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ABSTRACT

Objectives:

The study aimed to determine the effect of inter-implatérval and onset of profound
deafness on sound localization in children with bilaterahleae implants, controlling for
cochlear implant manufacturer, age and time since saogidnt.

Design:

The authors conductedratrospective, observational study using routinely ctdie clinical
data. Participants were 127 bilaterally implanted children dgeghrs or older, testexd least
12 months post-second impla@thildren used implants made by one of three manufacturers
Sixty-five children were simultaneously implanted, of whom 43%re congenitally,
bilaterally profoundly deaf at 2 and 4 kHz and 57% had acquiredogressive hearing loss.
Sixty-two were implanted sequentially (median inter-iamplinterval = 58 months, range 3 to
143 months) of whom 77% had congenital and 23% acquired or progrdsiateral
profound deafness at 2 and 4 kkhildren participated in a sound-source localization test
with stimuli presented in a random order from 5 loudspeaker-60, -30, 0, +30 and +60
degrees azimuth. Stimuli were pre-recorded female voicemdbmly roved levels from 65
to 75 dB(A). Root mean square (RMS) errors were calculatedalization data were
analysed via multivariable linear regression madede applied to the whole group and the
other to just the simultaneously implanted children.

Results:

Mean RMS error was 25.4 degrees (SD = 12.5 degrees) witlisresnging from perfect
acaracy to chance level (0 to 62.7 degrees RMS error). Comparesdimigtaneous
implantation an inter-implant interval was associated with worse laedbn by 1.7 degrees

RMS error per year (p < 0.001). Compared to congenital deafeasls,year with hearing
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thresholds better than 90 dB HL at 2 and 4 kHz bilaterallyr poiomplantation led to more
accurate localization by 1.3 degrees RMS error (p < 0.@¥&xy year post-second implant
led to better accuracy by 1.6 degrees RMS error (p < 0.0%)-BWWeas associated with more
accurate localization than Cochlear by 5.8 degrees RM8 &ir< 0.01) and with more
accurate localization than Advanced Bionics by 9.2 degris &ror (p < 0.05).
Conclusions:

Inter-implant interval and congenital profound hearing lbsth led to worse accuracy in
sound-source localization for children using bilateral cashimplants. Inter-implant delay
should therefore be minimized for children with bilatepadfound hearing loss. Children
presenting with acquired or progressive hearing loss cagxpected to localize better via

bilateral cochlear implants than their congenitally deafqe
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INTRODUCTION

Spatial listening includes the ability to hear where soundsdoom. This skill is important
for children in social, recreational and educationalregitas well as for their personal safety.
In individuals with normal hearing, sound localizatire. the ability to indicate which of
multiple sound-sources a sound came from, in the hatat@lane) is possible because
central auditory processing makes use of inter-aural iffefences (ILDs), inter-aural time
differences (ITDs) and spectral cues (Musicant & Buil®84) These cues are disrupted for
people with hearing impairment (Noble et al., 1994). One diauditory rehabilitation is to
restore binaural cues by providing appropriate hearing technddwglyoth ears, with the
hope that spatial listening skills might be restored or develapasdme extent despite the

hearing impairment.

Profoundly deaf children can learn to localize sounds sggmfly better with two cochlear
implants (Cls) than one (Steffens et al. 2008; LovetleR010; Godar & Litovsky 2010;
Galvin et al. 2010; Grieco Calub & Litovsky 2010; Vincent ét 2012). However

localizationaccuracy for children with bilateral Cls (BIiCls) varie®rn near-normal to an
inability to localize above chance level (Grieco-CalubLi®ovsky 2010; Van Deun et al.
2010, Murphy et al. 2011). The reasons for this variation appmaplex and are not yet
fully understood (Litovsky & Gordon 2016). It is likely thatnsiians andCl manufacturers

can influence some of the factors affecting sound Ipa@din, therefore greater

understanding of this area could benefit many profoundliyctelaren.

A number of variables with the potential to influence laalon have been identified by

previous researchers:irst, auditory deprivation is likely to negatively affdatalization via
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neural degeneration and cortical reorganization (Sharrak 2007a, 2007b; Sparreboom et
al. 2011; Gordon et al. 2011; Litovsky & Gordon 2016). Consistgtht this, shorter inter-
implant interval, younger age at second implant (CI2) latet onset of hearing-impairment
are associated with better localization in behaviositalies of children (Steffens et al. 2008;
Grieco-Calub & Litovsky 2010; Van Deun et al 2010; Strom-Rainal. 2012; Asp et al.
2015). However, a limitation of these studies is the hig¢ricorrelation of time-dependent
variables, e.g. age at first Cl (CI1), age at CI2, agesatand inter-implant interval (Grieco-
Calub & Litovsky 2010; Van Deun et al., 2010; Asp et al. 2015) wmekes differentiation
between the effects of these variables difficult. Ikemtdue to other limitations in previous
studies, the effect of inter-implant interval on lization ability is not well understoodror
example, most studies are likely underpowered due to ioguffisample size (Van Deun et
al., 2010; Asp et al.,, 2011; Vincent et al., 2012), or make compariaoross different
populationsi.e. post-lingually deafened adults versus congenitally deafrehilCitovsky et

al., 2004).

A second factor with the potential to influence localaatability is the cochlear implant
system used. Physical characteristics such as the nusdparation and insertion depth of
the electrodes vary between systems, as do microph@nactéristics. Each of these could
feasibly influence the binaural perception of sound. Differente speech processing
strategies including gakpicking versus continuous interleaved stimulation (Wils al.,

1991), and variation in the knee-points, speed, complexity feequency specificity of

compression circuits may be influential on ILD repréagon (Vaerenberg et al., 2014).
Representations of temporal fine structure also diffewéeh systems and might feasibly

influence a user’s ability to exploit ITDs (EkI6f & Tideholm, 2018; Thakkar et al., 2018). It is
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therefore important to control for differences in implant speech processing characteristics

when examining localization outcomes.

Finally, age and binauraistening experience are known to influence children’s localization
outcomes. Normally-hearing children continue to improveests of sound localization until
the age of around 5 to 7 years (Van Deun et al. 2009; Lovatt 2012). For sequentially
implanted children, localization skills develop over tberse of several years after receiving
their CI2 (Litovsky et al. 2006; Asp et al. 2011; Kuhn et al. 2@&#rreboom et al. 2015). It
is therefore important that age-related changes areumismb for when investigating

localization ability development in Cl users.

Given these potential influences on localization abibtyd our lack of understanding of how
they impact sound-source localization, the present studgdatm investigate the effects of
inter-implant interval and onset of profound deafnesssaumnd-source localization, whilst
controlling for CI manufacturer, age, and time sinc& ©h both simultaneously and

sequentially implanted children.
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METHODS

Participant selection and data collection

This study was a retrospective, observational study usingnebu collected clinical data.
Children using BiCls, under the care of our service, aged 4 y@aolder and without
language and/or developmental delay that would preclude pattam (as assessed by a
relevant professional at a prior clinical appointmemgre invited for assessment. In line
with candidacy criteria in the UK (NICE TAG 166, 2009) undideearing threshold levels
were 90 dB HL or worse at 2 and 4 kHz bilaterally prior to impl#ntatData were excluded
from analysis for children with visual impairment that preee them from seeing the
loudspeakers (N=1), children who withdrew co-operation befongpteting the full number
of test trials (N=1), children whose language comprehengasnot sufficient to understand
the task (N=3), and children who completed the test trials were uncooperative or
distracted to the point where the tester deemed thgmonses unreliable (N=7). Sound-
source localization data from the remaining 127 childrerh interval post-CI2 ranging from

1 to 6 years, were analysed. Characteristics of thesiramihire summarised in Table 1.

M easurement of sound-sour ce localization

Tests were administered via the A-B-York Crescent of S@Hitterick et al. 2011), a semi-
circular array of loudspeakers and monitors. The loudspedRéus XS.2., Canton) were
arranged at a height of 1.1m in a semi-circle of radidSrii.and were controlled by custom
software that produced simultaneous output via a ditptalkalogue converter (Ultralite
Mk3, MOTU) and five dual-channel amplifiers (RA-150, Alesis). Téeftware also
controlled video monitors situated below the active loudspeakeed as part of the patient

response. The children sat on a chair in front of a tdé&ng the central loudspeaker and
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equidistant from all loudspeakers. The study used the Zatialn test developed by Kitterick
et al (2011) and Lovett et al. (2012). Active loudspeaker locati@ns located at —60, —30,

0, +30 and +60 degrees azimuth (negative angles denotefectti the left). The positions
of the test equipment relative to the child are showhigure 1. The test software dictated
that the maximum number of active loudspeakers was fivewbtivere pre-recorded voices
saying “Hello, what’s this?”. Five different female talkers were used, 1 of whom was
randomly selected on each trial by the software. Theageepresentation level was 70
dB(A), randomly roved by +5 dB in 1 dB steps. Children wererucséd to face directly
ahead whilst listening for the stimuli, however no attempts weaee to restrict head-

movements during stimulus presentation.

The assessments were usually administered by one audiolagisng alone. This tester
would be seated across the room, operating the equipment deéskatop keyboard and
monitor. A second tester was also present if this was recommended in the child’s medical
notes. The second tester sat close by the child to halg fbeir attention. The testers were
not blinded to the child’s medical history or implant model as knowledge of these was
necessary to provide informed clinical care, ensure deuitetibn and counsel the family.
However, as this was a retrospective study, testers wiacktblhow the data would be used

for the purposes of this study.

One training presentation was given from each of the Bealctudspeakers and for these the
children were shown which loudspeaker the voice had come fEwmary child then
proceeded to the test trials regardless of their accumadiie training trials. Six test stimuli
were presented from each active loudspeaker so that theee 30etest trials. The test

software randomly varied the loudspeaker from which stimulevpeesented. Two methods
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177  could be used for the localization test, to suit each child’s interest and ability. The video
178  monitors could show numbers 1 to 5 beneath each active eakispand the child was asked
179 to say the corresponding number or to point to the loudspeadethey thought the sound
180 came from. The alternative method involved placing wad blocks of differing shape in
181  front of the child whilst each monitor displayed a photograph of a different block. The child’s
182 task was to locate the source of the sound and pick up dbk Bisplayed on the monitor
183  below that loudspeaker. Children’s continuing participation was praised regardless of their
184  accuracy. Reminders to listen were given as needed.

185

186 Analysis

187  For each child, sound-source localization accuracy wassuned via RMS error of the 30
188 test trials. Linear multivariable regression models wered u® explore the effects of a
189 number of explanatory variables on sound-source locmlizatccuracy. These were inter-
190 implant interval, age at onset of profound deafness, @ufaaturer, chronological age and
191 time post-CI2. Inter-implant interval, age at onsepuaifound deafness, chronological age
192 and time post-Cl2 were continuous variables measured irhsxddtofound hearing loss was
193 defined as unaided hearing threshold levels of 90 dB HL or war8eaad 4 kHz (these
194 frequencies are used to determine candidacy in the UK amthpehreshold levels at other
195 frequencies therefore were not always available). Cl faatwrer was entered into the model
196 as a categorical variable with Med-El arbitrarily aloss the reference category. For each
197 child left and right Cls were from the same manufactug@eech processor models were
198 always the same for right and left ears, however &tedde array model sometimes differed
199 Dbetween ears, e.g. if a newer system was available @intbea second, sequential Cl was
200 given. In one case a simultaneously implanted child had eémplanted with a different

201 model following unilateral device failure (See Table 1). Relgas of manufacturer, all
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children were programmed in omnidirectional microphone m8de.Table 2 for a summary
of CI system characteristics. As shown in Table 1del using Advanced Bionics devices
were all simultaneously implanted. To determine whetherlithised our analysis, the effect

of ClI manufacturer on sound-source localization acgunaas also explored via a regression

model using data from simultaneously implanted children only.

For congenitally deaf children, older age at CI1 and CI2 ingohger periods of auditory
deprivation. This can be detrimental to sound localizasibitity (Van Deun et al. 2010;
Grieco-Calub et al. 2010). However with acquired and progeedssses, older age at CI1
and CI2 may be due to having useful acoustic hearing for gelaiime, resulting in less
auditory deprivation, which might be expected to improve a child’s localization with Cls
(Grieco-Calub & Litovsky 2010; Killan et al. 2015). For thesasons, whilst age at Cl1 and
CI2 were recorded, they were not used in the regressidysemal able 3 shows ages at Cl1
and CI2 by manufacturer for the children born with profoledring loss at 2 and 4 kHz in at

least one ear.

10
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RESULTS

Across all 127 children RMS error ranged from perfect acgui@chance, i.e. 0.0 to 62.7
degreek Mean RMS error was 25.4 degrees (standard deviatiors, BD6 degrees)Figure

2 shows a scatterplot of RMS error as a function adriimhplant interval (months)Data-
points at 0 months are from children who received simetias Cls. The mean RMS error
for this group was 21.6 degrees (SD = 11.07 degrees), with a reveybconsistent with
that seen for the remaining sequentially implanted chil@man RMS error = 29.5 degrees;
SD = 12.7 degrees). RMS error is seen to increase with inngeager-implant interval.
Table 4 shows the results of the regression model, wdodlirms this relationship. Each
month’s wait between CI1 and CI2 was associated with less accurate localization by 0.14

degrees RMS error (p < 0.001)

Figure 3 shows the relationship between RMS error and agseit@improfound hearing loss
(months). In this figure the data-points at 0 montlesfesm congenitally profoundly deaf
children. This group had mean RMS error of 28.6 degrees (SD =dé&grées) and a similar
range of RMS error to the acquired/progressive children thee.other data-points in the
figure, whose mean RMS error was 20.7 degrees (SD = 10.5 ded®®&&S error is seen to
decrease with increasing age at onset of hearing [k was shown to be a significant
effect by regression analysis, with RMS error improvingOol/l degrees for each month

delay in the onset of bilateral profound hearing loss (0%)0

RMS error is plotted against age at test in Figure 4cldlar trend is evident, as confirmed by

regression analysis (p = 0.47). Figure 5 shows RMS error agiamespost-Cl2 (months).

! Chance performance being 62 degrees RMS error, Padtagdk, personal communication.

11
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Data points are clustered around 1, 2 and 4 years posa€tBese were standard assessment
intervals. Although trends are difficult to discern fraubjective inspection of the figure
regression analysis, controlling for the other varialftesnd a significant reduction of 0.13
degrees per month post-CI2 (p < 0.0Significant differences were obtained between the
manufacturers. Med-El systems were associated witke @ccurate localization, with RMS
error 5.79 degrees smaller than Cochlear (p < 0.01) and 9.1%®dexgnaller than Advanced
Bionics (p < 0.05). As all Advanced Bionics users were simediasly-implanted, a second
model exploring the effect of CI manufacturer using aata from simultaneously implanted
children was performed. This gave similar results to the firstlel, suggesting that the
differences in localization seen between CI systems not materially affected by whether a

child received their implant simultaneously or sequent{@lgble 5).

12
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DISCUSSION

Previous research is limited in its ability to provide inforioraton potential influencing
factors on sound-source localization ability. Limitadnclude small sample size, inability
to differentiate between the effects of time-basedofacand comparisons across different
populations. The present study therefore aimed to investige effects of factors that
influence localization ability, namely inter-implantenval and onset of profound deafness
whilst controlling for ClI manufacturer, age and time sind&,Gor simultaneously and
sequentially implanted children. This was achieved via multipgession analysis of
routinely collected clinical data from a large numbiechaldren. This allowed analysis of the
independent effects of a number of explanatory variabideaalization accuracy (measured

via RMS error)

We found a broad range of localization accuracy, ctergisvith other studies of bilaterally
implanted childrenOur whole group mean RMS error was 25.4 degrees, ranging ffdta 0
62.7 degrees. Zheng et al (2015) reported mean RMS errors ofld&e, 4 of whom had
some acoustic experience prior to BiCl and 8 of whom hssltlegan one year inter-implant
interval. When first assessed with mean BIiCl experie{c29.8 months, mean RMS error
was 31.3 degrees, falling to 26.2 degrees for the same childrdatat assessment interval.
This is comparable to the present study. Grieco-Calub aousky (2010) report mean RMS
error of 37.4 degrees (range 19 to 56 degrees) for 19 sequentjaliynied children, around
half of whom were congenitally deaf. Van Deun et al. (2010)rtepwery similar mean RMS
error of 38 degrees from 30 children who were all implanted se¢igllg and two thirds of
whom were congenitally deaf. Compared to Grieco-Calubt&vkky (2010) and Van Deun

et al. (2010) our children localized with smaller RMS eonraverage. This may be due to

13
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the relatively longer duration of BIiCl experience of tti@ldren in our study, the larger
proportions of children with acquired and progressive losséssanultaneous implantatipn
and likely methodological differences also. Asp et al. (20&pprted bilaterally implanted
children’s localization in terms of Error Index. Outcomes also varied from perfect accuracy to
chance performance for a five loudspeaker array locmlizaask. We found greater mean
RMS error than that of normally-hearing children, whoidglly perform the task with

perfect accuracy (Lovett et al. 2012).

Inter-implant interval was shown to have a significanugrice on sound-source localization
ability. This adds to the arguments in support of minimizingrimhplant interval where
possible for children with bilateral profound hearing loss.is linteresting to note that the
effect of inter-implant interval was still significain this group who had received their
second implant up to 6 years ago. Thus, despite beingiexped users of bilateral Cls,
children did not fully overcome the detriment caused by pgaEdninter-implant interval.
This is consistent with theories of long-lasting aatireorganization in response to unilateral
auditory deprivation, which suggest a critical period of 18 thnoKe.g. Gordon et al. 2013;

2015).

Our data showed age at onset of bilateral profound hearinglémssad a significant effect
on sound-source localization, with better performaseen for children with longer
experience of bilateral acoustic sound prior to BiCls. &h@nsistent with previous studies
that indirectly explored the effect of auditory expede during the early years. For example,
Grieco-Calub & Litovsky (2010) showed that children reportegdments to be benefiting
from hearing aids were more likely to have better sound-sdaoeadization via Cls than

peers who had not benefitted from hearing aid use. Previdt#ihn et al. (2015) showed

14
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that type of hearing loss (categorized as acquired/progressivangenital) influenced
sound-source localization, with children with acquired/prsgjie loss performing better
than those with congenital hearing loss. Their study lvased due to children with
acquired/progressive loss being older than children in timgesotally deaf group. The
present data adds to the evidence for the effect of agesat of profound hearing loss by

quantifying and directly exploring this variable.

All children whose unaided hearing thresholds were outsideENICcriteria (NICE, 2009)
up to at least approximately 48 months of age localized witlerbatcuracy than the group
average in the present study. This is broadly consistentrggorts by Sharma et al., (2007a,
2007b) who showed that congenitally deaf children need to reCaésvén both ears by the
age of 42 months to give symmetrical electrophysiologicgbomses to sound. Other
behavioural studies of localization ability in children &eaalso noted a benefit of binaural
listening during the early years (Steffens et al., 2008; Gi@adab & Litovsky, 2010; Van
Deun et al., 2010).1t should be noted however that in the present stutgtoperative
hearing thresholds below 2 kHz were not used in our defindtiggrofound hearing los#\s

a consequence it is possible that the present study mayestidate the effect of pre-

operative hearing levels due to unknown variability in low-fregyehearing.

Cl manufacturer had a significant effect on sound-solorcalization ability, with Med-E
implants being associated with the most accurate |latmliz ability, followed by Cochlear
and then Advanced Bionics. Interpretation of this effexded on modelling the whole group
was potentially complicated since all users of Advanced B&devices were simultaneously
implanted, whilst Med-El and Cochlear users were eitheulsaneously or sequentially

implanted. Itwas therefore possible that the effect of manufactueen snight have been

15
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influenced by inter-implant interval effects. To e this, an additional model including
data from only simultaneously implanted children (regardles<l manufacturer) was
calculated and compared with the original model. Similfferénces between the three
manufacturers were evident in both models, indicating than&hufacturer had a similar
effect on localization accuracy for both simultandpasnd sequentially implanted children
and that this effect was independent of inter-implantale Our study was not designed to
explore reasons for differences between systems how@wermlausible explanation may be
differences in automatic gain control, which can infeeEenoutcomes for speech
discrimination (Spahr et al. 2007). The range of stimulus ity used in the present study,
from 65 to 75 dB(A), is toward the higher levels for speecjuivalent to e.g. a team-mate
calling during a sports game or raised voices during a group imead.sounds from 65 to 75
dB SPL may result in CI stimulation at levels atclose to, maximum stimulation amplitude
for Cochlear and Advanced Bionics patients, hence Ilddssbunds in this range may be
difficult to perceive. For Med-El recipients theseeimsities are mapped to a lower portion of
the patients’ dynamic range and will produce CI stimulation over a wider range of electrical
amplitude (Vaerenberg et al. 2014). Localization via Clsasight to be dominated by ILDs
(Seeber & Fastl 2008), even in children where fine structnategies facilitate some degree
of ITD sensitivity (EKI6f & Tideholm, 2018). Since Med-Eystems apply less compression
to sounds louder than 65 dB SPL compared to Cochlear or Ad/&igeics, ILD cues may
have been better preserved for children using Med-El regsia the present study. It is
therefore possible that repeating this study using qugtewli would not find the same
difference between manufacturers. Age at CI1 and Clotslikely to account for the
difference in localization across Cl manufacturer©n average, for congenitally deaf
children, Med-El users were older at CI1 and CI2. Tha detrimental influence on sound-

source localization, not advantageous, and so cannot ekpdaiasults.

16
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Consistent with previous studies (Asp et al., 2011; Kuhal.e2013; Asp et al. 2015), time
post-Cl2 was shown to influence localization ability, witHoager time associated with
improved performance. It should be noted, however, thatbloinaural listening time varies
from child to child dependent on how consistently they use tievices. Inconsistent device
use has been shown to be a particular issue for sequemntiplignted children (Galvin &

Hughes. 2012; Fitzgerald et al. 2013). A limitation of the presemty was that it was not
possible to determine or control for how much time eachd d¢rad spent listening via both

Cls together.

One limitation of this study is the use of RMS error altmeneasure sound localization, as it
does not capture more subtle aspects of a person’s localization ability (Grieco-Calub &
Litovsky, 2010; Zheng et al., 2015; Killan et al., 2018). A furihetential limitationis the 30
degrees spacing between loudspeakers, which does not allow dtioaliaccuracy to be
measured with the fine spatial resolution achieved in sotimer studies (e.g. Zheng et al.,
2015). However, as the mean RMS error found in the presedy $£5.4 degrees) is
comparable to those reported by Zheng et al. (2015) (31.3 andd@@tBes at first and
second test intervals respectively) it is likely that Iqeddker separation did not substantially
impact our findings. Indeed, the spatial resolution achiemenur study is similar to other
previous research (e.g. Asp et al.,, 2011; Killan et al., 2015; Murplal.,e201). A
loudspeaker array with large separations between speakgieadato ceiling effects, where
children find the test too easy. As only one out of the 127 ehildompleted the test with
perfect accuracy, it is considered unlikely that ceilingaf limited our findings. Similarly,
Asp et al (2011) reported only two out of sixty-six bilaterathplanted children perfectly

completed a localization task that used five loudspeakersrasegaby 45 degrees.
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Importantly, the loudspeaker spacing in the present studgpigsentative of situations a
hearing impaired child might encounter in day to day life, at tmead, during lessons or
playing sport. For example, a child might be writing while sauad a table with friends

doing group work at school when another child begins to speak.

Our regression model accounted for 26% of variance in tlee datnumber of factors not
measured in our study potentially account for some of theireng variance. One such
factor is asymmetric loudness growth caused by, for exampt@dance of facial nerve
stimulation or recent re-programmingh second possible influence is the effect of children
moving their head following stimulus onset. Whilst asked te wead for the onset of each
presentation, some children moved their heads more tl@msoduring the sentence and
some leaned forward when they were concentrating, efédgtimoving the loudspeaker array
out of the horizontal plane. Finally, variationchildren’s concentration during the task could
account for some variance in the daizata were excluded from analysis if the tester deemed
a child had been uncooperative or distracted such thatéispionses were clearly unreliable.
However the analysed group will have included children with varyenegl$ of attention,
fatigue and motivation, potentially influencing their respgnsemore subtle ways that are

difficult to quantify.

Our findings provide further evidence that the unilateralitand deprivation experienced
while waiting between a first and second Cl causes a long-tietriment in subsequent
soundsaurce localization. Therefore inter-implant intergabuld be minimized for children
with bilateral sever¢e-profound hearing loss. The significant effect of ageordet of
profound deafness means that clinicianas expect children with acquired or progressive

hearing loss to localize comparatively well via BiCls. Tki®wledge is useful for patient
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selection for BiCls, counselling and targeting rehabibtator children where progress is not
seen. Another implication is that it is importantntonitor a child’s localization accuracy
over several years following BICls so that failure to elep localization skills can be
identified Where this is foundappropriate measures can be taken to initiate targeted
rehabilitation, including reviewing BICl use, addressing any p@ogning issues, or
recommending localization listening practice. The family ba counselled regarding their
child’s speech processor use to ensure that both processors ar@mataneously for most
of the day, rather than alternating, and also to engaieprocessor microphones are not
positioned side-byide on the top of the child’s head rather than over the ears. Listening
practice can include games where the child closes thesr @yeé family members play an
instrument from differing, unknown locations in the rodhen the child guesses where the
sound came from; or where a noise-making toy or phoh&den in the room and the child

is encouraged to listen to help them find it.
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Figurel

The child is shown seated in front of a table and facing the centre of the arc of
loudspeakers. Loudspeaker positions are shown in degrees azimuth, negative angles
denote locations to the left and positive angles denote locations to the right of centre.
I nactive video monitors and loudspeaker s are shown in grey. Active video monitors and

loudspeaker s are shown in black.
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604 RMS errors are plotted for each child against the duration of their inter-implant
605 interval in months.
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609 Figure3

610 RMS erors are plotted for each child against the age at which their hearing loss was
611 first confirmed to be profound at 2 and 4 kHz in at least one ear. Children whose
612 hearing impairment was detected by newborn hearing screening and confirmed to fall
613  within this range on immediate follow-up are plotted as having met this criterion from
614  birth and are clustered at the far left.

615
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RMSerrorsare plotted for each child against their age at test in months.
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623 Figure5

624 RMSerorsareplotted for each child against the number of months since they received
625 their second CI.

626
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627 Tablel
628 Participant Characteristics
629
Simultaneous Sequential
(N = 65) (N =62)
Age (months) Median 91 136
Youngest 52 85
Oldest 235 307
Onset of profound hearing Congenital N =28 (43%) N =48 (77%)
loss categorized Acquired / Progressive N =37 (57%) N =14 (23%)
Age at onset of profound Median 10 0
deafness at 2kHz and 4 kHz Youngest 0 0
in at least one ear (months) Oldest 185 68
Age at CI1 (months) Median 50 31
Youngest 6 14
Oldest 220 165
Age at CI2 (months) Median 50 88
Youngest 6 26
Oldest 220 283
Inter-implant Interval Median 0 58
(months) Least 0 3
Greatest 0 143
Time since CI2 (months) Median 47 48
Least 12 13
Greatest 77 84
Manufacturer Med-El N =27 (42%) N =38 (61%)
Cochlear N =31 (48%) N =24 (39%)
Advanced Bionics N=7(11%) N =0 (0%)
Children with differing Cl N=1(1%) N =48 (77%)
models in right and left ears
630
631
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Table?2
Characteristics of the children’s cochlear implant systems
Advanced Bionics (N=7) Cochlear (N=55) Med-El (N=65)
Speech processor Naida (N=2) CP910 (N=5) Opus 2
Harmony (N=5) CP810 (N=52)
Freedom (N=1)
Processing strategy HiRes Optima S (N=2) ACE FSP
HiRes-S w/Fidelity 120
(N=5)
Microphone Processor, omnidirectional Standard, Standard,
omnidirectional omnidirectional
Active electrodes Upto 16 Up to 22 Upto 12
Electrode array 15 mm 15to 20 mm 23to0 26 mm

length
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Table3
Agesat Cl1 and Cl2 by manufacturer for the congenitally deaf children
Age at Cl1 (months) Age at CI2 (months)
Median (range) Median (range)
Advanced Bionics (N=4) 20 (13to 67) 20 (13 to 67)
Cochlear (N=29) 26 (12 to 186) 63 (12 to 186)
Med-El (N=43) 32 (6to 216) 91 (6to 216)
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642 Table4
643 Resultsof regression analysisfor both smultaneously and sequentially implanted
644  children.

645
No =127
Adj. R?=0.259
Variable Coefficient p 95% Confidence
Interval
Inter-Implant Interval (months) 0.14 <0.001 0.07 0.22
Onset of Deafness: -0.11 0.004 -0.19 -0.04
Age when HTLs 290 dB HL at 2 and 4 kHz in at
least one ear first measured (months)
Time since CI2 (months) -0.13 0.035 -0.26 -0.01
Age at Test (per month of life) -0.02 0.466 -0.07 0.03
Manufacturer Cochlear 5.79 0.006 1.65 9.93
(relative to Med-El)
Advanced Bionics 9.19 0.043 0.31 18.06
646

647 A positive coefficient indicates an association betwése variable and greater, i.e. less
648 accurate SLA.

649

650
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651 Tableb
652 Resultsof regression analysisfor smultaneously implanted children only.
653

No =65
Adj. R>=0.220
Variable Coefficient p 95% Confidence
Interval

Onset of Deafness: -0.10 0.007 -0.17 -0.03
Age when HTLs 290 dB HL at 2 and 4 kHz in at
least one ear first measured (months)
Time since CI2 (months) -0.17 0.033 -0.33 -0.01
Age at Test (Per month of life) -0.03 0.213 -0.09 0.02
Manufacturer Cochlear 7.48 0.008 2.03 12.93
(relative to Med-el)

Advanced Bionics 10.66 0.017 1.97 19.36

654

655 A positive coefficient indicates an association bemvihe variable and greater, i.e. less
656  accurate SLA.

657
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661
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