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SUMMARY

Locally Refined (LR) T-splines are used to model discrete crack propagation without a predefined interface.
The crack is introduced by meshline insertions in the LR T-mesh, which yields discontinuous basis functions.
To implement the method in existing finite element programs, Bézier extraction is employed. A detailed
description is given how the crack path is inserted and how the domain is reparameterised after insertion.
The versatility and accuracy of the approach to model discrete crack propagation without the crack path
being predefined is demonstrated by two examples, namely an L-shaped beam and a Single Edge Notched
beam. When the crack approaches the physical boundaries, limitations to reparameterisation arise, as will
be discussed at the hand of a Double-Edge Notched specimen. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computational modelling of crack propagation is of crucial importance for understanding and

predicting fracture. One of the major approaches for simulating fracture is the discrete crack model,

in which it is tried to mimic the observation that fracture induces a topological change in the body.

Starting from elementary analyses in which nodes of a finite element mesh were split in two when

the stress had exceeded the tensile strength [1], a host of approaches have been developed within

the framework of the finite element method. An important development was the introduction of

remeshing, which enabled cracks to propagate in arbitrary directions, no longer restrained by the

original lay-out of the finite element mesh, e.g. [2] who used linear elastic fracture mechanics, or

[3, 4] for analyses that exploit the cohesive-zone model.

Another approach is the use of interface elements [5], which are very effective when failure

occurs at an adhesive layer like in laminated composites [6–9], or when the crack path is known

in advance [10–12]. Another way to use interface elements for fracture is to insert them a priori

between all continuum elements [13]. Evidently, this leads to a significant computational overhead

and to an increased, non-physical elastic compliance in the interfaces prior to cracking. A method

that causes only minimal topological changes while simulating the crack in a discrete manner is the

eXtended Finite Element Method, which exploits the partition-of-unity property of finite element

shape functions [14–18].

More recently, isogeometric analysis (IGA) has also been employed for the analysis of discrete

crack propagation [19–25]. Due to the smoothness of the spline basis functions which are used in

isogeometric analysis, the stress field around the crack tip is improved compared to standard finite
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2 L. CHEN, C.V. VERHOOSEL, R. DE BORST

element analyses, leading to a superior prediction of the onset and the direction of crack propagation.

Similar to finite elements, interface elements can also be used in an isogeometric context, with

indeed a more accurate stress field around the crack tip, but with the same restriction as standard

finite elements with respect to the fact that they are restricted to adhesive crack propagation or

when the crack path is known in advance [20–24]. Further, when the splines basis functions satisfy

the partition-of-unity property, an enrichment in the sense of the eXtended Finite Element method

can also be used within isogeometric analysis, thus allowing for the propagation of discrete cracks

independent from the underlying discretisation [26].

The full potential of isogeometric analysis for discrete crack analysis becomes apparent when the

possibility is exploited to increase or lower the order of the spline functions that are used as the basis

functions for the interpolation. By repeating the knot value in the parameter space, the order of the

interpolation can be decreased locally, until C−1, and a discontinuity results in the physical space.

For adhesive interfaces, where the crack path is known, Non-Uniform Rational B-Splines (NURBS)

suffice [19, 24]. However, for crack propagation along a path that is not predefined, more flexible

spline technologies are needed, less rigid, so that the basis functions in two and three dimensions

can be built without resorting to a tensor-product structure.

In [19] T-splines have been used for this purpose. T-splines were introduced in [27] and were

subsequently cast in a Bézier extraction framework in [28]. The mathematical properties of T-

splines, such as linear independence and the partition-of-unity property, have been investigated in

[29–32]. Upon mesh refinement a rapid convergence was found in [19] towards the experimental

result. Also, little bumps in the load-displacement curve obtained for the coarser mesh, quickly

disappeared for finer meshes. However, since also at the near-final crack configuration it must

be possible to create T-junctions for further crack propagation, care must be taken that the initial

mesh lay-out enables this. This requires an a priori knowledge of the crack path. A more versatile

and general approach is to exploit T-splines in combination with local adaptivity. Recently, local

refinement of T-splines has been investigated in [33–38].

In this contribution, we will employ Locally Refined T-splines (LR T-splines) [39] to initiate and

propagate a discontinuity. LR T-splines are a combination of T-splines and LR B-splines, where

the latter are obtained by locally enriching the space of the basis functions by replacing coarse

grid B-splines by fine grid B-splines [40–44]. LR T-splines are constructed by meshline insertions

into an initial T-mesh. It breaks the tensor-product structure input for LR B-splines, while it refines

the domain in the parameter space instead of the vertex-grid for T-splines. The discontinuity is

introduced in the parameter domain and the technology is very suitable for crack propagation

analysis.

Herein, we first give a concise summary of the governing equations for the bulk and for the

discontinuity. The LR T-spline finite element formulation is reviewed in Section 3. The introduction

of discrete cracks in the LR T-spline finite element formulation is given next, followed by a

discussion of some implementation aspects in Section 5. The reparameterisation of a body after a

crack insertion is discussed in Section 6, while Section 7 presents numerical examples. A discussion

then follows regarding the limitations of the method.

2. GOVERNING EQUATIONS FOR THE BULK AND THE INTERFACE

A crack is represented as an interface Γc in the physical domain Ω, see Figure 1. In this contribution

linear elastic material behaviour is assumed, and the strong form of the equilibrium equations reads:















∇ · σσσ = 0 on Ω
u = û on Γu

σσσ · n = t̂ on Γt

σσσ · n = tc on Γc

(1)

where n denotes the normal vector at the boundary, û and t̂ represent prescribed displacements and

tractions, respectively, and σσσ is the Cauchy stress tensor. Assuming small displacement gradients,

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ISOGEOMETRIC DISCRETE CRACK MODELLING 3

the kinematic equations read:

εεε =
1

2

(

∇u+ (∇u)
T
)

in Ω; [[u]] = u+ − u− on Γc (2)

Figure 1. A solid body Ω with an internal discontinuity Γc. Γc is an interface boundary with positive and

negative sides, Γ+
c and Γ

−

c , respectively.

In the bulk, Ω, the Cauchy stress tensor σσσ is assumed to be related to the strain tensor εεε via the

fourth-order elastic stiffness tensor D as:

σσσ = D : εεε (3)

The crack opening [[u]] is given in the global coordinate system (x1, x2) in the two-dimensional

case considered in the remainder. The crack sliding and opening in the local coordinate system

(s, n) (Figure 1) read:

[[v]] = ([[vs]] , [[vn]])
T
= R [[u]] = R ([[ux1

]] , [[ux2
]])

T
(4)

with the rotation matrix R. A traction – crack-opening relation links the traction on Γc to the

displacement jump across it:

tc = tc ([[v]]) = {ts, tn}
T

(5)

The most important parameters in this cohesive-zone relation [45–47] are the fracture strength tu,

which is a measure for the maximum traction exerted on the interface Γc, and the fracture energy

Gc, which is the amount of energy that is needed to create a unit area of cracked surface. The shape

of the decohesion curve can also significantly affect the fracture process [11]. The traction at the

interface in the global coordinate system (x1, x2), t, is obtained from the traction tc via a standard

transformation:

t = RTtc (6)

It is finally noted that the cohesive-zone model includes the possibility of a traction-free crack, i.e.

tc = 0, so that a linear-elastic fracture model can be considered as a limiting case. Of course, a

stress singularity then arises at the crack tip, necessitating the use of special crack-tip elements.

3. ISOGEOMETRIC FINITE ELEMENT METHOD

The solution space, which is also used for the parameterisation of the geometry, should be

constructed such that allows for: (i) an exact description of the domain geometry, and (ii) a

discontinuous representation of the displacement field over Γc. To accomplish this, Locally Refined

T-splines (LR T-splines) are employed, which can model pre-defined discontinuities as well as

propagating discontinuities [39].

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



4 L. CHEN, C.V. VERHOOSEL, R. DE BORST

(a) initial T-mesh T1 (b) LR T-mesh T

Figure 2. Example of an LR T-mesh in the parameter domain. The green lines indicate meshline insertions.

3.1. LR T-spline fundamentals

LR T-splines use a T-mesh as an input rather than a tensor-product mesh. We consider an initial

T-mesh T1 with n anchors, which refer to locations of the blending functions in the parameter

space. A local knot vector Ξi (i = 1, · · · , n) and a blending function Ni

(

ξ1, ξ2
)

are prescribed

for each anchor. If we insert a sequence of single meshlines {εi}
n

i=1
in T1, we obtain a nested

Locally Refined T-mesh, Tn, such that Tn ⊃ Tn−1 ⊃ · · · ⊃ T2 ⊃ T1, Ti+1 = {Ti ∪ εi}, see Figure 2.

In an LR T-mesh, meshline insertions should (i) pass through an element (knot span), (ii) insert one

meshline at a time, and (iii) span across p+ 2 knots, or more. Here, p is the polynomial degree

of blending functions. Elements are non-zero parametric areas confined by edges of a T-mesh,

continuity reduction lines or inserted meshlines.

A meshline insertion ε on an LR T-mesh Tn is then either (i) a new meshline or an elongation of an

existing meshline, or a continuity reduction line, or (ii) a joining of two existing meshlines or two

existing continuity reduction lines, or (iii) an increase of the multiplicity of an existing meshline

or continuity reduction line. For the case of an elongation, or a joining of existing meshlines or

continuity reduction lines, we use their union to carry out the LR T-spline splitting.

The essence of LR T-splines is to maintain their minimal support property after meshline

insertions in an LR T-mesh T . That is, no other meshline traverses the interior space (support)

of N . The refinement is realised by separate knot insertions in each parametric direction. We take

the case of a knot insertion in the parametric direction ξ1 as an example. An LR T-spline blending

function Ni is defined by the local knot vectors

Ξ1
i =

[

ξ11 , ξ
1
2 , · · · , ξ

1
i−1, ξ1i , · · · , ξ

1
p+1, ξ

1
p+2

]

and

Ξ2
i =

[

ξ21 , ξ
2
2 , · · · · · · · · · · · · · · · · · · , ξ2p+1, ξ

2
p+2

]

A new meshline, ε = ξ̂ ×
[

ξ21 , ξ
2
p+2

]

, is now inserted in T , which leads to an insertion of ξ̂ in Ξ1
i

while keeping Ξ2
i constant. Two new local knot vectors, Ξ1

i1 and Ξ1
i2 are then obtained:

Ξ1
i1 =

[

ξ11 , ξ
1
2 , · · · , ξ

1
i−1, ξ̂, ξ

1
i , · · · , ξ

1
p+1

]

Ξ1
i2 =

[

ξ12 , · · · , ξ
1
i−1, ξ̂, ξ

1
i , · · · , ξ

1
p+1, ξ

1
p+2

] (7)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ISOGEOMETRIC DISCRETE CRACK MODELLING 5

which yields two new anchors on T with respect to the local knot vectors Ξ1
i1 and Ξ2

i , Ξ1
i2 and Ξ2

i .

Applying this refinement procedure to all anchors on T , we obtain updated anchors and updated

elements on the refined LR T-mesh Tr. Generally, meshline insertions reduce the continuity of T-

spline blending functions. This is beneficial when inserting an interface Γc

(

ξ1, ξ2
)

in a solid body

Ω [19].

The LR T-spline blending functions are defined as

NΞ

(

ξ1, ξ2
)

= γNΞ1

(

ξ1
)

NΞ2

(

ξ2
)

(8)

with γ the scaling weight, which enables T-splines to satisfy the partition-of-unity property [39]. The

set of LR T-spline basis functions is an LR T-spline basis N = {Ni : suppNi ∈ T }. LR T-splines

form a partition of unity and are nested, but are not necessarily globally or locally linear independent

[39]. To enforce linear independence, several approaches have been proposed, including the hand-

in-hand principle, the peeling algorithm and tensor expansion [39].

3.2. Control points update for the refined T-mesh

Blending functions are defined over the entire support (range of local knot vector) of an anchor. It is

inconvenient to use the blending functions in a standard finite element data structure. However,

Bézier extraction provides an elegant work-around by representing T-splines as element-wise

Bernstein shape functions [28]. Consider an LR T-mesh T with E elements and n anchors. For

anchor i, the local knot vectors are Ξ1
i and Ξ2

i , and the blending function Ni can be written as:

Ne
i

(

ξ1, ξ2
)

= [Ce
i ]

TBe
(

ξ1, ξ2
)

(9)

over element e with (p+ 1)
2 × 1 Bernstein shape functions Be

(

ξ1, ξ2
)

[31]. Here, we consider

T-splines with an identical polynomial degree p in the ξ1 and ξ2 parametric directions. Ce
i is the

Bézier extraction operator of anchor i over element e. Applying Bézier extraction to anchor i over

E elements, we have a global Bézier extraction operator:

Ci =







C1
i

...

CE
i






(10)

Writing them for n anchors in a matrix form then leads to:

N
(

ξ1, ξ2
)

= CB
(

ξ1, ξ2
)

=







N1

(

ξ1, ξ2
)

...

Nn

(

ξ1, ξ2
)







=







CT
1

...

CT
n













B1

...

BE







(11)

We can apply Equation (11) to T-splines after meshline insertions. Consider an initial T-mesh T
with n anchors. Inserting a series of single meshlines, {εi}

n
i=1

, in T results in Tr with nr anchors.

T-splines N associated with T are now described by T-splines Nr associated with Tr:

ΓN
(

ξ1, ξ2
)

= ΓSNr

(

ξ1, ξ2
)

(12)

where S is the refinement operator [24, 39], N and Nr are the blending functions associated with

T and Tr, respectively, while Γ is a diagonal matrix with scaling weights γ of N. Using Equation

(11), we obtain:

N = CBr = SCrBr (13)

where C is the Bézier extraction operator of anchors on T over elements on Tr, Cr denotes

the Bézier extraction operator of anchors on Tr over elements on Tr, and Br contains Bernstein

polynomials over elements on Tr. The row values of S are obtained as:

Ci = CT
r Si for i = 1, · · · , n (14)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 L. CHEN, C.V. VERHOOSEL, R. DE BORST

with the scaling weight γr of Nr obtained from Equation (12):

Υr = ΥS with Υr =
[

γr1 , γ
r
2 , · · · , γ

r
nr

]

and Υ = [γ1, γ2, · · · , γn] (15)

The control points associated with the T-mesh Tr are derived by the Bézier extraction operator

[39]:

Pw
r = Γ−1

r STΓPw (16)

where Γr is a diagonal matrix with the scaling weight γrβ of Nr along the diagonal, see Equation

(15). Pw and Pw
r are column vectors with control points Pw

α and Pw
rβ , respectively. Pw

α and Pw
rβ

are control points associated with T and Tr, respectively, and Pα =
(

x1α, x
2
α, wα

)

contains the

coordinates of anchor α. The weighted coordinates of anchor α are Pw
α =

(

wαx
1
α, wαx

2
α, wα

)

.

3.3. Isogeometric finite element discretisation

In present study, the LR T-splines are employed to describe the solid geometry and to interpolate

the displacement field u in an isoparametric sense:

x
(

ξ1, ξ2
)

=

nc
∑

I=1

NI

(

ξ1, ξ2
)

XI u
(

ξ1, ξ2
)

=

nc
∑

I=1

NI

(

ξ1, ξ2
)

UI (17)

where XI represents the coordinates of control points, UI denotes the degrees of freedom at the

control points, and nc is the total number of control points. Writing Equation (1) in a weak form

yields:
∫

Ω

δε : σdΩ +

∫

Γc

δ [[u]] · t ([[u]]) dΓ =

∫

Γt

δu · t̂dΓ ∀δu ∈ V0 (18)

where δε, δu and δ [[u]] are admissible virtual fields. The solution u belongs to the function space

V :

V =
{

v : vi ∈ H1(Ω,Γc), vi|ΓD = ûi
}

V0 =
{

v : vi ∈ H1(Ω,Γc), vi|ΓD = 0
}

(19)

in which H1 denotes the first-order Sobolev space.

Considering Equations (2) and (17), the weak form Equation (18) gives:

fint (u) = fext (20)

with

fint (u) =

∫

Ω

BT
σdΩ +

∫

Γc

HTtdΓ fext =

∫

Γt

NTt̂dΓ (21)

Matrices N, B and H contain shape functions, their derivatives, and relative displacements,

respectively [19]. Linearisation gives the tangential stiffness matrix:

Ktan =

∫

Ω

BTDBdΩ +

∫

Γc

HTRTTcRHdΓ (22)

where Tc is the tangent stiffness of traction-opening law at the interface [20]:

Tc =
∂tc
∂[[v]]

(23)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ISOGEOMETRIC DISCRETE CRACK MODELLING 7

Figure 3. Cubic B-spline basis functions without (a) and with (b) discontinuity. The knot vectors for (a) are
Ξ = {0, 0, 0, 0, 0.5, 1, 1, 1, 1}. For (b), the knot vectors read Ξ = {0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1}.

4. DISCRETE CRACK REPRESENTATION IN ISOGEOMETRIC ANALYSIS

The non-zero knot intervals in Ξ1 and Ξ2 can be conceived as elements. If the knot value ξ1i in Ξ1 is

repeated, the multiplicity of ξ1i is denoted by mi. Due to this multiplicity, the basis function Np

i,Ξ1

becomes Cp−mi continuous, which means that Np

i,Ξ1 is p−mi times continuously differentiable

over the knot i; see Figure 3. Due to this property, higher-order or lower-order continuity can be

achieved. This can be employed to solve higher-oder differential equations, e.g. [48–54], but also to

insert a discontinuity Γc

(

ξ1, ξ2
)

in the model [19].

4.1. Crack representation in the parameter domain

In Figure 3b, the knot 0.5 is repeated m = 3 + 1 times. The basis functions are C−1-continuous

at the knot 0.5. In Figure 4, the interface is defined along the parametric direction ξ1 at ξ2 = ξ2d .

Meshline insertions (green lines in Figure 4a) are carried out to increase the multiplicity of ξ2d to

md = p+ 1, which yields C−1-continuous basis functions.

In Figure 4, an LR T-mesh T is considered with multiplicities, which represents a discontinuous

interface at ξ2 = 1/2 in elements e1 and e2. Inserting such an interface requires C−1 continuous

basis functions. These are constructed by using meshlines of multiplicity m = p+ 1 [24]. In

Figure 4(a), the number of meshlines at ξ2 = 1/2 is m = 2 + 1 = 3. Due to this discontinuity,

the coordinates of control points 1, · · · , 4 are equal to those of control points 5, · · · , 8, see Figure

4b. To shield this discontinuity from the rest of domain, we introduce C0 lines in the vertical

direction at ξ1 = 1/3 and at ξ1 = 2/3, see Figure 4a. This enables a crack to propagate such that

Γc(t) ⊆ Γc(t+ δt). To illustrate the discontinuity in Figure 4c, a shift
(

δ1, δ2
)

has been applied

artificially to control points 1, · · · , 8:

(

δ11 , δ
2
1

)

= (−0.15,−0.15)
(

δ12 , δ
2
2

)

= (−0.15,−0.15)
(

δ13 , δ
2
3

)

= (−0.15,−0.15)
(

δ14 , δ
2
4

)

= (−0.15,−0.15)
(

δ15 , δ
2
5

)

= (0.15, 0.15)
(

δ16 , δ
2
6

)

= (0.15, 0.15)
(

δ17 , δ
2
7

)

= (0.15, 0.15)
(

δ18 , δ
2
8

)

= (0.15, 0.15)

(24)

Figure 4c presents a crack passing through the element boundary at ξ2 = 1/2. This crack not only

separates elements e1 and e2, but also elements e3 and e4. In the analysis of crack propagation, the

crack opening will be enforced only in elements e1 and e2, Figure 4d. This is achieved by applying

constraints to control points 1, · · · , 8:

(

δ11 , δ
2
1

)

=
(

δ15 , δ
2
5

)

= (0, 0)
(

δ12 , δ
2
2

)

= (−0.15,−0.15)
(

δ13 , δ
2
3

)

= (−0.15,−0.15)
(

δ14 , δ
2
4

)

=
(

δ18 , δ
2
8

)

= (0, 0)
(

δ16 , δ
2
6

)

= (0.15, 0.15)
(

δ17 , δ
2
7

)

= (0.15, 0.15)
(25)

In Figure 4d, the control points 1, 4, 5 and 8 are not at the crack tip. To determine the crack

path after the crack nucleation and propagation, we need to parameterise the crack path after crack

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



8 L. CHEN, C.V. VERHOOSEL, R. DE BORST

(a) Ω in the parameter domain (b) Ω in the physical domain

(c) Ω in the physical domain (d) Ω in the physical domain

Figure 4. Example of inserting an internal discontinuity Γc within a solid body Ω.

(a) Ω in the parameter domain (b) Ω in the physical domain

Figure 5. Example of inserting a crack with control points at the crack tip.

insertion. To achieve this, we need control points 1, 4, 5 and 8 to be at the crack tip, see Figure 5b. It

allows us to parameterise a crack with a minimum number of control points (basis functions) [19].

This is achieved by extending C0 lines ζ1 and ζ2 in Figure 4a one cell further than C0 lines ζ3 and ζ4
in Figure 5a.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ISOGEOMETRIC DISCRETE CRACK MODELLING 9

(a) initila geometry Ω (b) Ω with crack before reparameterisation

(c) Ω with crack after reparameterisation (d) Ω with crack in a standard finite element discretisation

Figure 6. Example of inserting a crack in the physical domain. Here, the Beźier elements are indicated by
solid lines. Isoparametric lines before (dotted) and after (solid) reparameterisation are shown. The inserted

crack path is denoted by the red solid line in (c) and (d).

4.2. Crack representation in the physical domain

In isogeometric analysis the crack path is represented by meshline insertions in the parameter

domain, which yields C−1-continuous basis functions. In the parameter domain, the crack path

insertions will only produce quadrilateral elements, see Figure 5a, and the element type does not

change in the process of crack segment insertions. After meshline insertions in the parameter

domain, a discrete crack path results in the physical domain, Figure 6b. We consider the case that in

Figure 6a, the stress tensor at Gauss point P in element e1 violates the stress criterion. Meshlines

are then inserted in the parameter domain to represent the crack path passing P . Consequently,

a discontinuity A′B′ is inserted in the physical domain, Figure 6b. This discontinuity A′B′ is a

natural product of meshline insertions in the parameter domain. The real crack path passing P in

the physical domain will be determined by the normal vector of the maximum principal stress at

P . In the present study, a linear crack path is assumed for the insertion of the initial crack segment

(line AB in Figure 6c). In general, the inserted crack path will not coincide with an isoparametric

line in the physical domain, see Figure 6c. To enforce this, the solid body Ω is reparameterised,

as illustrated by the solid lines in Figure 6c. In the figure, elements are quadrilateral. Note that

in a standard finite element method, the crack path insertion would produce a different type of

elements, Figure 6d, where the inserted crack path AB passes through the top and right edges of

element e1. After the insertion of crack pathAB, we obtain the quadrilateral element e3 (after proper

modification) and the triangular elements e2 and e4. This is inconvenient from an implementation

point of view.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



10 L. CHEN, C.V. VERHOOSEL, R. DE BORST

(a) no crack (b) crack nucleation (c) crack propagation

Figure 7. Crack path after crack nucleation and propagation. Isoparametric lines before (dotted) and after
(solid) reparameterisation are shown. Red solid curve denotes the crack interface Γc.

5. IMPLEMENTATION ASPECTS

In Equations (20) and (22) formulations for crack propagation analysis were introduced without

a pre-defined crack interface. Furthermore, the technique has been used to introduce a new crack

interface or discontinuity in a solid body, Section 4. In this section, the adaptive refinement for

free crack growth is outlined in the context of an isogeometric framework. First, the refinement

procedure for crack growth is outlined in detail. Next, the mapping of the displacement vector and

the history variables to the mesh will be explained. For the clarity of the presentation, the treatment

will be for two dimensions.

5.1. Adaptive analysis of crack growth

When the maximum principal stress exceeds the fracture strength tu at a certain integration point

xg , a crack nucleates and a new crack segment is inserted through the integration point, see Figure

7b. The crack path direction is given by the normal vector ng corresponding to the direction of

maximum principal stress at xg . Due to the lack of knowledge about the crack curvature, we

assume the initial crack segment after the crack nucleation to be a straight line, i.e. the segment

between x1 and x2 in Figure 7b. The crack tips x1 and x2 are intersections of the linear crack

segment with isoparametric lines corresponding to element boundaries (dashed lines in Figure

7b). The normal vectors n1 and n2 correspond to the direction of the maximum principal stress

at xg , i.e. n1 = n2 = ng. In general, the inserted initial crack segment will not coincide with an

isoparametric line in the physical mesh, see Figure 7b. To make the crack segment coincide with an

isoparametric line, the solid body Ω is reparameterised. In Figure 7b the isoparametric lines after

reparameterisation are denoted by solid lines.

While the use of B-splines and T-splines in isogeometric analysis enforces higher-order

continuity, this is lost at the crack tip, and continuity is reduced to C0. Consequently, the stress tensor

at the crack tip is not uniquely defined. An average stress tensor is therefore computed assumed on

the basis of stress tensor values close to the crack tip [55]. Typically, the averaged stress tensor is

calculated by using a Gaussian weight function:

w =
1

(2π)
3

2 l3
exp

(

−
r2

2l2

)

(26)

where w is the weight, l is the smoothing length, which determines how quickly w decays aways

from a crack tip and is frequently chosen about three times a typical element size, and r is the

distance to the crack tip. The averaged stress tensor is employed to determine the direction of the

normal vector at the end point x3, see Figure 7c.

Crack propagation is determined by the comparison of fracture strength tu and maximum

principal stress σ1 at all integration points in the elements ahead of the crack tip. If σ1 exceeds

tu, the crack is propagated. Herein, the crack is extended over one element in the parameter domain,

see Figure 7c. The starting position of a new crack segment is at the the tip where the crack

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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propagation criterion is violated (here: x2 and n2). The normal vector at the end point x3 matches

the principal direction n′

2 of averaged stress tensor at the start point x2, i.e. n3 = n′

2 in Figure 7c.

In this study, the normal and corresponding tangent vectors vary linearly from n2 at x2 to n3 at

x3. After insertion of a new crack segment, reparameterisation of the solid body Ω is carried out in

order to match the new crack segment with its isoparametric lines. The isoparametric lines before

and after reparameterisation are indicated as dotted and solid lines respectively in Figure 7c.

5.2. Update of the displacement vector and the history variables

In the process of crack nucleation and propagation, new elements and control points are introduced

due to the insertion of new crack segments. In addition, after the insertion of a new crack segment,

reparameterisation of the solid body is required to enforce the crack segment and isoparametric

lines to coincide. As a result, the LR T-mesh control net is modified. For non-linear problems, this

requires a transfer of displacements from previous time step t to provide initial values at time step

t+∆t. In the analysis, we have to consider two types of displacement transfer: (I) transfer due to

the insertion of a new crack segment, and (II) transfer due to the reparameterisation of the solid

body. We carry out a type (I) transfer and subsequently a type (II) transfer.

For a type (I) transfer, new elements are introduced in the LR T-mesh tT , yielding a new LR

T-mesh t+∆tT . The transfer of the displacement vector from old elements to new elements is exact

due to the nested finer mesh introduced by the insertion of new crack segments. We consider a state

vector tU, obtained at time step t. The corresponding LR T-spline space is tN . For the next time

step t+∆t, new elements and control points are introduced. We denote the LR T-spline space at

time step t+∆t by t+∆tN . In the crack propagation analysis, we need to map the vector tU at time

step t to produce a new initial vector t+∆t
0 U at time step t+∆t,

t+∆t
0 U = (S)

T tU (27)

where S denotes the refinement operator between LR T-meshes tT and t+∆tT , Equation (12). The

insertion of a new crack segment also requires the update of history parameters of integration points

along Γc, which is done similar to the approach in Equation (27).

For a type (II) transfer, we must determine the state vector t+∆t
0 Ur which corresponds to the

reparameterised LR T-mesh t+∆tT r. Here, t+∆tT r is determined by the reparameterisation of
t+∆tT upon the insertion of a new crack segment. The corresponding LR T-spline space is t+∆tNr.

Herein, a global least-squares fit is employed to carry out the mapping of t+∆t
0 U to t+∆t

0 Ur , which

is achieved by minimising:

ψ =

∫

Ω

∥

∥

t+∆t
0 ur −

t+∆tu
∥

∥dΩ =

∫

Ω

∥

∥

t+∆tNr
t+∆t
0 Ur −

t+∆tu
∥

∥dΩ (28)

in which u and ur are displacements, and t+∆tNr denotes basis functions associated with the LR

T-mesh t+∆tT r at time step t+∆t. Minimising Equation (28) with respect to t+∆t
0 Ur yields:

M t+∆t
0 Ur = p (29)

with

M =

∫

Ω

(

t+∆tNr

)T t+∆tNrdΩ (30)

which is obtained directly by Gaussian quadrature at each element on the LR T-mesh t+∆tT r at

time step t+∆t, and

p =

∫

Ω

(

t+∆tNr

)T t+∆tudΩ =

∫

Ωt

(

t+∆tNr

)T (

t+∆tN
)

t+∆tUdΩ (31)

where the integration is carried out at each element on the LR T-mesh t+∆tT at time step t+∆t.
t+∆tN and t+∆tNr represent basis functions associated with the LR T-meshes t+∆tT and t+∆tTr,

respectively.
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6. REPARAMETERISATION OF THE LR T-MESH AFTER CRACK INSERTION

After the insertion of a crack segment, the parameterisation of the solid body Ω has changed. In

Figure 7, for example, the crack segment is inserted through ξ2 = ξc in the parameter domain. The

isoparametric line for ξ2 = ξc is visualised in red. The line moves through Ω after the insertion of

a crack segment. Before reparameterisation of the body, the isoparametric line corresponding to

ξ2 = ξc (dotted lines in the physical domain) is not aligned with the inserted crack segment (solid

lines in the physical domain). Thus, a reparameterisation of the body must be carried out in order to

align the isoparametric lines with the inserted crack segment.

6.1. Crack path parameterisation

Herein, a crack is extended per element. For crack nucleation, the fracture criterion is checked at

all integration points. Upon violation, an initial crack path is prescribed and inserted through the

integration point. In case of crack propagation, the fracture criterion is checked ahead of the crack

tip. If it is violated, the crack path is extended over one element in the parameter domain. We will

now illustrate the algorithm for the insertion of an initial crack path and the propagation of a crack.

We consider a solid body Ω defined by a T-spline mesh to illustrate the concept, see Figure 8.

(a) Ω in the parameter domain (b) Ω in the physical domain

Figure 8. Initial geometry of a solid body Ω.

6.1.1. Insertion of an initial crack path For the insertion of the initial crack, we must check the

fracture criterion at each Gauss point, Figure 9a, where the Gauss points are indicated by (blue)

squares. When the fracture criterion is violated, e.g., at Gauss point G in element e1, Figure 9a, a

crack segment is inserted through this Gauss point. The normal vector ng , which corresponds to

the direction of the maximum principal stress, is employed to set the direction of the initial crack

segment. Since there is no information about the curvature of the crack segment, the initial crack

path is assumed to be a straight line, see Figure 9b. Generally, a newly inserted crack segment

will not coincide with an isoparametric line in the mesh, see the purple and red lines in Figure

9b. Therefore, the solid must be reparamaterised in order to enforce the crack segment and the

isoparametric lines coincide. For this purpose, first a discontinuity is inserted which passes through

Gauss point G of element e1 (see also Section 4), Figure 10. Obviously, the crack path does not

align with the isoparametric line in Ω, Figure 10b. To enable the alignment of the crack path and the

isoparametric lines, the linear crack path must be parameterised. However, the nucleation criterion

does not provide information about the length, and the start and end points of the linear crack

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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(a) Gauss points in element e1 and isoparametric
lines passing through Gauss point G

(b) insertion of the initial crack

Figure 9. Insertion of an initial crack path passing through Gauss point G in element e1.

path. We therefore assume that the start and end points are the intersections between the linear

crack segment and the isoparametric lines which correspond to the element boundaries (black solid

lines in Figure 11). To compute the intersection points A and D, the Bézier control points of the

element boundaries [28] must be obtained, denoted by blue diamonds in Figure 11. In this study,

cubic T-splines have been used, which produce four Bézier control points per element boundary. We

take intersection point D as an example to illustrate the concept. The linear crack segment can be

expressed as:

ax1 + bx2 = c ⇒ vector form Q ·X = h (32)

where Q = (a, b)T and X = (x1, x2)
T. Its Bézier form for the element boundary with point D is:

X(t) = (1 − t)3X1 + 3t(1− t)2X2 + 3t2(1− t)X3 + t3X4 t ∈ [0, 1] (33)

where X1 ∼ X4 are Bézier control points used to define the element boundary, Figure 11.

Substitution of Equation (33) into Equation (32) yields the solution for the point D:

(1− t)3 (Q ·X1) + 3t(1− t)2 (Q ·X2) + 3t2(1 − t) (Q ·X3) + t3 (Q ·X4)− h = 0 (34)

In a general form, Equation (34) can be written as:

at3 + bt2 + ct+ d = 0 (35)

where coefficients a, b, c and d are functions of Q and Bézier control points X1 ∼ X4. For

its solution, we consider two cases: a 6= 0 and a = 0, and only real solutions are considered.

Substituting the real solutions in Equation (33) provides an intersection point H . If the intersection

pointH is on the element boundaries defined by the Bézier control points X1 ∼ X4, this solution is

kept and the intersection point H is the solution for point D, see Figure 11.

Having calculated the intersection points A and D, the linear crack path is defined. To align the

linear crack path with the isoparametric line in Ω, the crack path must be parameterised similarly.

In element e1, the isoparametric line is defined as a cubic Bézier curve because of the C0 lines at the

element boundaries, see Figure 10b. Hence the linear crack path must be defined in a cubic Bézier

form. The corresponding Bézier control points (Figure 11) are:

XA = XA XB =
(2XA +XD)

3
XC =

(XA + 2XD)

3
XD = XD (36)

After determining the Bézier control points XA ∼ XD for the linear crack path, the displacements

at the control points between the linear crack segment and the isoparametric line are given as:

VA = XA −XA′ VB = XB −XB′ VC = XC −XC′ VD = XD −XD′ (37)

which will be used to determine the control net after the insertion of initial crack path, Figure 12b.

The formulation and algorithm of determining the control net will be outlined in Section 6.2.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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(a) Ω in the parameter domain (b) Ω in the physical domain

Figure 10. Insertion of the initial crack path passing through Gauss point G in element e1 before

reparameterisation. Here, the parameter value ξ2 of G is ξ2 = 0.5.

(a) Bézier control points of element e1 (b) start/end points and Bézier control points of crack path

Figure 11. Definition of the initial crack path. Here, the T-mesh before insertion of the linear crack segment
is employed to determine the start/end points of the crack path.

6.1.2. Propagation of the crack path For crack propagation, the stress in front of the crack tip is

examined, see points A and D in Figure 13. We now assumed that the fracture criterion is violated

at the crack tip at point D. Then, the crack is extended over one element in the parameter domain,

as shown in Figure 13a. Due to the C0 lines at the element boundaries, the previous crack path from

A to D will not change after the insertion of a new crack segment, Figure 14c. The starting point

of an inserted curved crack path is described by the position and normal vectors of tip D, XD and

nD, respectively, see Figure 14. The normal vector at the end point H ′ should match the principal

direction of the average stress tensor atD, see Figures 14b and 14c. We denote the principal direction

of the average stress tensor atD by n′

D. Due to the C0 lines at the element boundaries, the crack path

that is inserted between points D and H ′, Figure 14, is a cubic Bézier curve. The direction tangent

to a Bézier curve at its endpoint is parallel to the vector defined by the control polygon F ′H ′, Figure

14c. Suppose now that n′

D = {a, b}T
, then:

a
(

xH
′

1 − xF
′

1

)

+ b
(

xH
′

2 − xF
′

2

)

= 0 (38)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



ISOGEOMETRIC DISCRETE CRACK MODELLING 15

(a) Bézier control point displacement of crack path (b) Ω in the physical domain

Figure 12. Determination of Bézier control point displacement of crack path and the final parameterisation
of Ω. Here, Ω in the physical domain before reparameterisation (dashed lines) and after reparameterisation

(solid lines) are shown.

(a) Ω in the parameter domain (b) Ω in the physical domain

Figure 13. Insertion of a new crack path passing through crack tip D before reparameterisation. Here, the

parameter value ξ2 of D is ξ2 = 0.5.

where the control points XH′ and XF ′ are defined as XH′ =
(

xH
′

1 , xH
′

2

)

and XF ′ =
(

xF
′

1 , xF
′

2

)

,

respectively.

No information exists for determining the position of the end point H ′, and neither on the

curvature of the crack path. Therefore, it is assumed that the normal and corresponding tangent

vector vary linearly from nD at D to n′

D at H ′, yielding:

XH′ − 3XF ′ + 3XE′ −XD = 0 (39)

where XE′ and XD are coordinates of the control pointsPE′ and PD. Considering that the direction

tangent to a Bézier curve at its endpoint is parallel to the vector defined by the control polygon, we

can define a continuously differentiable crack at the tip D, see Figure 14c:

XC −XD

‖XC −XD‖
=

XD −XE′

‖XD −XE‖
(40)
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Figure 14. Insertion of a new crack path before reparameterisation and after reparameterisation. (a) solid
body Ω with the inserted crack path before reparameterisation; (b) schematic representation of the crack

path before reparameterisation; (c) schematic representation of the crack path after reparameterisation.

In this contribution, we restrict the crack to be continuously differentiable cracks. Hence, we

assume that the crack is proportionally stretched from the inserted discontinuity (Figure 14b) to the

inserted crack path (Figure 14c):

‖XF ′ −XH′‖

‖XF −XH‖
=

‖XD −XE′‖

‖XD −XE‖
(41)

From Equations (38) ∼ (41), we obtain the control points XD ∼ XH′ , which are used to compute

the displacements of the control points between the crack path and the isoparametric line, see Figure

15a.

VD = 0 V′

E = X′

E −XE V′

F = X′

F −XF V′

H = X′

H −XH (42)

We will employ the results from Equation (42) as Dirichlet boundary conditions to determine the

control net after insertion of a crack path, see Figure 15b. For the insertion of the next crack segment,

the procedure is the same.

(a) Bézier control point displacement of crack path (b) Ω in the physical domain

Figure 15. Determination of Bézier control point displacement of a crack path and the final parameterisation
of Ω. Here, Ω in the physical domain before reparameterisation (dashed lines) and after reparameterisation

(solid lines) are shown.

6.2. Determination of the LR T-mesh control net

For the analysis of crack propagation, the interior of a solid body changes due to the insertion

of a crack path. To align the crack path with the isoparametric lines, the domain must therefore
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be reparameterised. To preserve the exact geometry of the domain, the boundaries of the physical

domain, including the cracks, must remain at the same position. In this study, the control net after

the insertion of a crack segment has been determined by the requirement that the gradient of the

displacement V is minimised during the parameterisation. V is the displacement of the physical

position X′ with respect to the original position X, V = X′ −X = {v1, v2}
T
. The displacement

field V is computed by solving one of the two following boundary value problems in the physical

domain:











































∂2v1
∂x21

= 0 X ∈ Ω

∂2v2
∂x22

= 0 X ∈ Ω

V = 0 X ∈ ∂Ω and Γo
c

V = Ṽ X ∈ Γn
c

(43a)























LCL
TV = 0 X ∈ Ω

V = 0 X ∈ ∂Ω and Γo
c

V = Ṽ X ∈ Γn
c

with L =









∂

∂x1
0

∂

∂x2

0
∂

∂x2

∂

∂x1









(43b)

where ∂Ω is the boundary of domain Ω, Γo
c denotes the inserted crack path, Γn

c represents the crack

path to be inserted next, Ṽ contains the displacements at the control points, see Equations (37) and

(42); and C is the constitutive matrix of the bulk material.

The boundary value problem of Equation (43a) is uncoupled in the x1 and x2 directions. Equation

(43b) describes an elastic behaviour on the domain Ω, and is coupled in x1 and x2 directions.

Both boundary value problems are solved in a standard manner by casting them in a the weak

form through multiplication by a test function δV and integration over the domain. LR T-spline

basis functions T are employed to describe the geometry of the domain Ω and to approximate the

displacement V. Solution yields the displacement field V, and the new positions of the control

points are given by X′ = X+V, see Figures 12b and 15b.

7. EXAMPLE CALCULATIONS

Two crack propagation problems are now considered. Equation (43a) is employed to solve the

domain reparameterisation in the first example (Section 7.1), while Equation (43b) is considered

for the second example in Section 7.2. In both cases linear, isotropic elasticity is used for the bulk.

Mesh objectivity was verified for both examples. These results, however, are not included to keep

the presentation compact and focus on the main findings.

An exponential cohesive law is employed to describe cohesive fracture [56] in mode-I:

tn = tu exp

(

−
tu
Gc

κ

)

(44)

while the shear fracture resistance is neglected. The history parameter κ is determined by the loading

function f = [[vn]]− κ [19]. For unloading, a secant stiffness is used. To avoid interpenetration, a

penalty stiffness kp = 1× 105 MPa/mm is specified in the normal direction.

7.1. L-shaped beam peeling test

An L-shaped concrete panel is considered, which is subjected to a vertical concentrated load,

see Figure 16 [57], and simulations of crack propagation using extended finite elements were

reported in [58]. The Young’s modulus E = 20 GPa and the Poisson’s ratio ν = 0.18. Plane-stress
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(a) geometry (in mm) and boundary conditions (b) Bézier element discretisation of the beam

Figure 16. L-shaped beam subjected to a vertical load.

conditions are assumed. The tensile strength and fracture energy are given by tu = 2.5 MPa and

Gc = 0.13 N/mm, respectively. Displacement control has been adopted to fully track the load-

displacement path with steps of 0.01 mm. The initial discretisation of the beam was using linear

NURBS with a knot vector
(

Ξ0
1, Ξ

0
2

)

= ([0 0 1 1] , [0 0 1 1]), control points (0, 0), (0, 500), (500, 0)
and (500, 500), and uniform weight factorsw = 1. Next, the polynomial degree is increased by order

elevation to p, q = 3, and knot insertions are carried out for the knot vectors Ξ0
1 and Ξ0

2 to generate

the new knot vectors

Ξ1 =

[

0 0 0 0
1

40
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]

Ξ2 =

[
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]

(45)

and the control points P. After the knot insertions, we obtain a rectangular plate. To represent the

L-shaped domain, we exclude the influence from the right bottom area in the computation of the

stiffness matrix K, see Figure 16b. To represent the traction-free surface along the edge AB in

Figure 16b, meshline insertions are performed along AB in the parameter domain, which yields an

LR T-spline solution space for the problem.

The load-displacement curve is shown in Figure 17a. A good agreement is obtained with

experimental results [57]. Figure 17b shows that also the computed crack path is well within the

experimentally observed range [57]. Figure 18 gives contour plots of the principal stress σ1 for

two load levels. The displacement and the stress are smooth due to the C2-continuity of the cubic

LR T-spline basis functions. The crack propagates smoothly through the interface Γc and no stress

oscillations are observed. The effect of the reparamaterisations on the mesh in the physical domain

is clearly observed.

7.2. SEN beam under four-point shear load

We next consider a Single-Edge Notched (SEN) concrete beam subjected to anti-symmetric four-

point shear loads, see Figure 19a. The shear test was first analysed in [59] and involves a curved

crack, which nucleates at the notch and propagates to the upper support. The SEN beam has been

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



ISOGEOMETRIC DISCRETE CRACK MODELLING 19

(a) load displacement curve (b) predicted crack path

Figure 17. Load-displacement response and predicted crack path.

(a) σ1 contour plot for ū = 0.24mm (b) σ1 contour plot for ū = 0.43mm

Figure 18. Stress distribution for different load steps. The displacements have been amplified by a factor
100.

(a) geometry (in mm) and boundary conditions (b) initial Bézier element discretisation

Figure 19. Single Edge Notched (SEN) beam test.

analysed by many other investigators [10, 60–63]. The material properties of concrete reported in

[62] have been used for the simulation: Young’s modulus E = 24.8 GPa, Poisson’s ratio ν = 0.18,

tensile strength tu = 3.0 MPa and fracture energy Gc = 0.15 N/mm. The thickness of the specimen

is 152mm. Plane stress conditions have been assumed.

The beam has initially been discretised using linear NURBS with control points

(0, 0), (458, 0), (519, 0), (916, 0), (0, 82), (458, 82), (519, 82), (916, 82), (0, 306), (336, 306),
(397, 306) and (916, 306), see Figure 19b. The corresponding knot vectors are

(

Ξ0
1, Ξ

0
2

)

=
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(a) Bézier element discretisation of the beam (b) predicted crack path

Figure 20. Bézier element discretisation and predicted crack path.

([

0 0 0.5 519

916
1 1

]

, [0 0 0.5 1 1]
)

, and uniform weight factors w = 1 have been used initially. Next,

order elevation is used to increase the polynomial degree to p, q = 3, and knot insertion is employed

to introduce more elements in the physical domain, see Figure 20a. The initial, traction-free notch

(green line in Figure 20a) is enforced by meshline insertions.

To properly capture the post-peak regime, an arc-length method has been employed [60], in

which the Crack Mouth Sliding Displacement (CMSD) has been taken as control parameter. Line

searches have been used to improve the convergence behaviour of the Newton-Raphson iterative

nonlinear solver [64, 65]. When employing line searches within the arc-length method, we consider

the following changes in the standard arc-length method:

Uj
i+1 = Ui + ηji+1

(

δUI
i+1 + δλji+1δU

II
i+1

)

(46)

where i is the iteration number in the arc-length method, j is the iteration number in the line search

method, U is the displacement vector, and δU represents the incremental displacement vector:

δUI
i+1 = K−1

i

(

λj−1

i+1Fs − Fj−1

int,i+1

)

δUII
i+1 = K−1

i Fs (47)

with Fs denoting a normalised load vector, and K is the stiffness matrix. In Equation (46), η denotes

the line search scale factor, δλ is the load increment factor in the arc-length method, which is

obtained as

δλji+1 = −
δU I,s

i+1,1 − δU I,s
i+1,2

δU II,s
i+1,1 − δU II,s

i+1,2

and λji+1 = λj−1

i+1 + ηji+1δλ
j
i+1 (48)

where δU I,s
i+1,1 is the sliding displacement component in δUI

i+1, and 1 and 2 are the control point

indices at the crack mouth.

(a) load-CMSD curve (b) load-displacement curve at the top middle loading point

Figure 21. Force-displacement curves for the SEN beam.
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(a) σ1 contour plot for CMSD = 0.071mm (b) σ1 contour plot for CMSD = 0.083mm

Figure 22. Stress distribution for different load steps. The displacements have been amplified by a factor
100.

The response curve is given in terms of the load vs CMSD, and as the load vs the displacement at

the top middle loading point, see Figure 21. The results agree well with the experimental results [59].

The stress contours for different load levels is shown in Figure 22. The crack propagates gradually

with the increase of the CMSD. Like for the L-shaped specimen the effect of the reparamaterisation

on the mesh in the physical domain is clearly visible upon crack propagation. A comparison of

the computed crack path and the experimental results (shaded in gray) is given in Figure 20b.

The numerical result agrees well with the experimental observations. The snap-back behaviour in

the load-displacement curves at the top middle loading point is also consistent with results in the

literature [60, 62, 63].

(a) geometry (in mm) and boundary conditions (b) Bézier element discretisation of the beam

Figure 23. Double-Edge-Notched (DEN) tension-shear test. The solid lines in (a) represent crack paths
obtained in one of the experiments.

8. LIMITATIONS AND DISCUSSION

The adaptivity and enhanced flexibility that is introduced by Locally Refined T-splines is highly

beneficial for the discrete simulation of crack propagation in isogeometric analysis compared to

the use of NURBS and even T-splines. While NURBS can only be used along predefined paths

or physical interfaces, a freely propagating (cohesive) crack necessitates the use of T-splines as a

propagating discrete crack necessarily breaks the tensor-product structure of a NURBS mesh [19].
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Nevertheless, care has to be taken because the initial mesh lay-out has to be such that T-junctions

can be made throughout the entire propagation of the discrete crack. Local adaptivity, enabled by

the use of Locally Refined T-splines, obviates this drawback.

Yet, also LR T-splines have some limitations, and we will illustrate them at the hand of a tension-

shear test [66]. Figure 23a shows a Double-Edge Notched (DEN) beam test geometry and boundary

conditions. The specimen is first subjected to a prescribed horizontal displacement u1 until a certain

level of the shear force F1. Subsequently, a vertical load F2 was applied on the top edge, while

keeping F1 constant.

(a) possible crack path for the discretisation in Figure 23b (b) possible Bézier element discretisation

Figure 24. Predicted crack paths for different Bézier element discretisations. Here, the blue lines in (a) and
purple lines in (b) are isoparametric lines, which should be aligned with the crack path in the process of

crack propagation.

To discretise the domain, we can, in principle, employ a single patch defined by the T-mesh of

Figure 23b [19], which shows the Bézier element discretisation. For this mesh, the possible crack

paths will be restricted due to the fixed position of the control points A, B, C and D (Figure 24a).

Indeed, the cracks will nucleate at the control points B and C. For that, a discontinuity should be

inserted through B and C in the parameter domain and hence, in the physical domain. The crack

will subsequently propagate and extend per element. To replicate the crack path, we must insert a

discontinuity in the parameter domain, so that the crack is presented in the physical domain. For

this, the isoparametric lines l1 and l2 must be lifted, see Figure 24a. This is, however, not possible

because the control points A and D cannot be moved since the geometry of the specimen must be

preserved.

Another possibility would be to divide the domain into five patches, see Figure 24b. In this

figure, there are four C0 lines along the boundaries of different patches. Moreover, patch 1 is

discretised with inclined lines in order to align the initial mesh with the crack path, see Figure 24b.

The disadvantage of this discretisation is that during crack propagation, it is difficult to maintain

conforming meshes due to the reparameterisation, see the boundaries 1 and 2 in Figure 24b.

9. CONCLUDING REMARKS

The use of splines as basis functions instead of Lagrange polynomials in finite element analysis has

advantages, for instance when it comes to the higher continuity that spline functions bring along.

This property can be exploited advantageously when discretising higher-order differential equations,

which are usually difficult to solve in an elegant and robust manner when using traditional finite

element methods. But it has also advantages for low-order differential equations, since derived

quantities like stresses no longer become C−1-continuous at ’element’ boundaries, which vastly

improves the accuracy of their computation. In particular the use of B-splines and NURBS in
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isogeometric analysis is very convenient, since they allow for an easy way to increase the order

of continuity, also in a two and three-dimensional context.

Likewise, the decrease of the order of continuity can be achieved easily, in the parameter space,

which is elegant and avoids full remeshing strategies as in finite elements when cracks and other

discontinuities have to be simulated. Particularly for cracks that propagate along a predefined

interface, the procedure is straightforward, since the tensor-product structure, which characterises

two and three-dimensional formulations of B-splines and NURBS, does not have to be disturbed.

This is different for propagating cracks for which the crack path is not predefined. Then, spline

technologies which break the tensor-product structure of NURBS must be utilised, like T-splines

[19].

Nevertheless, care must also be taken in the latter case, since the use of T-splines implies that it is

possible to form T-junctions. When the crack path is such that the initial T-mesh does not allow for

this, further propagation cannot be simulated. We have shown that adaptivity, enabled by Locally

Refined T-splines (LR T-splines) alleviates this issue. LR T-spline basis functions can represent a

crack discontinuity by meshline insertions until C−1-continuity is attained. The technology has

been described in detail, including algorithmic and implementation aspects for crack segment

insertions and reparameterisation of the domain after crack insertions. Two benchmark cases from

the literature demonstrate the dynamic refinement ability of LR T-splines to be suitable for the

analysis of discrete crack propagation.

Since a new crack segment is first inserted in the parameter domain and then reparameterised

in the physical domain, the initial T-mesh should still be sufficiently aligned with the final crack

path. Otherwise, the insertion of a crack segment can be restricted due to the nearness of a domain

boundary. The example of a Double-Edge Notched Specimen (DEN) has been used to demonstrate

the limitations. Remeshing in the physical domain is an alternative approach to achieve alignment

between the initial T-mesh and the final crack path, as is the use of Powell-Sabin B-splines, which

are based on triangles, and for which standard remeshing strategies in the physical domain can be

used [23, 67].
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