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Completeness and orthonormality in PT-symmetric quantum systems
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Some PT-symmetric non-Hermitian Hamiltonians have only real eigenvalues. There is numerical evidence

that the associated PT-invariant energy eigenstates satisfy an unconventional completeness relation. An ad hoc

scalar product among the states is positive definite only if a recently introduced ‘‘charge operator’’ is included

in its definition. A simple derivation of the conjectured completeness and orthonormality relations is given. It

exploits the fact that PT symmetry provides a link between the eigenstates of the Hamiltonian and those of its

adjoint, forming a dual pair of bases. The charge operator emerges naturally upon expressing the properties of

the dual bases in terms of one basis only, and it is shown to be a function of the Hamiltonian.

DOI: 10.1103/PhysRevA.68.062111 PACS number~s!: 11.30.Er, 03.65.2w

Hermitian operators have real eigenvalues while non-
Hermitian ones may have complex eigenvalues. Numerical
and analytical results indicated the possibility to compensate
the non-Hermiticity of a Hamiltonian by the presence of an
additional symmetry @1#. The spectra of many non-

Hermitians Hamiltonians Ĥ are indeed real @2# if they are
invariant under the combined action of self-adjoint parity P

and time reversal T ,

@Ĥ ,PT#50, ~1!

and if the energy eigenstates are invariant under the operator
PT . Pairs of complex-conjugate eigenvalues are compatible

with PT symmetry as well but the eigenstates of Ĥ are no
longer invariant under PT . It is possible to explain these
observations by the concept of pseudo-Hermitian operators
@3# which satisfy

hĤh21
5Ĥ†, ~2!

following from Eq. ~1! with h5P . Wigner’s representation
theory of antilinear operators @4# provides an alternative ex-
planation if applied to the operator PT @5#. What is more, the
group-theoretical approach explains the fate of energy eigen-
states if they are not invariant under the action of PT , and a
complete classification of PT-invariant subspaces emerges.

PT-symmetric systems possess at least two other intrigu-
ing features. First, the eigenstates of PT-symmetric non-
Hermitian Hamiltonians ~with real eigenvalues only! do not
satisfy the standard completeness relations. Numerical evi-
dence @6# suggests that one has instead

(
n

~21 !nfn~x !fn~y !5d~x2y !, ~3!

the functions fn(x)[^xuEn& being energy eigenstates of a
particle on the real line subjected to a PT-symmetric poten-
tial such as V(x)5x2(ix)n,n>0 @7#. Whether the complete-
ness relation ~3! is valid has been called a ‘‘major open
mathematical question for PT-symmetric Hamiltonians’’ @8#.

Second, a ‘‘natural inner product’’ of functions f (x) and
g(x) associated with PT-symmetric systems has been pro-
posed @9#,

~ f ,g !5E
C

dx@PT f ~x !#g~x !, ~4!

where the integration is along an appropriate path C, possibly
in the complex-x plane @6#. This scalar product implies that
energy eigenstates can have a negative norm,

~fm ,fn!5~21 !ndmn , ~5!

which makes it difficult to maintain the familiar probabilistic
interpretation of quantum theory @9# and gave rise to discus-
sions about the state space of PT-symmetric systems @10#.

In an attempt to base an extension of quantum mechanics
@6# on systems with PT-symmetry a remedy against the in-
definite metric in Hilbert space has been proposed in the
form of a linear charge operator C . Its position representa-
tion is given by

C~x ,y !5(
n

fn~x !fn~y !. ~6!

Then, the redefined inner product

^ f ug&5E
C

dx@CPT f ~x !#g~x !, ~7!

is positive definite, and the completeness relation ~3! turns
into

(
n

@CPTfn~x !#fn~y !5d~x2y !. ~8!

These relations are also consistent with results obtained for
pseudo-Hermitian operators @3,11#.

The purpose of this contribution is, first, to prove that
relations such as Eq. ~3! exist for all PT-symmetric system
with real eigenvalues. Second, the origin of the operator C

will be identified, which directly explains both why Eq. ~7!
defines indeed a positive inner product and why Eq. ~8! is a
valid completeness relation. To cut a long story short, the last
two equations @as well as Eqs. ~3! and ~4!# are nothing but*Email address: s.weigert@hull.ac.uk
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biorthonormality and completeness for a pair of dual bases

associated with Ĥ . It is due to the system’s PT symmetry
and the occurrence of real eigenvalues only that these two
relations acquire a special form which involves the elements

$fn(x)% of one basis only.
Consider a ~diagonalizable! non-Hermitian Hamiltonian

Ĥ with a discrete spectrum @12#. The operators Ĥ and its

adjoint Ĥ† have complete sets of eigenstates:

ĤuEn&5EnuEn&, Ĥ†uEn&5EnuEn&, n51,2, . . . ,
~9!

with, in general, complex conjugate eigenvalues, En
5En

* .

The eigenstates constitute biorthonormal bases in H with
two resolutions of unity,

(
n

uEn&^Enu5(
n

uEn&^Enu5 Î , ~10!

and as dual bases, they satisfy orthonormality relations,

^EnuEm&5^EmuEn&5dnm , m ,n51,2, . . . . ~11!

A priori, nothing is known about scalar products such as

^EnuEm&.
Consider now a PT-invariant Hamiltonian, i.e., Eq. ~1!

holds, and assume all its eigenvalues, En to be real and non-
degenerate. Multiply the first equation of Eq. ~9! with the
operator PT so that

Ĥ~PTuEn&)5En~PTuEn&). ~12!

Multiplication by ^Emu from the left and using the adjoint of
the second equation in Eq. ~9! with En[En leads to

~Em2En!^Emu~PTuEn& !50. ~13!

Consequently, the state PTuEn& must equal uEn& apart from a
multiplicative factor dn . Since (PT)2uEn&5uEn&
5udnu2uEn& , dn must equal a phase factor e iwn, say. Redefin-
ing uEn&→e2iwn/2uEn& implies—as is well known—that one
can always write

PTuEn&5uEn& or fn
*~2x !5fn~x !. ~14!

PT symmetry of a non-Hermitian Hamiltonian Ĥ leads to

particular relation between the operator and its adjoint Ĥ†.

As mentioned earlier, the adjoint of Ĥ can be obtained from
applying parity to it,

Ĥ†
5PĤP . ~15!

It will be shown now that a simple relation between the
states uEn& and uEn& results, viz.,

uEn&5snPuEn& , sn561. ~16!

This relation is crucial to derive the numerically observed
completeness and orthogonality relations. To see that Eq.
~16! holds, an argument similar to the derivation of Eq. ~14!

will be given. Write Ĥ†
5PĤP in the second equation of ~9!,

multiply it with P, use P2
5 Î and recall that En

5En
*5En :

Ĥ~PuEn&)5En~PuEn&). ~17!

Comparison with the first equation of ~9! shows that the

states PuEn& and uEn& are both eigenstates of Ĥ , with the
same nondegenerate eigenvalue En . Consequently, they
must be proportional to each other,

uEn&5cnPuEn&, cnPC. ~18!

This also follows from multiplying Eq. ~17! by ^Emu from
the left and using the adjoint of the second equation in Eq.
~9! with Em[Em :

~Em2En!^Emu~PuEn& !50. ~19!

The numbers cn must, in fact, be real since the states uEn&

and uEn& are a normalized pair: using P2
5 Î and Eq. ~18!

implies

15^EnuEn&5^EnuP2uEn&5cn
*cn

21^EnuEn&5cn
*cn

21 ,
~20!

that is, cn5cn
* . Furthermore, the dual bases can always be

chosen in such a way that the numbers cn will take the values
61. To see this, multiply each side of Eq. ~18! with its own

adjoint, giving ^EnuEn&5cn
2^EnuEn&, or

cn5snS ^EnuEn&

^EnuEn&
D 1/2

, sn561, ~21!

consistent with Eq. ~20! because the scalar products are posi-
tive. The square root can always be given the value 1 by

rescaling the eigenstates of Ĥ and Ĥ†. For each dual pair, let

uEn&→lnuEn& and uEn&→ln
21uEn&, 0,ln,` ,

~22!

a transformation which does not change orthonormality of
the bases since ^EnuEm& remains invariant. Eq. ~21!, how-
ever, turns into

cn5snS 1

ln
4

^EnuEn&

^EnuEn&
D 1/2

[sn if ln5S ^EnuEn&

^EnuEn&
D 1/4

.

~23!

The signature s5(s1 ,s2 , . . . ) depends on the actual Hamil-
tonian as a discussion of finite-dimensional PT-symmetric
systems @13# shows. Here is a simple way to calculate the
numbers sn once the eigenfunctions fn(x)5^xuEn& of a
Hamiltonian with PT symmetry have been determined. Mul-

tiply Eq. ~16! with ^Enu and solve for sn[sn
21 , giving

sn5^EnuPuEn& . ~24!

Using Eq. ~16!, it is straightforward to derive complete-
ness relations which involve the states of one basis only.
Rewrite Eq. ~10! by means of Eq. ~16! as
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(
n

uEn&^Enu5(
n

snuEn&^EnuP5 Î , ~25!

and take its matrix elements in the position representation

(
n

snfn~x !fn
*~2y !5(

n
snfn~x !fn~y !5d~x2y !,

~26!

where PT invariance ~14! has been used. The result agrees
with the expression ~3! if sn5(21)n. In a similar way, one

can derive a completeness relation for the eigenstates of Ĥ†,

(
n

snfn~x !fn~y !5d~x2y !. ~27!

The orthonormality condition for dual states turns into a re-
lation which has been interpreted as the existence of a non-

positive scalar product among the eigenstates of Ĥ . Simply
write the scalar product ~11! in the position representation,
using Eq. ~16! and PT-invariance,

^EnuEm&5sn^EnuPuEm&

5snE dxfn
*~2x !fm~x !

5snE dxfn~x !fm~x !

5dnm , ~28!

or, using the notation from Eq. ~4!,

~fn ,fm!5sndnm , ~29!

which is again consistent with sn5(21)n.
Suppose we wanted to write an operator version of Eq.

~16!. Define an operator Cs by

Cs5(
k

skuEk&^Eku. ~30!

Its eigenstates are uEn& since

CsuEn&5(
k

skuEk&^EkuEn&5snuEn&, ~31!

and its eigenvalues sn coincide indeed with the signs of the
‘‘PT norm,’’ a property of the charge operator C pointed out
in Ref. @6#. Writing

uEn&5snPuEn&5PCsuEn&, ~32!

one can transform the scalar product of dual states, using Eq.
~14! twice,

^EmuEn&5^EmuPCsuEn&

5^EmuPE dxux&^xuCsuEn&

5E dxfm
*~2x !Csfn~x !

5E dxfm~x !@CsPTfn~x !#

5dmn . ~33!

Defining Cs5C if sn5(21)n, this equation justifies Eq. ~7!
for energy eigenstates. Furthermore, the first completeness
relation in Eq. ~10! implies through Eq. ~32! that

d~x2y !5(
n

^xuPuEn&^EnuPuy&

5(
n

Csfn~x !fn
*~2y !5(

n
@CsPTfn~x !#fn~y !,

~34!

which reproduces Eq. ~8!, identical to Eq. ~13! of Ref. @6#.
By taking matrix elements of Eq. ~30!, the position represen-
tation of the operator Cs(x ,y) is found to agree with Eq. ~6!.

There is, in fact, a simple way to express the operator Cs ,
which follows from comparing Eq. ~30! with the ‘‘diagonal’’
representation of the Hamiltonian,

Ĥ5(
n

EkuEk&^Eku. ~35!

Introducing a function f (x) such that

f ~Ek!5sk , n51,2, . . . , ~36!

one finds that the operator Cs is nothing but a function of the
Hamiltonian,

Cs5(
n

skuEk&^Eku

5(
n

f (Ek)uEk&^Eku

5 f S (
n

EkuEk&^Eku D
5 f (Ĥ). ~37!

Therefore, Cs commutes with the Hamiltonian, and it will
not be Hermitian, consistent with Eq. ~30!.

In summary, it has been shown that the dual bases of
PT-symmetric quantum systems with non-Hermitian Hamil-
tonians enjoy a particularly simple relation ~16!. As a conse-
quence, it is possible to formulate completeness and ortho-
normality relations which invoke the elements of one basis
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only. These relations are inherited from the dual pair of bases
providing them thus with a sound mathematical footing.
Structurally similar relations can be derived for any pseudo-
Hermitian Hamiltonian.

It is a different question whether this mathematical
structure—call it ‘‘complex extension’’ of quantum mechan-
ics @6#, for example—is realized in nature. To draw a con-

structive conclusion, one would need to find a natural inter-
pretation of the linear, idempotent charge operator C. This
appears difficult in the framework of nonrelativistic quantum
mechanics: in spite of having eigenvalues sn561 only, the
operator C is neither self-adjoint nor unitary while the famil-
iar operator of charge conjugation used in field theory is
unitary.
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