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The relationship between 
transgenerational acquired 
resistance and global DNA 
methylation in Arabidopsis
Joost H. M. Stassen ͷ, Ana López ͷǡ, Ritushree Jain ͷǡ, David Pascual-Pardoͷ, 

Estrella Luna  ͷǡͺ, Lisa M. Smith  ͷ & Jurriaan Ton  ͷ

Progeny of heavily diseased plants develop transgenerational acquired resistance (TAR). In Arabidopsis, 

TAR can be transmitted over one stress-free generation. Although DNA methylation has been 

implicated in the regulation of TAR, the relationship between TAR and global DNA methylation 

remains unknownǤ Hereǡ we characterised the methylome of TARǦexpressing Arabidopsis at diơerent 
generations after disease exposure. Global clustering of cytosine methylation revealed TAR-related 

patterns in the F generationǡ but not in the Fͷ generationǤ The majority of diơerentially methylated 
positions ȋDMPsȌ occurred at CG context in gene bodiesǤ TAR in F progeny after one initial generation 
of diseaseǡ followed by two stressǦfree generationsǡ was lower than TAR in F progeny after three 
successive generations of diseaseǤ This diơerence in TAR eơectiveness was proportional to the 
intensity of diơerential methylation at a subǦset of cytosine positionsǤ Comparison of TARǦrelated 
DMPs with previously characterised cytosine methylation in mutation accumulation lines revealed 

that ancestral disease stress preferentially acts on methylation-labile cytosine positions, but also 

extends to methylation-stable positions. Thus, the TAR-related impact of ancestral disease extends 

beyond stochastic variation in DNA methylation. Our study has shown that the Arabidopsis epigenome 

responds globally to disease in previous generations and we discuss its contribution to TAR.

Due to their lack of mobility, plants rely heavily on phenotypic plasticity to adapt to environmental stress, includ-
ing pests and diseases. Although the plant innate immune system provides full protection against the major-
ity of potentially harmful microbes1, the level of disease pressure in natural environments can vary over time. 
Accordingly, plants have evolved the ability to adjust the sensitivity of their immune system in accordance to 
previous exposures to biotic stress. For instance, plants respond more efectively to pathogen attack ater previ-
ous exposure to disease or other defence-eliciting signals2. his heightened immune responsiveness, or ‘defence 
priming’, results in an increased level of basal resistance, which is commonly referred to as ‘induced resistance’ 
or ‘acquired resistance’. Despite the beneit of increased protection, acquired resistance is associated with costs, 
such as reductions in plant growth and seed set3. Furthermore, acquired resistance against biotrophic pathogens, 
which relies on salicylic acid (SA)-dependent signalling, can reduce defence against necrotrophic pathogens and 
herbivores, which is controlled by jasmonic acid (JA)-dependent signalling4. hus, acquired resistance gears the 
plant to respond more efectively against attackers with a similar infection strategy5,6, but this adaptation can be 
at the expense of resistance against other attackers7.

Acquired resistance can be efective over various time-scales, ranging from days to the lifetime of the individ-
ual. Furthermore, some acquired resistance responses can be transmitted to following generations8–10. Because 
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this transgenerational acquired resistance (TAR) can occur in isogenic plant populations ater only one generation 
of biotic stress, epigenetic mechanisms were proposed to underlie this phenomenon11. Indeed, TAR has recently 
been linked to epigenetic changes, including DNA methylation and histone modiications8,12,13. Furthermore, 
stress-inducible epigenetic modiications can develop within one generation and are oten reversible, enabling 
ine-tuning of adaptive phenotypes in a changeable environment. Accordingly, epigenetic mechanisms ofer an 
ecologically plausible mechanism of TAR, allowing plants to transmit defence traits to their progeny, without 
irreversibly ixing the resistance as a genetic trait, along with the associated costs11,14.

In order to provide an ecological beneit, TAR should be stress-inducible, inheritable and reversible in the 
absence of stress. Various epigenetic mechanisms, including histone modiications and DNA methylation, have 
been described as being stress-inducible, reversible and capable of modifying resistance phenotypes8,9,12,13,15–20. 
However, only DNA methylation of cytosines is known to be transmitted faithfully through meiosis and mul-
tiple generations21–23. DNA methylation and histone modiications are closely interrelated, which is evidenced 
by studies showing that mutations afecting the one modiication oten also afect the other24–26. his link has 
also been reported for TAR in Arabidopsis. For instance, mutants in RNA-directed DNA methylation (RdDM) 
show histone modiications at selected defence gene promoters that also occur in TAR-expressing progeny from 
disease-exposed wild-type plants8,17. Further support for a role of DNA methylation in TAR comes from the ind-
ing that disease exposure induces widespread within-generation changes in cytosine methylation15, which can 
alter the responsiveness and expression of defence genes19. Moreover, mutants in DNA (de)methylation machin-
ery are afected in TAR13,18, even though these mutants are not impaired in the expression of within-generation 
systemic acquired resistance (SAR)13,18. Hence, mutations afecting DNA (de)methylation do not directly impair 
plant defence signalling, but afect the transmission and/or establishment of TAR.

DNA methylation in plants occurs at three sequence contexts: CG, CHG and CHH, where H is an A, T or C 
nucleotide. Disease stress has been reported to induce genome-wide changes in DNA methylation at every sequence 
context15. he maintenance and stability of these types of DNA methylation over cell division is controlled by difer-
ent mechanisms. Methylation at CHH sites is relatively unstable, because it requires constant production of siRNAs 
and activity of the RdDM pathway to ensure on-going de novo methylation27. Conversely, CHG and CG methylation 
can be maintained independently of small RNAs, because the methylated cytosines can be copied directly from par-
ent to daughter strand. In the case of CHG methylation, this process is mediated by a feedback loop that involves the 
histone methyltransferase KYP and the DNA methyltransferase CMT324. CG methylation is maintained by MET1 
and is considered to be the most stable DNA methylation context over cell division and meiosis27. his explains why 
the majority of previously reported heritable epi-mutations occur at CG sites28–31. Interestingly, salt stress has been 
reported to increase changes in heritable CG DNA methylation in genic regions of Arabidopsis31, suggesting that 
environmental stress can accelerate the occurrence of epi-mutations in coding gene sequences.

Despite evidence for a role of DNA methylation in TAR, the global methylome of TAR-expressing plants has 
never been characterised. Furthermore, whilst TAR has been reported to persist over one stress-free generation8, 
the transgenerational stability of disease-induced changes in DNA methylation remains unknown. Here, we have 
addressed these questions by determining global DNA methylation patterns in TAR-expressing plants at diferent 
generations ater initial disease exposure.

Results
DNA methylation patterns and disease resistance in Fͷ progeny of Pseudomonas syringae-stressed 
plants. To study the relationship between DNA methylation and TAR, we irst analysed patterns of global DNA 
methylation in TAR-expressing plants at the irst (F1) generation ater disease exposure. Background variation due 
to potential carry-over efects from stress in previous generations were minimised by harvesting seed from a single 
individual plant that had been propagated under stress-free conditions over at least three generations. From this seed 
stock, control and TAR-expressing lines were generated by repeated inoculations with either the mock solution (10 mM 
MgSO4), or the solution containing Pseudomonas syringae pv. tomato DC3000 (Pst), respectively. Repetitive inocula-
tions with Pst have previously been shown to elicit TAR in Arabidopsis through priming of SA-dependent defences8. 
To conirm TAR in the current experiment, F1 progenies from two mock-inoculated plants and two Pst-inoculated 
plants were examined for resistance against the biotrophic pathogen Hyaloperonospora arabidopsidis (Hpa; Fig. 1A), 
which is taxonomically unrelated to Pst, but similarly resisted by SA-dependent defences32,33. As observed previously8, 
progeny from the two Pst-inoculated plants developed higher levels of resistance to Hpa than progeny from the two 
mock-inoculated plants (Fig. 1B).

To assess the impact of TAR on global DNA methylation, triplicate samples from progeny of all four plants 
were subjected to whole-genome bisulite sequencing. Each replicate consisted of a pool of four similarly aged 
leaves from 10 healthy plants. Hence, one sample represents the average cytosine methylation within a popula-
tion of 10 plants. A single replicate of one of the Pst-treated lines was discarded from further analyses because 
it’s sequencing coverage and methylome pattern difered signiicantly from all other samples. Cluster analysis 
of cytosine methylation (Pearson correlation, Ward) failed to group replicate samples within each progeny line, 
nor did it group progenies by ancestral treatment. his lack of global methylation patterning was apparent at all 
sequence contexts (Fig. 1C). Although principle component analysis (PCA) of CG methylation showed weak 
clustering of replicate samples within each line, it failed to separate mock-treated lines from Pst-treated lines 
(Fig. S1A). Furthermore, PCA of CHG and CHH failed to reveal TAR-related clustering of samples (Fig. S1A). 
Together, this indicates that a potential impact of paternal disease stress was either absent, or masked by sponta-
neously occurring variation in cytosine methylation.

To further examine TAR-related changes in DNA methylation, we selected for diferentially methylated positions 
(DMPs) that show a statistically signiicant diference in average cytosine methylation between all samples from the 
Pst-inoculated lines and all samples from the mock-inoculated lines, using a maximum false discovery rate of 5% and 
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over-dispersion correction. A total of 1,267 diferentially methylated positions (DMPs) were detected with approxi-
mately similar numbers of hyper- and hypo-methylated positions (Fig. 1D). Almost all DMPs occurred in CG context 
(96.3%). Furthermore, the majority of these DMPs occurred at genic sequences.

DNA methylation patterns and disease resistance in F progeny of Pst-stressed plants. he 
transgenerational efects of salt stress on DNA methylation have been reported to become more pronounced 
ater multiple generations of stress34. Taking this into account, a new set of independent lines were created that 
spanned three generations of disease exposure (Fig. 2A). Progenies of this F3 experiment were tested for TAR 
against Hpa and subjected to whole-genome bisulite-sequencing analysis. To shorten the generation time in this 
experiment, plants were grown under long day conditions, resulting in earlier lowering times. As a consequence, 
plants could only be inoculated three times per generation, resulting in generally lower disease levels than previ-
ous experiments, where plants were inoculated ive to six times8. Accordingly, the strength of the TAR response 
between both Pst-exposed lines was more variable. Whereas F3 progeny from the irst Pst-exposed line showed 
a relatively weak TAR response, which was statistically signiicant compared to progeny from one mock-treated 

Figure 1. Global patterns of DNA methylation in F1 progenies expressing transgenerational acquired resistance 
(TAR) ater one generation of disease stress. (A) Ancestry of the analysed F1 progenies. Shown are replicate 
lines that for one generation had been mock-treated (blue circles) or exposed to disease stress by Pseudomonas 
syringae pv. tomato (Pst; red circles). Bars of the same colour at the bottom of the scheme indicate replicate 
populations within each line (n = 10 plants) used for bisulite-sequencing analysis. (B) Quantiication of 
TAR in the four diferent F1 lines. Shown are relative abundances of leaves from 3 week-old plants over four 
distinct Hyaloperonospora arabidopsidis (Hpa) colonisation classes, quantifying selective pathogenesis-related 
marks during interaction with the oomycete. Class I: no hyphal colonisation; class II: hyphal colonisation 
but no sporulation; class III: hyphal colonisation with formation of conidiophores; class IV: extensive hyphal 
colonisation with conidiophores and oospores. Darker colours indicate increasing degrees of Hpa colonisation. 
Diferent letters above the bars indicate statistical diferences (Fisher’s exact, all-versus-all, FDR-adjusted; 
p ≤ 0.05). (C) Hierarchical clustering (Pearson correlation, Ward) of cytosine methylation proiles at CG, CHG 
and CHH sequence contexts. Lines are colour-coded to match the line annotations in panel A. Letters indicate 
the three replicate population samples within a line. Numbers at edges indicate AU (approximately unbiased) 
and BP (bootstrap probability) p-values (%), respectively. Conidence values are only shown for edges where 
AU or BP p-values are < 100. (D) Number of diferentially methylated positions (DMPs) mapping to genomic 
features. DMPs were deined as population diferences that were statistically signiicant between all replicate 
samples from both mock-inoculated lines and all replicate samples from both Pst-treated lines (Logistic 
regression; q-value < 0.05). Features are deined as transposon, gene (including 5′ UTR, intron, exon and 3′ 
UTR, where deined) and intergenic (TAIR 10). Top panel: hyper-methylated DMPs; Bottom panel: hypo-
methylated DMPs.
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line only, F3 progeny from the second Pst-exposed line showed a stronger TAR response, which was statistically 
signiicant compared to F3 progeny from both mock-treated lines (Fig. 2B).

To assess global patterns of DNA methylation, triplicate samples per F3 progeny, each consisting of a pool of 
four similarly aged leaves from 10 healthy plants, were collected for whole-genome bisulite sequencing. Global 
analysis of CG methylation patterns by either Pearson correlation or PCA revealed that samples within progeny 
lines were highly similar (Figs 2C and S1B). Furthermore, in contrast to F1 progeny, F3 lines exposed to Pst 
treatment grouped together for CG methylation, suggesting a global impact of Pst stress in previous generations 
(Figs 2C and S1B). Interestingly, these global clustering patterns were not evident for CHG and CHH methyl-
ation (Figs 2C and S1B). Of the 2,941 DMPs at CG context, 1,509 were hyper-methylated, whereas 1,432 were 
hypo-methylated (Figs 2D and S2; Table S2). As with our F1 lines, diferential methylation between the control 
and stress-exposed F3 lines predominantly occurred at CG context (99.1%) and genic sequences.

The endurance of disease stress in previous generations is proportional to the level of TAR and 
diơerential CG methylation in F progenyǤ Previously, we found that TAR can be transmitted over one 
stress-free generation into the F2 generation8. To investigate whether TAR and heritable Pst-induced changes 
in CG DNA methylation can be transmitted over two stress-free generations, we propagated the F2 lines from 
our previous study8 with one additional generation under similar (short-day) conditions. his resulted in one 
control line that had been exposed for at least three generations to stress-free conditions (MMM), one line that 
had been exposed to high levels of Pst stress in the irst generation and kept free of biotic stress for two succes-
sive generations (SMM), and one line that had been exposed to high Pst stress over all three generations (SSS; 
Fig. 3A). Compared to the irst F3 experiment, levels of disease stress in this second F3 experiment were higher, 
since plants had been inoculated at least ive times per generation with Pst. Taking the MMM line as a control 

Figure 2. Global DNA methylation in F3 progenies expressing TAR ater three successive generations of 
disease stress. (A) Ancestry of the F3 progenies analysed (irst F3 experiment). Shown are replicate lines that 
for three successive generations had been mock-treated (blue circles) or exposed to disease stress by Pst (red 
circles). Bars of the same colour at the bottom of the scheme indicate replicate populations within each line 
(n = 10 plants) used for bisulite-sequencing analysis. (B) Quantiication of TAR in the four diferent F3 lines. 
Shown are relative abundances of leaves from 3 week-old plants over four distinct Hpa colonisation classes. 
For details, see Fig. 1B. Diferent letters above the bars indicate statistical diferences (Fisher’s exact, all-versus-
all, FDR-adjusted; p ≤ 0.05). (C) Hierarchical clustering (Pearson correlation, Ward) of cytosine methylation 
proiles at CG, CHG and CHH sequence contexts. Lines are colour-coded to match the line annotations in 
panel A. Identical letters indicate replicate population samples within a line. Numbers at edges indicate AU 
(approximately unbiased) and BP (bootstrap probability) p-values (%), respectively. Conidence values are only 
shown for edges where AU or BP p-values are < 100. (D) Number of DMPs mapping to genomic features. For 
details, see Fig. 1D. Top panel: hyper-methylated DMPs; Bottom panel: hypo-methylated DMPs.
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for TAR, we observed increased resistance in F3 progeny in both the SMM and the SSS lines (Fig. 3B). However, 
TAR in SMM progeny was statistically lower than TAR in SSS progeny (Fisher’s exact test, p < 0.05), suggesting 
that exposure to Pst over multiple generations results in enhanced TAR, or that the level of TAR decreases over 
stress-free generations.

As for the previous experiments, triplicate samples from each line, each consisting of a pool of four similarly 
aged leaves from 10 plants, were subjected to whole-genome bisulite sequencing. Consistent with the global 
methylation patterns of the irst F3 experiment (Fig. 2C), Pearson correlation analysis and PCA of cytosine meth-
ylation showed relatively high similarity between replicate samples within lines at CG context, which was not 
evident at CHG and CHH contexts (Figs 3C and S1C). Moreover, the clustering patterns for CG methylation 
showed diferences according to ancestral stress treatment, whereas such clustering was absent for CHG and 
CHH methylation (Figs 3C and S1C). he correlative distance between SMM and SSS lines was smaller than the 
distance between the MMM line and the SMM or SSS line (Fig. 3C). While this clustering pattern could be caused 

Figure 3. Global patterns of DNA methylation in F3 progenies expressing TAR ater one initial generation or three 
successive generations of disease stress. (A) Ancestry of the F3 progenies analysed (second F3 experiment). Shown 
are lines that been mock-treated (blue circles) for three successive generations (MMM lines), exposed to one initial 
generation of Pst stress (red circles) followed by two mock-treated generations (SMM), or exposed to three successive 
generations of Pst stress (SSS). Blocks of the same colour the bottom of the scheme indicate replicate populations 
(n = 10 plants; grey squares: MMM, orange squares: SMM, red squares: SSS) within each line used for bisulite-
sequencing analysis. (B) Quantiication of TAR in the three diferent F3 lines. Shown are relative abundances of leaves 
from 3 week-old plants over four distinct Hpa colonisation classes. For details, see Fig. 1B. Diferent letters above 
bars indicate statistical diferences (Fisher’s exact, all-versus-all, FDR-adjusted; p ≤ 0.05). (C) Hierarchical clustering 
(Pearson correlation, Ward) of cytosine methylation proiles at CG, CHG and CHH sequence contexts. Lines are 
colour-coded to match the line annotations in panel A. Letters indicate replicate population samples within a line. 
Numbers at edges indicate AU (approximately unbiased) and BP (bootstrap probability) p-values (%), respectively. 
Conidence values are only shown for edges where AU or BP p-values are < 100.
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by a gradual loss of Pst-induced DMPs in the SMM line or an additive efect of multi-generation Pst exposure on 
DMPs in the SSS line, part of this variation may also be caused by spontaneously occurring variation in CG meth-
ylation over multiple generations. Previous studies of Arabidopsis mutation accumulation (MA) lines have shown 
that changes in cytosine methylation can occur spontaneously over generations in the absence of any introduced 
stimuli29. Like the TAR-related DMPs (Figs 1D, 2D and 4A), these labile positions occur predominantly in CG 
context29. Since MMM plants had been separated from SMM and SSS plants for three generations, whereas SMM 
and SSS plants had only been separated for two generations (Fig. 3A), part of the observed clustering in this 
experiment could be a relection of spontaneously occurring changes in CG methylation over generations.

To diferentiate between Pst-induced changes and spontaneously occurring changes in DNA methylation, sub-
sequent statistical analyses focused on the quantitative diferences in CG methylation between the three progenies 
(Figs 4A and S3; Tables S2-S3). As observed in the irst F3 experiment (Fig. 2D), the majority of statistically signif-
icant DMPs in comparison to the MMM line occurred in CG context within genic regions (Fig. 4A). Furthermore, 
of all 35,136 hyper-methylated DMPs, 15,703 (44.7%) were statistically signiicant in both the SMM line and SSS 
line. he hypo-methylated DMPs revealed a similar level of overlap: of all 41,717 CG DMPs, 17,083 (40.9%) were 
statistically signiicant in both SMM and SSS (Fig. 4B). Notably, the level of hyper- or hypo-methylation within 
the group of shared DMPs was stronger in SSS plants than in SMM plants (Fig. 4B). As is further quantiied in 
Fig. 4C, 3,269 hypo- and 4,981 hyper-methylated shared DMPs were more pronounced (≥20%points diference) 
in SSS plants, whereas only 201 hypo- and 201 hyper-methylated DMPs were more pronounced in SMM plants. 
hese results indicate that the duration of disease exposure in previous generations has a dose-dependent impact 
on the level of diferential CG DNA methylation in populations of F3 plants. Furthermore, this quantitative 

Figure 4. Genomic features and levels of hyper- and hypo-methylated DMPs in F3 progenies ater one initial or 
three successive generations of disease stress. (A) Number of DMPs mapping to genomic features. For details, 
see Fig. 1D. Top panel: hyper-methylated DMPs; Bottom panel: hypo-methylated DMPs. (B) Levels of hyper- 
and hypo-methylation for DMPs in SMM and SSS progenies. Box plots show diferences in percentage points 
between the MMM line and the SMM or SSS line. Shown are DMPs that are unique for the SMM line (let), 
unique for the SSS line (right), or shared between the SMM and SSS line (middle). Top panel: hyper-methylated 
DMPs; Bottom panel: hypo-methylated DMPs. (C) Comparison of the level of diferential methylation for 
shared DMPs between SMM and SSS progenies. Correlation plots present the percentage point diference of 
the SSS line (y-axis) against that of the MMM line (x-axis). Top panel: hyper-methylated DMPs; Bottom panel: 
hypo-methylated DMPs. To aid interpretation, data points are colour-coded according to the relative density of 
data points. Each data point represents a single DMP (n = 15,703 and 17,083 for hyper- and hypo-methylated 
DMPs, respectively).
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diference in CG methylation cannot solely be explained by spontaneously occurring variation in CG methyla-
tion over generations.

The relationship between TAR-related CG methylation and spontaneously occurring variation 
in CG methylation. To examine the relationship between TAR and spontaneously occurring DNA methyla-
tion, we compared the ancestry of all F1 and F3 lines to the correlation structure of all CG positions from all lines 
and samples used in this study (Fig. S4). his analysis revealed a general resemblance between the overall pedigree 
structure and the correlation structure of the CG methylation tree. his indicates that the dominant variation in 
DNA methylation between the lines is determined by spontaneously occurring variation. However, Pst-exposed 
lines from the second F3 experiment, in which plants had been exposed to relatively high levels of disease stress 
(SSS and SMM), clustered widely apart from all other lines, including the corresponding control MMM line 
(Fig. S4). By contrast, samples from the MMM control line of this second F3 experiment clustered closer to 
samples from the irst F3 experiment, where lines had been exposed to either stress-free conditions, or relatively 
moderate levels of disease stress. Since the MMM line had been separated for the same number of meiotic events 
(8) from all other F3 lines, this discrepancy between pedigree structure and CG correlation pattern suggests that 
high levels of disease stress alter the rate of CG epi-mutation between the F1 and F3 generation.

To further explore the relationship between TAR and spontaneously occurring variation in CG methyla-
tion, we compared the set of shared TAR-related DMPs from the second F3 experiment (Fig. 4B,C) to previ-
ously reported methylation-labile and methylation-stable positions from Arabidopsis MA lines (MA-DMPs and 
MA-NDMPs, respectively)29. he core set of TAR-related DMPs contained more labile MA-DMPs than stable 
MA-NDMPs (Fig. S5), reinforcing the notion that TAR preferentially acts on labile CG positions. Furthermore, 
using spontaneously occurring DMPs between the control lines in our irst F3 experiment as a comparator (Mock 
1 versus and Mock 2; Fig. 2), we detected a statistically signiicant shit in the distribution of hypo-methylated 
TAR-DMPs towards labile MA-DMPs, reinforcing the notion that TAR alters spontaneous epimutation rates at 
labile positions.

To examine whether the global TAR-related changes in CG methylation are determined by methylation-labile 
positions only, or whether it also targets methylation-stable positions, we re-analysed CG correlations for all three 
experiments, using only labile MA-DMPs or stable MA-NDMPs from the MA lines29. Pearson correlation analysis 
of the labile MA-DMPs revealed clustering according to ancestral treatment for all experiments, although this 
pattern was statistically less robust in the F1 experiment and the irst F3 experiment (AU p-value 0.88 and 0.75 
respectively; Fig. 5A–C). Correlation analysis of the stable MA-NDMPs showed loss of clustering of F1 samples 
by treatment (Fig. 5D). Conversely, the clustering by treatment was still evident for samples of the irst F3 experi-
ment, which was of similar statistical robustness as the clustering of labile MA-NDMPs (AU p-value 0.63; Fig. 5E). 
Furthermore, the clustering of samples by treatment and line was still highly signiicant in the second F3 exper-
iment (Fig. 5F). hus, the TAR-related pattern of CG methylation in the F3 generation is not solely determined 
by methylation-labile positions. his indicates that the impact of ancestral disease stress on DNA methylation 
extends beyond methylation-labile CG positions only.

TAR-related patterns of DNA methylation are not consistent across regions. Due to the spon-
taneous variation in methylation of single cytosines, it is possible that our positional analysis had relatively poor 
statistical discriminative power to detect TAR-related patterns of DNA methylation. To address this possibility, 
we examined whether regional patterns of DNA methylation yield better correlations with ancestral disease stress 
and TAR. To obtain a global clustering pattern of regional DNA methylation, methylation data across 100 bp 
windows of the genome were summarised and subjected to cluster analysis. his regional approach did not clus-
ter replicate samples by ancestral treatment in any methylation context, with the exception of the lines from the 
second F3 experiment in CG context (Fig. S6). We then searched for diferentially methylated regions (DMRs) 
between control and Pst-exposed lines. In line with the results of the global clustering, we found very low num-
bers (<10) of potential DMRs in the F1 and irst F3 experiment. he exception was our comparison between lines 
from the second F3 experiment, where we identiied 121 and 163 hyper- and hypo-methylated DMRs between 
SMM and SSS lines, respectively (Table S8). he overlap between this experiment and our irst F3 experiment was 
a single hypo-methylated DMR in AT1G23400, which encodes a homologue of the maize chloroplast splicing 
factor CAF2. his gene plays no known role in plant defence, and it is also not induced during infection35. Overall, 
these results indicate that the TAR-related changes in DNA methylation are not concentrated within distinct 
regions. his is consistent with our inding that the global patterns of TAR-related DNA methylation in F3 lines 
occurs at GC positon in gene bodies (Figs 2D and 4A), which typically show more dispersed patterns of cytosine 
methylation in comparison to methylation of TEs36.

Global impacts of TAR on CG methylation in F progeny are determined by a relatively small 
set of DMPs. he clustering patterns of positional CG methylation in both F3 experiments point towards 
a global impact of disease stress on gene body methylation. However, it remains unclear to what extent these 
global patterns are determined by a conserved set of stress-responsive DMPs. To address this, we examined the 
consistency of Pst-induced CG DMPs between the irst and second F3 experiment, which were conducted under 
diferent environmental growth conditions. To this end, the 2,941 CG DMPs from the irst F3 experiment with 
relatively low levels of applied disease pressure were compared to the 32,786 shared CG DMPs from the sec-
ond F3 experiment, in which plants had been exposed to relatively high levels of disease pressure. Of the 1,509 
hyper-methylated DMPs from the irst experiment, only 231 were identical with the 15,703 hyper-methylated 
DMPs from the second F3 experiment (15.3% and 1.5% of the individual sets, respectively). Similarly, of the 1,432 
hypo-methylated DMPs from the irst F3 experiment, only 182 showed overlap with the 17,083 hypo-methylated 
CG DMPs from the second F3 experiment (12.7% and 1.1% of the individual sets, respectively). It thus appears 
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that the majority of TAR-related CG DMPs in the F3 generation varies between independent lines and exper-
iments. However, considering the dose-dependent relationship between ancestral disease stress and the 
level of diferential methylation at selected positions (Fig. 4B,C), it is possible that this low overlap in DMPs 
between experiments is caused by diferences in disease pressure between the irst and second F3 experiment. 
Consequently, levels of diferential methylation for many of the shared SSS-SMM DMPs in the second (stronger) 
F3 experiment may have been too weak and/or variable in the irst (weaker) experiment to meet the statistical cri-
teria, even though they may have had a contribution to global TAR-related clustering in this experiment (Fig. 2C). 
To test this hypothesis, we examined whether the 32,786 shared DMPs from the second F3 experiment contribute 
to global TAR-related clustering of CG methylation in the irst F3 experiment (Fig. 6A). To this end, we removed 
the DMPs identiied in our second F3 experiment (shared between SSS and SMM lines) from all CG positions in 
the irst experiment, and re-clustered the remaining CG positions by Pearson correlation. he resulting correla-
tion tree no longer grouped the Pst-inoculated F3 populations together (Fig. 6B), indicating that the set of shared 
CG positions from the second F3 experiment determines the global patterning of TAR-related methylation in the 
irst F3 experiment. When the loci corresponding to the 43,760 unshared DMPs between SSS and SMM lines were 
removed from the analysis, the disruption of TAR-related clustering was substantially less pronounced (Fig. 6C). 
his in silica experiment suggests that a relatively small set of loci determines the global patterning of TAR-related 
CG methylation in F3 plants from independent experiments.

Genes carrying TAR-related DMPs do not show defence-related gene ontology enrichment.  
To examine the cellular and biological functions of the genes carrying the set of 32,786 shared DMPs, we per-
formed gene ontology (GO) term enrichment analysis. Comparison of genes with DMP-containing promoters 
against a genomic background of all genes revealed no statistically signiicant GO term enrichment (Tables S4 
and S6). By contrast, comparing genes with DMP-containing gene bodies against a genomic background revealed 
statistically enriched GO terms, including protein phosphorylation (hyper-methylated DMPs) and plasma 
membrane-localised components (hypo-methylated DMPs; Table S5 and S6). However, when assessing GO 
term enrichment of genes containing the 44,067 un-shared DMPs, which do not correlate with TAR (Table S7), 
similar enrichment levels were found for most of these terms (Table S6).his suggests that genes with certain 
GO-annotated functions are more likely to carry DMPs, regardless of their correlation to the TAR phenotype. 
Two exceptions were the GO term ‘glycosyl transferases’ (GO:0016757) and the GO term ‘carbon-nitrogen ligase 
activity with glutamine as amino-N-donor’ (GO:0016884), which were more strongly enriched in the gene set 
with shared TAR-DMPs (Table S6). Notably, none of these GO terms are related to plant defence, suggesting that 
changes in gene body methylation do not have a direct contribution to plant defence. Interestingly, however, genes 

Figure 5. he relationship between TAR-related CG methylation and spontaneously occurring variation 
in CG methylation. Shown are correlation clusters of all experiments (Pearson correlation, Ward), using 
previously reported labile (MA-DMP; A–C) or stable (MA-NDMP; D–F) cytosine positons between mutation 
accumulation lines of Arabidopsis29. Numbers at edges indicate AU (approximately unbiased) and BP 
(bootstrap probability) p-values (%), respectively. Conidence values are only shown for edges where AU or BP 
p-values are <100.
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carrying the set of shared TAR-DMPs from the second F3 experiment that overlap with stable NDMPs from the 
MA lines showed noticeably stronger GO term enrichment than the corresponding control group (i.e. genes 
carrying spontaneously occurring DMPs that overlap with MA-NDMPs; Fig. S5). he majority of these terms are 
related to epigenetic activity, such as DNA (de)methylation and DNA repair.

Discussion
Arabidopsis develops TAR ater recurrent exposure to biotic stress, which is associated with priming of induc-
ible defences and epigenetic mechanisms8–10. Since there is ample evidence that patterns of diferential DNA 
methylation can be transmitted faithfully over multiple generations8,9,12,13,15–19, DNA methylation is the most 
plausible mechanism by which TAR is transmitted. his is further supported by previous evidence that muta-
tions in DNA (de)methylation machinery afect TAR13. In the current study, we have examined global impacts 
of ancestral disease on DNA methylation in independent experiments. Our study provides four lines of evidence 
that ancestral disease inluences heritable DNA methylation in Arabidopsis. Firstly, global cluster analysis of CG 
methylation in independent F3 progenies showed greater correlation between lines based on ancestral stress 
treatment (Figs 2C and 3C). Secondly, the intensity of the shared DMPs in SSS and SMM progenies from a second 
F3 experiment correlated with the level of ancestral disease exposure (Fig. 4C), suggesting a dose-dependent 
efect of ancestral biotic stress. hirdly, the TAR-related pattern of CG methylation in the irst F3 experiments was 
disrupted ater removing the CG positions that showed diferential methylation in both SMM and SSS progeny of 
the second F3 experiment (Fig. 5B). Finally, comparison of TAR-related DMPs with previously characterised CG 
positions from mutation accumulation lines of Arabidopsis revealed that ancestral stress predominantly acts on 
methylation-labile CG positions, but extends to methylation-stable CG positions. Together, these results suggest 
that the TAR-related pattern of CG methylation in the F3 generation involves a stress-inducible component that 
is not solely determined by stochastic variation in CG methylation and that is reproducible between independent 
experiments under varying growth and stress conditions.

Previous within-generation studies have shown that exposure to biotic stress changes DNA methylation at 
transposable elements (TEs) at both CG and non-CG context13,19. Although our analyses revealed similarly sized 
changes in DNA methylation, it did not detect statistically robust diferences in non-CG methylation at TEs. In 
addition, it remains diicult to explain why we, and others34, failed to establish a correlation between phenotype 
and global DNA methylation patterns in F1 plants. Furthermore, the correlations between global DNA meth-
ylation patterns and TAR in F3 plants could only be detected in CG context, and the majority of diferentially 

Figure 6. Contribution of a core set of CG DMPs to global patterns of TAR-related DNA methylation in F3 
progeny. (A) Positive control. Hierarchical clustering (Pearson correlation) based on 1,976,908 CG positions 
from the dataset of the irst F3 experiment. See legend to Fig. 2C for details. (B) Hierarchical clustering (Pearson 
correlation) based on 1,944,112 CG positions from the dataset of the irst F3 experiment (Fig. 2) ater removal of 
32,786 shared CG DMPs between SMM and SSS from the second F3 experiment (Fig. 4C). (C) Negative control. 
Hierarchical clustering (Pearson correlation, ward method) based on 1,933,148 CG positions from the dataset 
of the irst F3 experiment (Fig. 2) ater removal of the 43,760 unshared DMPs between SSS and SMM from 
the second F3 experiment (SMM only + SSS only; Fig. 4C). For simplicity, a single Venn diagram is shown for 
hyper- and hypo-methylated positions combined. A DMP is considered shared if the diference with the mock is 
in the same direction in SMM and SSS. A small minority of DMPs (307; 0.4%) that are in opposite directions are 
considered as non-overlapping and counted in both non-overlapping sections.
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methylated CG sites occurred at gene bodies (Figs 1D, 2D and 4A). Although gene body methylation is common 
in Arabidopsis, where approximately one third of all genes display gene body methylation, its contribution to gene 
regulation and phenotype remains a matter of debate27,37. Whilst gene body methylation has been implicated in 
the regulation of gene transcription38, silencing of cryptic promoters39, and alternative gene splicing40,41, a recent 
study failed to identify a clear role of gene body methylation in the control of gene expression in Arabidopsis42. 
It has even been proposed that gene body methylation is a consequence of gene expression and/or previous epi-
genetic events, without having a direct regulatory impact on gene transcription43. Accordingly, it is possible that 
the global patterns of TAR-related CG methylation in F3 plants are an indirect consequence of ancestral disease 
stress, which do not directly contribute to TAR. his is supported by our GO term analysis of TAR-DMP-carrying 
genes, which failed to detect an enrichment of plant defence-related terms (Table S6). hus, whilst the signature 
of ancestral disease stress on CG methylation may mark TAR in F3 plants, it does not necessarily contribute to 
the TAR phenotype itself.

If the global patterns of TAR-related CG methylation in F3 plants do not cause TAR, then what epigenetic 
mechanisms are responsible for TAR? Since mutations in DNA (de)methylation machinery deregulate TAR13, we 
propose that DNA methylation is still responsible for TAR, but that the causal changes in DNA methylation occur 
in regions that were insuiciently covered by our method of bisulphite sequencing. Due to the relatively short 
sequencing reads generated by bisulite-sequencing (50–126 nt), its accuracy in detecting diferential methyla-
tion in repetitive DNA regions, such as TEs, is limited. his would also explain why we failed to detect consistent 
TAR-related changes in regional DNA methylation (Fig. S5). We estimate that ~30% of annotated TEs in the refer-
ence genome could not be analysed reliably for methylation status, because sequence reads could not be mapped 
unambiguously in all samples. his low coverage was particularly pronounced at the (peri)centromeric regions 
(Fig. S7), which are highly active in terms of DNA methylation and heterochromatin formation44,45. Biotic stress 
has been shown to reduce methylation levels in these regions46, and changes in methylation in these regions have 
been reported to control complex plant traits47,48. Accordingly, we cannot exclude that our bisulite sequencing 
analysis has missed relevant changes in (peri)centromeric DNA methylation, and that the observed changes in 
CG gene body methylation in the F3 generation relect an indirect response to ancestral disease stress that devel-
ops over subsequent generations.

Gene body methylation at symmetrical CG context is largely maintained in a binary fashion: the cytosines are 
either methylated or un-methylated37. However, the TAR-related diferences in CG methylation between SMM 
and SSS progenies were quantitative, and not binary. It is possible that TAR was not transferred to all individ-
uals in the progeny. Considering that we quantiied DNA methylation in pooled leaf samples from 10 plants, 
variation in the number of individuals expressing TAR could create quantitative diferences at single positions. 
Secondly, the pattern of DNA methylation in leaf tissues of progeny will likely difer from that of the stem cells in 
the parental apical meristem, the gametes and the zygote, which could attenuate the binary nature of the difer-
ences. However, these mechanisms do not explain how quantitative diferences in CG methylation are transmit-
ted through the germline, and why SMM and SSS progenies in the F3 generation showed quantitative diferences 
in TAR (Figs 3 and 4). Considering that our lines were propagated by single-seed descent, the binary nature of CG 
methylation predicts that SMM progeny should show a similar levels of CG methylation and TAR to either SSS 
or MMM progeny. Since this was not the case, we propose that both responses are regulated indirectly via quan-
titative mechanisms. Based on the hypothesis postulated above, we propose that multiple binary diferences in 
pericentromeric DNA methylation quantitatively regulate TAR and DNA methylation at distant gene bodies. For 
instance, hypo-methylation of pericentromeric TEs could generate non-coding RNAs that trans-regulate chro-
matin structure and DNA methylation at distant loci49. Alternatively, changes in long-distance heterochromatic 
interactions with (peri)centormeric regions could quantitatively inluence chromatin structure, DNA methyla-
tion and gene expression at distant loci50,51.

Elucidating the exact regulatory mechanisms of TAR will require further large-scale integrated analyses of 
DNA methylation and gene transcription at carefully selected time points ater pathogen challenge. Moreover, 
to investigate potential trans-regulatory mechanisms controlling epigenetic responses to ancestral disease stress, 
these studies should include global analysis of small RNAs and heterochromatic genomic interactions by chro-
matin conirmation capture analysis52,53. Finally, the possibility that stress-induced changes in cytosine meth-
ylation inluence the rate of DNA mutation54, for instance through accelerated rates of cytosine mutation55 or 
changes in DNA sequence caused by stress-activated TEs56, remains to be answered. To address this question, 
lines would need to be exposed to recurrent disease pressure over much longer timescales. Although time- and 
resource-consuming, this approach would enable elucidation of the complex interaction between environment, 
the epigenotype and the genotype over evolutionarily-relevant timescales, and generate insights that are of direct 
relevance to a range of disciplines, including (epi)genetics, plant evolution, and plant immunity.

Methods
Plant Material. Arabidopsis seeds were stratiied in water at 4 °C in darkness for 3–5 days before sowing 
on a 4:1 soil:sand mixture (irst F3 experiment) or on Jify-7 peat pellets (Jify; F1 experiment and second F3 
experiment). All lines used in this study were generated from seeds of a single individual descended from at least 
three stress-free generations. Plants were grown under 8.5 h (F1 experiment and second F3 experiment) or 16 h 
(irst F3 experiment) light photoperiods at ~120 µmol s−1 m−2 light intensity, 21–22 °C and 80% relative humid-
ity. Inoculations with Pst DC3000 were performed either ive-six times within a generation (F1 experiment and 
second F3 experiment) as previously described8, or three times within a generation (irst F3 experiment). he 
MMM, SMM and SSS lines studied in the second F3 experiment were produced from previously generated F2 
lines8. Each new generation was started from seed collected from a single individual of the previous generation 
(Fig. S4). For each of the three experiments, plant material for DNA extraction was collected from healthy ive-
week-old plants that had been cultivated as described above. Each sample for bisulite-sequencing consisted of 
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four leaves collected from 10 plants, enabling the quantiication of average levels of cytosine methylation within 
this population.

Disease resistance assays. To test resistance against the downy mildew pathogen Hyaloperonospora arabi-
dopsidis (Hpa), seedlings were grown for three weeks before spray-inoculation with a suspension of 105 conidi-
ospores ml−1 from isolate Waco9. Spores were harvested from hypersusceptible Ws-NahG seedlings on which a 
stock of the pathogen is maintained. Stocks were maintained by rinsing sporulating seedlings in water, iltering 
the resulting spore suspension through Miracloth (Merck Millipore) to remove debris, and spraying the suspen-
sion on fresh 2–3 week-old seedlings. Ater spray inoculation, plants were let to air-dry for 30–60 minutes and 
then kept at 100% humidity. For trypan blue staining, samples were collected in 100% ethanol and then trans-
ferred to a staining solution of 1 part lactophenol-trypan blue solution (0.067% w/v trypan blue, 33% w/v phenol, 
33% v.v glycerol and 33% v.v DL-lactic acid in dH2O) and 2 parts 100% ethanol. Tubes containing samples were 
incubated in boiling water twice for 1 minute with a 5 minutes interval at room temperature, and then let at 
room temperature to incubate for 3–5 hours. Samples were stored in 60% w/v chloral hydrate at least overnight 
before Hpa colonisation was scored. Typically, 150–250 leaves from a total of 30–50 plants per line were assigned 
to diferent colonisation classes; class I: no hyphal colonisation; class II: hyphal colonisation but no sporulation; 
class III: hyphal colonisation with conidiophores; class IV: extensive hyphal colonisation with conidiophores and 
oospores.

DNA Extraction and bisulƤte sequencingǤ Samples were snap-frozen in liquid nitrogen upon collection 
and stored at −80 °C until extraction of DNA, which was performed with the GenElute Plant Genomic DNA 
Miniprep Kit (Sigma; F1 Experiment and irst F3 experiment) or a CTAB protocol (second F3 experiment). For 
CTAB DNA extraction, frozen samples were treated with 1 ml of CTAB bufer (2% CTAB, 100 mM Tris-HCl pH 8, 
1.4 M NaCl, 20 mM EDTA, 1% PVP- 40; 2 µl ml−1 2-Mercaptoethanol was added immediately before use), homog-
enised and incubated for 60 minutes at 65 °C. One volume of chloroform was added and mixed by vortex before 
centrifuging 8 minutes at 9500 g. In a clean tube, DNA was precipitated from the aqueous phase for 30 minutes 
at room temperature using one volume of isopropanol. Ater centrifuging for 15 minutes (16,500 g at 4 °C), the 
pellet was washed with 70% ethanol and centrifuged for 5 minutes (16,500 g at 4 °C). he pellets were air-dried 
and resuspended in water. RNA was removed by precipitation with 2 M of LiCl, incubation at 4 °C overnight and 
centrifugation for 20 minutes (16,500 g at 4 °C). DNA was precipitated with 2.5 volumes of absolute ethanol for 
4 hours at −20 °C and centrifuging for 20 minutes (16,500 g at 4 °C). DNA pellets were washed with 70% ethanol 
and centrifuged for 5 minutes (16,500 g at 4 °C), air-dried and re-suspended in water. DNA from all samples were 
analysed for integrity and quantity by electrophoresis (0.8% agarose gels containing 5 µg/mL ethidium bromide) 
and normalised to 200 ng µl−1. Samples were bisulite-treated and Illumina-sequenced by Zymo (paired-end, 
50 bp reads; second F3 experiment) or GATC (paired-end, 126 bp reads; F1 experiment and irst F3 experiment).

Methylation calling. Sequencing data was trimmed using trimmomatic57 (‘HEADCROP:9 CROP:101 
SLIDINGWINDOW:4:24’ or ‘HEADCROP:5 CROP:46 SLIDINGWINDOW:4:24’ for GATC sequences and 
Zymo sequences, respectively) and iltered to retain only sequences longer than 36 nt. Sequences were then 
aligned in single-end and paired-end mode through bismark58 (version 0.15.0), using bowtie259 (version 2.2.8). 
Picard tools (version 2.17.11; http://broadinstitute.github.io/picard) were then used to merge single reads that 
did not align in paired-end mode or whose mate was missing ater iltering with the paired-end alignments. 
Sequencing and alignment statistics are provided in Table S8. Output iles were sorted using sambamba (ver-
sion 0.6.0) and then read into methylKit60 (version 0.9.5) in R (version 3.2.4; https://www.R-project.org/) using 
the function read.bismark (mincov = 3, minqual = 20). Reads aligning to the plastids were separated from the 
information for the nuclear chromosomes. Bisulite conversion eiciency was determined from the chloroplast 
sequences, as the chloroplast DNA is not normally methylated. Conversion rates were estimated at 99.37% − 
99.60% for all samples (Table S8). A single replicate from one of the Pst-treated lines in the F1 experiment was 
discarded from further analyses as both its sequencing coverage patterns and methylome pattern difered signif-
icantly from all other samples. Data was iltered to remove extremely high coverage regions (ilterByCoverage; 
hi.perc = 99.9), normalised (normalizeCoverage) and then united, keeping only positions for which at least two 
replicates per line had suicient coverage (unite; min.per.group = 2 L). In CG context counts for both strands 
were merged (unite; destrand = TRUE), whereas in all other contexts this options was set to false. To enable 
fair comparisons between all lines, the data from the experiments were united into a single table. Diferences in 
cytosine methylation were called between diferent treatments for each individual experiment, using a dispersion 
shrinkage for sequencing data (DSS) method to correct for over-dispersion61. DMPs were deined as diferences 
that were statistically signiicant at 5% FDR. Diferentially methylated regions (DMRs) were called using DSS and 
a relaxed per position p-value < 0.01 as cut-of, together with a delta value of 0.1. DMRs were iltered to retain 
regions with a minimum overall methylation diference of 10%.

Data analysis and feature annotation. Statistically signiicant changes in distribution of Hpa colonisa-
tion classes were determined by Fisher’s exact tests. Hierarchical clustering was performed in R, using methylKit’s 
clusterSamples function with default settings (including iltering low variation (sd < Q50) sites), with bootstrap-
ping performed using pvclust62 (nboot = 10,000). PCAs were performed with methylKit’s PCASamples function. 
Heatmaps were generated using gplots63 and scatter plots using heatscatter from R package LSD64. he TAIR10 
genome annotation (www.arabidopsis.org) was used. Bedtools was used to create a general feature annotation, 
where an annotation of transposon was given priority over annotation of a gene, and a gene annotation was 
prioritised over an intergenic region annotation. MA-DMP and MA-N-DMP tables were kindly provided by Dr. 
Claude Becker and classed according to occurrence of DMP and/or N-DMPs; in rare cases where the one cytosine 

http://broadinstitute.github.io/picard
https://www.R-project.org/
http://www.arabidopsis.org
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at CG context was classed as DMP and the palindromic cytosine as N-DMP, the DMP annotation was chosen. 
PlantGSEA65 and GOrilla66 were used to study enrichment of GO terms.

Data Availability
All sequencing data has been deposited at the European Nucleotide Archive (ENA) under accession number 
PRJEB20931.
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