand the temperature
dependent behaviour. Based on our results we suggest that it is the competition
between a single ion in-plane and two-ion uniaxial anisotropies which causes the
anomalous behaviour in MnBi. Further work should be done to understand the
contributions of magneto-elastic coupling and the Bi spin orbit coupling to these two
terms.
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