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T cell activation, differentiation and effector function is intrinsically linked to the regulation
of metabolic pathways. Evidence has shown that inflammatory T cell responses are
dependent upon the adoption of aerobic glycolytic metabolism. Furthermore, activation
and regulation of the mechanistic target of rapamycin signaling pathway serves a key
determinant of T cell metabolism, with subsequent effects on T cell effector responses.
In this mini-review, we discuss the mechanisms underpinning the function of the
Warburg effect in T cell responses and the role of mTOR in these processes.
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INTRODUCTION

T cells serve as cellular e�ectors and orchestrators of adaptive immune responses during infection
and cancer. In the past decade, a wealth of data has determined that T cell activation, clonal
expansion, e�ector di�erentiation, and function is closely linked to and dependent upon the
regulation of basic cellular metabolic processes. It has become clear that in e�ector T cells, the
pyruvate produced by glycolysis is preferentially fermented to lactate even in the presence of
oxygen; a classic example of theWarburg e�ect in non-transformed cells. In this review, we discuss
how the engagement of aerobic glycolysis influences T cell activation and describe the role of the
mechanistic target of rapamycin (mTOR) pathway in these processes.

METABOLIC REPROGRAMMING DURING T CELL ACTIVATION

Prior to encountering antigen, T cells are quiescent and lack e�ector function. These naïve T cells
uptake low levels of glucose and amino acids, and rely onmitochondrial oxidative phosphorylation
(OXPHOS) to maintain cellular ATP levels [reviewed in Geltink et al. (2018)]. Naïve T cells may
survive for years circulating through the blood and lymph, only rarely undergoing cell division.
Upon encounter with peptide antigen-major histocompatibility complexes (MHC) presented by
antigen-presenting cells, the di�erentiation of naïve CD4+ T cells to a plethora of specialized
helper T cell (Th) subsets enables the immune system to respond appropriately to a huge variety
of pathogens, from extracellular parasitic worms to intracellular viruses and bacteria. In this
regard, CD4+ Th cells modulate the activity and function of innate and adaptive immune cells
by secreting cytokines. CD4+ Th1 cells promote cell-mediated immunity by secreting interleukin
(IL)-2, interferon (IFN)-g and tumor necrosis factor (TNF) whereas Th2 cells promote humoral
immunity through the production of IL-4, IL-5 and IL-13 (Asnagli and Murphy, 2001). Th17 cells
produce high levels of IL-17 and are important for maintenance of homeostasis and protection
from pathogens at barrier sites, such as the intestine (Stockinger and Omenetti, 2017). By contrast,
regulatory CD4+ T cells (Treg), characterized by expression of the transcription factor forkhead
box P3 (FOXP3), have a key role in limiting inflammation and preventing autoimmunity by
suppressing the activity of other immune cell types (Sakaguchi et al., 2010). Cytotoxic CD8+ T
cells have the capacity to target and kill infected and transformed cells, and produce inflammatory
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cytokines such as IFNg (Halle et al., 2017). Upon resolution of
an immune response, a number of memory T cell populations
capable of responding rapidly to a second antigenic encounter are
retained, facilitating life-long protection from re-infection.

The processes of T cell activation are bioenergetically
expensive; for example, it has been estimated that, during
infection, virus-specific CD8+ T cells undergo rapid proliferation
with a population doubling time of only ⇠8 h (De Boer et al.,
2003). Therefore, a key question in immunology is: how do T cells
fuel the processes of activation, proliferation and di�erentiation?
Whereas cytokines such as IL-7 maintain low level glycolytic
metabolism in naïve T cells (Jacobs et al., 2010), triggering of
the T cell antigen receptor (TCR) by cognate peptide antigen-
MHC presented on the surface of antigen-presenting cells, results
in the upregulation of anabolic biosynthetic pathways in order
to facilitate T cell activation. The integration of TCR, CD28
co-stimulation and cytokine receptor signals determines T cell
metabolism and subsequently impacts upon di�erentiation, and
e�ector function (Fox et al., 2005; Cornish et al., 2006; Jacobs
et al., 2010; Michalek et al., 2011; Shi et al., 2011; Finlay et al.,
2012; Gubser et al., 2013; Ray et al., 2015; Richer et al., 2015;
Tan et al., 2017; Geltink et al., 2018). The regulation of aerobic
glycolysis is central to these fate decisions.

AEROBIC GLYCOLYSIS DRIVES
EFFECTOR T CELL DIFFERENTIATION

An important role for glucose uptake, and glycolysis in T cell
function was suggested four decades ago by the demonstration
that the glycolysis inhibitor 2-deoxyglucose (2-DG) impaired
T cell cytotoxic capacity (MacDonald, 1977; MacDonald and
Cerottini, 1979). Furthermore, studies indicated that 2-DG
treatment selectively reduced the expression of key e�ector
molecules, including IFNg and granzymes, and cell cycle proteins
in both mouse (Cham and Gajewski, 2005; Cham et al., 2008)
and human (Renner et al., 2015) CD8+ T cells. At low doses
that do not impact upon TCR-induced proliferation, 2-DG also
inhibits CD4+ Th2 (Yang et al., 2016) and Th17 (Shi et al.,
2011) cell di�erentiation, but promotes Treg di�erentiation (Shi
et al., 2011). Together, these studies indicate that the regulation
of glycolytic flux plays a central role in cell fate decisions, and
T cell di�erentiation. In recent years, mass-spectrometry based
proteomic analyses have further informed our understanding
of the extent to which the regulation of metabolic pathways is
prioritized by T cells. Thus, studies from the Cantrell lab have
shown that 41 glycolytic proteins represent 7% of the total protein
molecules in e�ector cytotoxic CD8+ T cells (Hukelmann et al.,
2016).

Upon TCR triggering, expression of plasma membrane
glucose transporters is enhanced as part of the general process
of metabolic reprogramming. T cell-specific knockout of the
glucose transporter SLC2A1/GLUT1 substantially inhibited the
activation of mouse CD4+ T cells (Macintyre et al., 2014). Whilst
the homeostasis and survival of naïve T cells was una�ected
by the absence of GLUT1, TCR-induced CD4+ T cell growth,
and proliferation were profoundly impaired. Furthermore,

di�erentiation of Slc2a1�/� T cells to e�ector Th1, Th2 and
Th17, but not Treg, lineages was blocked (Macintyre et al.,
2014), consistent with the known e�ects on T cell di�erentiation
of inhibiting glycolytic flux with 2-DG. As anticipated, T cell
activation defects in TCR-stimulated Slc2a1�/� T cells were
associated with reduced rates of glucose uptake, glycolysis and
lactate production (Macintyre et al., 2014). The lack of a
catastrophic impact of GLUT1-deficiency on glycolytic flux, and
cell survival in naïve T cells is likely to be a consequence of
expression of additional glucose transporters, including GLUT3,
by T cells (Macintyre et al., 2014; Hukelmann et al., 2016). The
importance of glucose uptake in T cell responses in vivo has
been further highlighted by recent studies indicating that T cells
and cancer cells directly compete for nutrients in the tumor
microenvironment (Chang et al., 2015; Ho et al., 2015; Siska
et al., 2017). Thus, highly glycolytic tumor variants suppress the
activity of anti-tumor T cells, at least in part, by reducing the
bioavailability of glucose.

In addition to upregulating glycolytic metabolism, activated T
cells also increase uptake and hydrolysis of amino acids such as
glutamine, and modulate mitochondrial, and lipid metabolism
[reviewed in Geltink et al. (2018)]. Distinct T cell populations
di�er in their utilization, and dependence upon these metabolic
programs. E�ector CD8+ T cells, and Th1, Th2 and Th17
CD4+ T cells are highly glycolytic, whereas Tregs are dependent
upon fatty acid oxidation (FAO) (Michalek et al., 2011; Shi
et al., 2011 Berod et al., 2014) (Figure 1). Based on the use
of chemical inhibitors, FAO has also been suggested to be
important for the development of memory T cells (reviewed in
(Lochner et al., 2015)); although recent evidence using genetic
mouse models suggest that the requirement for FAO is not
absolute (Pan et al., 2017; Raud et al., 2018). The use of electron
microscopy has determined that memory T cells have altered
mitochondrial morphology with fused cristae, that appears to
favor OXPHOS and FAO (Buck et al., 2016). Furthermore, a
recent study identified a crucial role for CD28 co-stimulatory
signals during initial T cell activation to ‘prime’ mitochondria
with elevated spare respiratory capacity, that is necessary for the
rapid recall responses of memory T cells (Klein Geltink et al.,
2017). The ability of quiescent memory T cells to re-acquire
e�ector function rapidly upon TCR triggering is also dependent
upon immediate re-engagement of glycolysis (Gubser et al., 2013;
Klein Geltink et al., 2017). Therefore, in general terms, a highly
glycolytic metabolism is associated with T cell e�ector responses,
whereas low level glycolysis and lipid metabolism is associated
with memory and regulatory T cell responses.

MECHANISMS UNDERPINNING THE
ROLE OF AEROBIC GLYCOLYSIS IN T
CELL FUNCTION

The function of the Warburg e�ect in activated e�ector T cells
is incompletely understood. Aerobic glycolysis is an ine�cient
means of energy production, producing only 2 molecules of
ATP as compared to between 30 and 36 produced by OXPHOS.
Furthermore, experiments using the ATP synthase inhibitor
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FIGURE 1 | CD4+ T cell subsets use distinct metabolic programs. Naïve T cells uptake low levels of glucose and primarily utilize mitochondrial oxidative
phosphorylation to maintain homeostasis. The differentiation and effector functions of inflammatory Th1, Th2, and Th17 cells relies on engagement of aerobic
glycolysis. By contrast, memory T cells and Tregs are dependent upon fatty acid oxidation (FAO) pathways.

oligomycin demonstrated that mitochondrial ATP production
via OXPHOS is required for initial stages of T cell activation and
proliferation (Chang et al., 2013). By contrast, data indicate that
expression of the rate-limiting glycolytic enzyme hexokinase 2
(HK2) is actually dispensable for early stages of T cell activation
(Tan et al., 2017). It has been suggested that a key advantage
of the Warburg e�ect for cancer cells, and presumably for
all proliferating cells, is that it allows the metabolic flexibility
required to build biomass (Vander Heiden et al., 2009). Thus, a
key function of a switch to aerobic glycolysis might be to enable T
cells to use glucose for the generation of biosynthetic precursors
for amino acids and nucleic acids, critical for rapid growth, and
population expansion, via the pentose phosphate pathway (PPP)
(reviewed in (Lunt and Vander Heiden, 2011)). Carbon tracing
experiments indicate that, in activated T cells, up to 85% of
glucose is excreted as lactate (Fox et al., 2005), indicating that
only a minor proportion of glucose-derived carbon is used to
fuel biosynthetic pathways. Rather, the NADPH generated by the
PPP is rate-limiting in the production of amino acids, nucleic
acids, and fatty acids in T cells, and it is likely that aerobic
glycolysis allows a faster flux through this pathway as compared
to mitochondrial respiration (Vander Heiden et al., 2009).
Indeed, blockade of lactate excretion using pharmacological
inhibitors of the monocarboxylate transporter MCT1 inhibits T
cell proliferation (Murray et al., 2005). Furthermore, a number
of recent studies have provided evidence that elevated glucose
uptake, and engagement of aerobic glycolysis modulates T cell
e�ector responses through additional mechanisms.

Chang et al. (2013) demonstrated an important role
for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in
regulating e�ector T cell function via a post-transcriptional
mechanism. These researchers showed that, in addition to

functioning as a glycolytic enzyme, GAPDH binds to the 30-
untranslated region (UTR) of IFNg mRNA and prevents e�cient
translation (Chang et al., 2013). By engaging glycolysis, e�ector
T cells sequester GAPDH away from IFNg mRNA and thereby
enhance cytokine production. Further mechanistic insight into
the role of glycolysis in inflammatory cytokine production comes
from studies of lactate dehydrogenase A (LDHA) function in
T cells. LDHA expression is enhanced in activated T cells and
is required to support aerobic glycolysis (Peng et al., 2016).
Furthermore, IFNg production was reduced in LDHA-deficient
CD4+ Th1 cells as compared to control cells, consistent with the
known role of glycolysis in T cell e�ector function. This e�ect
was independent of the Ifng 30-UTR, indicating a distinct e�ect
on cytokine production from that mediated by GAPDH. In the
absence of LDHA, histone 3 acetylation at lysine 9 (H3K9Ac)
and lysine 27 (H3K27Ac) within the Ifng promoter region
was substantially decreased (Peng et al., 2016). This glycolysis-
dependent epigenetic regulation of IFNg expression via histone
acetylation was mediated by LDHA-dependent maintenance of
high levels of acetyl-CoA in e�ector Th1 cells (Peng et al., 2016).

Studies from the Kaech laboratory revealed a further role
for glycolytic flux in T cell activation. Thus, production
of the glycolytic metabolite phosphoenolpyruvate (PEP) via
enolase promotes prolonged Ca2+ responses and activation
of the transcription factor nuclear factor of activated T cells
(NFAT) (Ho et al., 2015). Nuclear translocation and the
transcriptional activity of NFAT regulates the expression of
key e�ector molecules such as IL-2, IFNg and CD40L in T
cells (Hogan, 2017). PEP binds and inhibits the activity of the
sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), preventing
transfer of Ca2+ from the cytosol to the SR and prolonging
NFAT activation (Ho et al., 2015). Importantly, defects in
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Ca2+/NFAT signaling and T cell activation under conditions
of low glucose could be partially corrected by restoration of
PEP levels following enforced expression of the gluconeogenesis
enzyme PEP carboxykinase 1 (PEPCK1) (Ho et al., 2015).
Furthermore, PEPCK1-overexpressing CD4+ (Ho et al., 2015)
and CD8+ (Ma et al., 2018) T cells had elevated anti-tumor
responses as compared to control cells, indicating that PEP
production serves as a metabolic checkpoint in vivo. In NFATc1-
deficient T cells, transcript levels of glycolytic proteins such as
GLUT1, GLUT3 and HK2 were substantially reduced with a
concomitant impairment of glycolytic flux, an e�ect that could be
rescued partially by IL-2 (Klein-Hessling et al., 2017). Therefore
NFATc1 regulates T cell activation and upregulation of the
glycolytic pathway, which in turn acts in a positive-feedback loop
to prolong NFATc1 signaling via PEP.

A novel role for the glycolytic enzyme enolase-1 (Eno1) in
inducible Treg function was recently described by Materese and
colleagues. These researchers showed that inhibition of glycolysis
using 2-DG limited FOXP3 gene splicing and expression in
human Tregs (De Rosa et al., 2015). In Tregs treated with 2-
DG, a substantially increased proportion of Eno1 was recruited
to the FOXP3 promoter and regulatory elements, whilst shRNA
knockdown of Eno1 expression restored FOXP3 expression
(De Rosa et al., 2015). These data suggest that nuclear Eno1
regulates FOXP3 splicing and that engagement of the glycolytic
function of Eno1 interferes with this nuclear role, thereby
stabilizing the Treg phenotype and function.

A further key role for glucose in T cell activation is to fuel
protein O-GlcNacylation. In this pathway, glucose is diverted
from the glycolytic pathway (at the level of fructose-6-phosphate)
into the hexosamine biosynthetic pathway, which ultimately
provides the donor substrate for O-GlcNacylation (Yang and
Qian, 2017). TCR triggering results in a substantial increase
in the pool of intracellular UDP-GlcNac, resulting in post-
translational modification of Ser / Thr residues, and modifying
the activity or stability of key proteins, including c-Myc (Swamy
et al., 2016). Experiments investigating the impact of T cell-
specific deletion of O-GlcNAc transferase (OGT) demonstrated a
requirement for this pathway in T cell development in the thymus
as well as the clonal expansion of mature T cells (Swamy et al.,
2016). Supplementation of in vitro T cell cultures with GlcNAc
favors Treg di�erentiation, at the expense of inflammatory Th17
cells, by promoting IL-2R signaling (Araujo et al., 2017). Thus,
it is possible that aerobic glycolysis might impinge on Treg
di�erentiation by limiting the supply of metabolites to the
hexosamine and O-GlcNAc biosynthetic pathways.

In summary, it is clear that engagement of aerobic glycolysis
impacts on T cell function through a number of distinct
mechanisms: (i) glycolysis provides a source of ATP and enables
the production of biosynthetic precursors to enable proliferation
and cell growth; (ii) engagement of the glycolytic pathway
and enzymes such as Eno1 and GAPDH diverts their function
away from non-glycolytic functions that impinge on T cell
gene expression; (iii) glycolytic metabolites such as PEP have
additional signaling functions in T cells; (iv) the engagement
of glycolysis interacts in a complex network with additional
metabolic pathways such as the hexosamine pathway and

glutaminolysis to regulate T cell behavior. Further investigation
into the function of the Warburg e�ect in T cells will, no doubt,
add to this list of mechanisms in the coming years.

mTOR REGULATES T CELL
DIFFERENTIATION

The signaling pathways that regulate T cell metabolic
reprogramming have been the subject of intense research
in the past decade. mTOR is an evolutionarily conserved ser/thr
kinase that, in T cells, integrates nutrient sensing and antigen-
receptor signaling (reviewed in (Salmond and Zamoyska, 2010,
2011; Powell et al., 2012)). mTOR forms two main signaling
complexes, mTORC1 andmTORC2, that di�er in their sensitivity
to the macrolide inhibitor rapamycin. mTORC1 is composed of
mTOR in complex with the adapter protein raptor, mammalian
lethal with SEC13 protein 8 (MLST8) and proline-rich Akt
substrate (PRAS) 1, an endogenous regulator DEPTOR, and
is sensitive to rapamycin. By contrast, mTORC2, composed of
mTOR, rictor, GbL, and mammalian stress-activated protein
kinase interacting protein 1 (mSIN1), is insensitive to acute
inhibition by rapamycin. The pathways that regulate mTOR
activation in T cells are summarized in Figure 2. In brief,
mTORC1 activity is regulated by intracellular amino acids via
the nutrient sensing Rag GTPases (Wolfson and Sabatini, 2017).
Upon TCR stimulation, T cells upregulate the expression of
plasma membrane transporters that enable the uptake of amino
acids such as leucine and glutamine from the extracellular
environment, that in turn sustain mTORC1 activation. Knockout
mouse studies have shown that upregulation of the System
L amino acid transporter SLC7A5 (Sinclair et al., 2013) and
glutamine-transporter SLC1A5 (Nakaya et al., 2014) are both
essential for mTORC1 activity in T cells. Glucose levels also
regulate mTORC1 by influencing the activity of the negative
regulator AMP kinase (AMPK) (Rolf et al., 2013). Furthermore,
recent work has shown that, following TCR signaling, the
kinase activity of mTORC1 is activated via the upstream kinase
PDK1, in a PI3K/Akt-independent manner (Finlay et al.,
2012). In addition, co-stimulation through CD28 and signaling
mediated via cytokines such as IL-2 and IL-15 contribute to
the magnitude of mTOR activation in T cells (Cornish et al.,
2006; Ray et al., 2015). Key downstream targets / e�ectors
of mTORC1 include the translational regulators 4E-binding
proteins (4E-BPs) and ribosomal protein S6 kinases (S6Ks).
The mechanism by which mTORC2 is activated is less well
understood but likely involves PI3K/Akt activity (Zinzalla et al.,
2011; Yang et al., 2015). mTORC2 targets include Akt and serum
and glucocorticoid-induced protein kinase (SGK).

Whilst the anti-proliferative and immunosuppressive
properties of rapamycin have been known for decades, seminal
studies published in 2009 determined that mTOR activity also
influences T cell e�ector-memory cell fate decisions in vivo
(Araki et al., 2009). Thus, rapamycin treatment enhanced the
quantity and quality of virus-specific CD8+ memory T cells
in mice. Knockdown of mTORC1 targets S6K1 and 4E-BPs
also impacted upon T cell memory di�erentiation (Araki
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FIGURE 2 | T cell pathways to mTORC1 and mTORC2 activation. T cell receptor (TCR) triggering by peptide (p)MHC complexes results in upregulation of amino
acid transporters such as SLC7A5 and SLC1A5. Leucine and glutamine are critical amino acids for the activation of the Rag GTPases, that in turn regulate mTORC1
activation at the lysosome. TCR induced upregulation of glucose transporters GLUT1 and GLUT3 enhances glucose uptake. Increases in the intracellular ATP:AMP
ratio as a consequence of increased glucose availability, suppresses the activity of AMP kinase (AMPK), preventing its inhibitory effect on mTORC1 activity.
Furthermore, TCR-induced phosphoinositide-dependent kinase (PDK)1, is critical for mTOR activation. PDK1 dependent signals prevent the GTPase activating
protein (GAP) activity of the Tsc1/Tsc2 complex. Loss of Tsc GAP activity enables Rheb-GTP to activate mTORC1 through an incompletely understood mechanism.
The mechanism of mTORC2 activation is less well understood but is likely to be downstream of PI3K/PIP3-dependent pathways.

et al., 2009). Consistent with these findings, activation of the
AMPK1 pathway via metformin or via glucose-deprivation
restrains mTOR activity (Pearce et al., 2009; Rolf et al., 2013)
and enhances T cell memory. Furthermore, experiments have
shown that IL-2 drives high levels of mTOR activation and
e�ector CD8+ T cell di�erentiation, whereas IL-15 drives lower
levels of mTOR activation and favors memory cell formation
(Cornish et al., 2006; Pipkin et al., 2010; Ray et al., 2015; Richer
et al., 2015). Recent studies examining daughter cells from
the first cell division following TCR stimulation indicate that
mTORC1 activity is asymmetrically inherited (Pollizzi et al.,
2016). Importantly, the asymmetric inheritance of mTORC1
influences T cell metabolic capacity and cell fate. Thus, daughter
cells with high mTORC1 activity had elevated glycolytic flux and
generated T cell populations with enhanced e�ector capacity,
whereas cells with lower mTORC1 activity generated long-lived
memory cells (Pollizzi et al., 2016).

Studies using mice with T cell-specific deficiencies in mTOR
or with selective ablation or hyperactivation of mTORC1 or
mTORC2 signaling pathways have defined an important role
for both of these signaling complexes in T cell activation,
di�erentiation and e�ector function (Delgo�e et al., 2009,
2011; Lee et al., 2010; Yang et al., 2011; Zeng et al., 2013,
2016; Pollizzi et al., 2015). CD4+ T cells completely lacking
mTOR fail to di�erentiate into Th1, Th2 or Th17 lineages and
instead di�erentiate preferentially into FOXP3+ regulatory T
cells (Delgo�e et al., 2009). Nonetheless, whilst mTORC1 signals
negatively regulate de novo Treg di�erentiation, the suppressive
function of fully di�erentiated Treg also requires mTORC1
activity (Zeng et al., 2013; Gerriets et al., 2016; Chapman
et al., 2018; Sun et al., 2018). T cells deficient in the upstream
activator of mTORC1, Rheb, are defective in Th1 and Th17
di�erentiation (Delgo�e et al., 2011) whilst raptor deficiency
also impinges upon Th2 di�erentiation (Yang et al., 2013).
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By contrast, deletion of tuberous sclerosis 1 (Tsc1) or Tsc2
results in hyperactive mTORC1 and a subsequent loss of naïve
T cell quiescence, indicating that restraining mTOR activity is
important for the maintenance of immune homeostasis (Yang
et al., 2011; Pollizzi et al., 2015). Rictor deficiency (i.e., loss of
mTORC2) has a milder e�ect on Th1 cell activation in vivo
as compared to loss of mTORC1 function (Yang et al., 2013)
but compromises CD4+ Th2 di�erentiation (Lee et al., 2010).
Similarly, Rheb/mTORC1-dependent signals are also required for
CD8+ T cell di�erentiation whilst rictor/mTORC2-dependent
signals regulate CD8+ T cell memory (Pollizzi et al., 2015; Zhang
et al., 2016).

Thus, studies of knockout mouse models have shed significant
insight into the multifarious roles of mTOR in T cell
di�erentiation and e�ector function. In this regard, mTORC1
has dual and apparently opposing roles in Treg biology; on
the one hand, elevated mTORC1 favors the di�erentiation of
e�ector T cells at the expense of Tregs, whilst on the other,
mTOR expression in Tregs is essential to prevent autoimmunity.
Furthermore, these studies have suggested distinct roles for the
mTORC1 andmTORC2 complexes in T cells; for example, in Th1
vs. Th2 di�erentiation. Importantly, evidence indicates that the
regulation of T cell metabolism by mTOR complexes is central to
these complex phenotypes.

REGULATION OF T CELL METABOLISM
BY mTOR

In T cells, mTORC1 signaling serves to promote aerobic
glycolysis and as a consequence impacts upon T cell
di�erentiation and e�ector function. Rapamycin treatment
substantially impairs the initial TCR-induced upregulation of
glucose transporters, glucose uptake and glycolytic enzymes in
both CD4+ and CD8+ T cells (Shi et al., 2011; Finlay, 2012).
Similarly, genetic ablation of Rheb (Pollizzi et al., 2015) or
raptor (Yang et al., 2013) impairs the upregulation of aerobic
glycolysis in TCR-stimulated T cells, whilst hyperactivation of
mTORC1 in Tsc1 or Tsc2-deficient T cells is associated with
enhanced glycolytic metabolism. Furthermore, mTORC1 activity
is required to sustain high levels of aerobic glycolysis in e�ector
T cells (Finlay, 2012; Hukelmann et al., 2016). In this regard,
rapamycin treatment caused an approximate 50% reduction
in levels of GLUT1 and GLUT3 in IL-2 maintained e�ector
CTLs and a proportional decrease in glucose uptake and lactate
production (Hukelmann et al., 2016). By contrast, inhibition
of mTORC2 activity actually increases the metabolic capacity
of CD8+ T cells. Thus, Rictor-deficient CD8+ T cells have
elevated glycolytic flux, spare respiratory capacity (SRC) and
FAO (Pollizzi et al., 2015; Zhang et al., 2016). The mechanism
by which deletion of mTORC2 results in increased metabolic
fitness has not been fully elucidated but may involve stabilization
of nuclear Foxo1 transcription factor (Zhang et al., 2016). Thus,
knockdown of Foxo1 reverses the impact of Rictor-deficiency on
T cell memory formation whilst expression of a constitutively
active Foxo1 in CD8+ T cells results in elevated SRC and FAO
(Zhang et al., 2016).

The molecular mechanisms by which mTORC1 signals
regulate glycolytic pathways in T cells are also incompletely
understood. Studies have identified transcription factors
including Myc (Wang et al., 2011) and hypoxia inducible factor
1 alpha (HIF-1a) (Shi et al., 2011; Finlay et al., 2012) as key
drivers of metabolic reprogramming in T cells. Myc-deficient
T cells are defective in TCR-induced upregulation of glucose
transporters and glycolytic enzymes and have substantially
reduced glycolytic flux (Wang et al., 2011). HIF-1a is upregulated
strongly in Th17 cells (Shi et al., 2011) and e�ector CD8+ T
cells (Finlay et al., 2012) and, similar to Myc, is important for
the upregulation of aerobic glycolysis in these T cell subsets.
Importantly, rapamycin impairs the TCR-induced expression of
both Myc and HIF-1a (Shi et al., 2011; Wang et al., 2011; Finlay
et al., 2012; Pollizzi et al., 2016) indicating that mTOR serves to
regulate aerobic glycolysis, at least in part, through regulation of
Myc and HIF-1a expression and their subsequent downstream
transcriptional programs. mTORC1 has been reported to regulate
Myc expression via post-transcriptional mechanisms as levels of
Myc protein, but not mRNA, were reduced in Raptor-deficient T
cells as compared to controls (Yang et al., 2013).

In addition to the role of mTOR in promoting glycolytic
metabolism in e�ector T cells, recent evidence has shown that
mTOR also has a vital role in the regulation of mitochondrial
metabolism. Gene expression and pathway analysis identified
the regulation of both glycolysis and OXPHOS as being
significantly impacted by hyperactive mTOR activity in Tsc1�/�

T cells (Shrestha et al., 2014). Furthermore, mTOR catalytic site
inhibitors reduced expression of mitochondrial and OXPHOS
genes in activated Tregs (Chapman et al., 2018). In both cases,
mTOR activity was required for the transcriptional programs
driving OXPHOS in T cells, highlighting the dual role for this
kinase in regulating mitochondrial and glycolytic metabolism.

ACTIVATED mTOR LEADS TO ALTERED
T CELL METABOLISM IN
AUTOIMMUNITY

The use of rapamycin/sirolimus as an immunosuppressive agent
in the clinic was approved by the US FDA in 1999. Rapamycin
and its derivatives have been used extensively in transplantation
to limit organ rejection, however, recent evidence has shown
that these compounds may have broader applicability in the
treatment of cancers and autoimmunity, as well as in vaccine
design (reviewed in Perl, 2015, 2016). Importantly, the clinical
benefits of mTOR blockade in inflammatory diseases has been
linked to the modulation of T cell metabolism. For example,
inflammatory T cells from systemic lupus erythematosus (SLE)
patients have substantially elevated glycolytic and mitochondrial
metabolism (Yin et al., 2015) and mTOR activity (Kato and
Perl, 2014), as compared to healthy controls. Importantly, in
both mouse models and in human patients, T cell metabolism
and inflammatory cytokine production could be normalized
by reducing mTOR activity through metformin or rapamycin
treatment (Kato and Perl, 2014; Yin et al., 2015). Furthermore,
and consistent with an important role for mTOR-driven
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inflammatory T cells in the pathogenesis of lupus, a recent
phase 1/2 trial reported that rapamycin had a beneficial impact
on clinical disease scores in a cohort of 43 SLE patients
(Lai et al., 2018). Improved disease outcomes were associated
with decreased inflammatory T cell activity and increased Treg
numbers (Lai et al., 2018), consistent with the known role of
mTOR in regulating T cell metabolism and e�ector responses.

CONCLUDING REMARKS

Our understanding of the close links between the regulation of
aerobic glycolysis and T cell function has been transformed in
the past decade. Furthermore, mTOR signals have emerged as
a key driver of these processes. As our understanding of the
molecular details and signaling pathways leading to metabolic
reprogramming increases, then the opportunity to translate these
findings into the clinic should emerge. In this regard, evidence
for distinct roles for mTORC1 and mTORC2 in modulating

T cell metabolism and activation gives scope for more precise
manipulation of these pathways in the future.
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