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Abstract

As one of a number of new technologies for the harnessing of solar energy, there is interest in the development of photo-

electrochemical cells based on reaction centres (RCs) from photosynthetic organisms such as the bacterium Rhodobacter 

(Rba.) sphaeroides. The cell architecture explored in this report is similar to that of a dye-sensitized solar cell but with 

delivery of electrons to a mesoporous layer of  TiO2 by natural pigment-protein complexes rather than an artiicial dye. Rba. 

sphaeroides RCs were bound to the deposited  TiO2 via an engineered extramembrane peptide tag. Using TMPD (N,N,Nƍ,Nƍ-
tetramethyl-p-phenylenediamine) as an electrolyte, these biohybrid photoactive electrodes produced an output that was the 

net product of cathodic and anodic photocurrents. To explain the observed photocurrents, a kinetic model is proposed that 

includes (1) an anodic current attributed to injection of electrons from the triplet state of the RC primary electron donor  (PT) 

to the  TiO2 conduction band, (2) a cathodic current attributed to reduction of the photooxidized RC primary electron donor 

 (P+) by surface states of the  TiO2 and (3) transient cathodic and anodic current spikes due to oxidation/reduction of TMPD/

TMPD+ at the conductive glass (FTO) substrate. This model explains the origin of the photocurrent spikes that appear in 

this system after turning illumination on or of, the reason for the appearance of net positive or negative stable photocur-

rents depending on experimental conditions, and the overall eiciency of the constructed cell. The model may be a used as 

a guide for improvement of the photocurrent eiciency of the presented system as well as, after appropriate adjustments, 

other biohybrid photoelectrodes.

Keywords Photovoltaics · Purple bacteria · Bioelectronics · Titanium dioxide · Photosynthesis

Introduction

Sunlight is arguably the most sustainable source of energy 

for mankind. Nature has evolved very eicient molecular 

processes for the conversion of solar energy that have pro-

vided inspiration for the design of man-made photovol-

taic materials and provide natural components that can be 

exploited directly in biohybrid devices. One of the best char-

acterized of these is the reaction centre (RC) from the purple 

photosynthetic bacterium Rhodobacter (Rba.) sphaeroides, a 

complex of protein and cofactors in which photon absorption 

powers charge separation (Zinth and Wachtveitl 2005). The 

protein provides a matrix that holds in place two primary 

electron donor (P) bacteriochlorophylls (BChls), two acces-

sory BChls  (BA and  BB), two bacteriopheophytins (BPhe 

-  HA and  HB), two ubiquinones  (QA and  QB) and a carot-

enoid (Car) (see inset in Fig. 1) (D’Haene et al. 2014). The 

initial charge separation occurs between the P BChls and one 

of the two BPhes, forming the state  P+HA
−. Subsequently, 
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there are three ways electron transfer can proceed. In “open” 

RCs, with all of the electron transfer cofactors initially in 

their neutral ground state, the electron is transferred to the 

irst of the ubiquinones,  QA, and then on to the second,  QB, 

completing photochemical charge separation. In “closed” 

RCs, where  QA is already reduced, the most probable event 

is recombination of  P+HA
− to the ground state. In a smaller 

percentage of RCs, recombination occurs to a long-lived 

triplet excited state of P, termed  PT (Woodbury and Allen 

1995), which is usually eiciently quenched either by the 

carotenoid or by the BPhes (Arellano et al. 2004; Białek 

et al. 2016). The quantum yield of primary charge separa-

tion in open RCs is near 100% (Wraight and Clayton 1974), 

while the yield of  PT triplet formation in closed RCs is 

approximately 15% (Blankenship et al. 1995).

One of the most promising alternatives to silicon cells 

for solar energy conversion is the dye-sensitized solar cell 

(DSSC) (O’Regan and Grätzel 1991). This consists of a 

working electrode made of a material such as luorine-doped 

tin oxide (FTO) conductive glass coated with a mesoporous 

 TiO2 ilm that is covered with a layer of dye molecules, and 

a counter electrode also made of conductive glass. Between 

the electrodes there is a solution containing an electrolyte, 

originally iodide/triiodide (O’Regan and Grätzel 1991), 

which closes the electrical circuit inside the cell by allow-

ing electrons to be transported between the two electrodes. 

The  TiO2 ilm provides a three-dimensional semi-conduct-

ing matrix which improves light harvesting eiciency by 

increasing the surface area onto which the sensitizing dye 

can bind. Photoexcitation of the dye causes charge injection 

into the conduction band of the  TiO2, followed by re-reduc-

tion of the dye by the electrolyte.

A feature of the ruthenium dyes commonly used in 

DSSCs is their limited ability to absorb light beyond 

700  nm, with many having no significant absorbance 

beyond 800 nm, regions which are photon-rich in natural 

sunlight (Nazeeruddin et al. 2011). In contrast, as illus-

trated in Fig. 1, pigment-proteins from organisms contain-

ing BChl a have very strong absorbance in the near infrared 

between 700 and 900 nm, and up to 1100 nm in organisms 

that contain BChl b (Mikhailyuk et al. 2006). Thus, a pos-

sible modiication of the design of the DSSC is to replace 

the synthetic dye with a photoactive pigment-protein such 

as a RC. An additional beneit is that, unlike many syn-

thetic dyes, natural pigment-proteins are not harmful to 

the environment. Bacterial RCs and other photosynthetic 

proteins such as Photosystem I (PSI) have been tested 

in a variety of prototype photovoltaic devices (Lu et al. 

2007; Nagy et al. 2010). Substrates employed have typi-

cally been lat metal surfaces (Ciesielski et al. 2010; den 

Hollander et al. 2011; Chen et al. 2013; Swainsbury et al. 

2014), or alternatively lat (Tan et al. 2012a, b; Caterino 

et al. 2015) or porous (Lu et al. 2005b, a; Lukashev et al. 

2007; Nadtochenko et al. 2008; Woronowicz et al. 2012; 

Mershin et al. 2012; Nikandrov et al. 2012; Gizzie et al. 

2015b; Shah et al. 2015; Yu et al. 2015; Kavadiya et al. 

2016) semiconductor layers. A porous semiconductor ilm 

provides an up to 2000-fold higher surface area than that 

can be achieved with a planar electrode of the same 2-D 

area (O’Regan and Grätzel 1991) and materials such as 

 TiO2 are much cheaper than the precious metals such as 

gold and platinum commonly used for planar electrodes. In 

previous work, both PSI (Mershin et al. 2012; Nikandrov 

et al. 2012; Gizzie et al. 2015b; Shah et al. 2015; Yu et al. 

2015; Kavadiya et al. 2016) and the purple bacterial RC 

(Lu et al. 2005a, b; Lukashev et al. 2007; Nadtochenko 

et al. 2008; Woronowicz et al. 2012) have been deposited 

on  TiO2 porous substrates for the study of photocurrent 

generation. The highest photocurrents obtained so far for a 

photosynthetic protein-TiO2 composite cell were presented 

by Shah et al., who achieved current densities of a few 

hundreds of µA  cm−2 using PSI and a nanostructured leaf-

like  TiO2 (Shah et al. 2015). A variety of protein deposi-

tion methods, electron mediators and formulations of  TiO2 

layer have been explored. However, none of these studies 

have attempted a full model of electron transport within 

the cell, with only schematic diagrams of the selected pro-

cesses that underlie the photocurrent.

In this study, a photoelectrochemical cell based on Rba. 

sphaeroides RCs,  TiO2, conducting glass and a redox 

mediator is investigated through a combination of experi-

ment and modelling. To obtain oriented, self-directed 

binding to the working electrode, the RC was engineered 
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Fig. 1  Cofactor structure and absorbance spectrum of the Rba. 

sphaeroides RCs. For the cofactor structure, color coding is cyan, 

yellow, green, pink or magenta—carbon; red—oxygen; blue—nitro-

gen; purple spheres—magnesium; brown sphere—iron. Bands in 

the absorption spectrum of RCs in 20 mM Tris–HCl (pH 8.0)/0.1% 

LDAO are labelled with the names of the contributing cofactors
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with a  TiO2-binding peptide exposed at the electron donor 

side (P-side) of the protein. The usage of these particular 

materials for working electrode was a way to have mixed 

anodic and cathodic photocurrents, despite the tag. The 

net photocurrents obtained from the engineered RCs were 

either cathodic or anodic, depending on how the  TiO2 elec-

trode was prepared. To explain the mechanism of photo-

current generation in detail, a series of electrochemical 

and spectroscopic measurements were conducted and a 

kinetic model was prepared. This model, which includes 

electron transfer from the  PT state to the  TiO2, electron 

transfer from surface states of the  TiO2 to  P+, and interac-

tions of the redox mediator with RCs and the conductive 

electrode surface, explains the principal features of the 

observed photocurrent transients and reveals the factors 

that limit the photocurrent outputs of the cells.

Results and discussion

Photocurrents from RC working electrodes

Protein-coated electrodes submerged in an electrolyte solu-

tion comprising 250 µM TMPD in 20 mM tris (pH 8.0) 

produced photocurrents, an example of which is shown in 

Fig. 2a for RCs adhered to a W-50  TiO2 ilm (see "Exper-

imental section”). Turning on the light produced a nega-

tive (cathodic) peak of current density that decayed non-

exponentially to a constant level. Turning off the light 

produced a positive (anodic) peak followed by a nonex-

ponential decay to around zero current. No photocurrents 

were obtained when  TiO2 electrodes without RCs were 

immersed in the TMPD electrolyte, showing that the pho-

tocurrent was dependent on the photochemical activity of 

the RC. In agreement, an action spectrum of incident pho-

ton to current eiciency (IPCE) as a function of excita-

tion wavelength matched the absorbance spectrum of the 

 TiO2-bound RCs (Fig. 3) but did not contain contributions 

from TMPD/TMPD+ between 450 and 650 nm (Figure S3), 

conirming that the photocurrent was being driven by the 

RC. The absorbance and IPCE action spectra of RCs bound 

to  TiO2 (Fig. 3) showed an increase in the absorbance band 

at 760 nm relative to that at 802 nm which we attribute to 

partial pheophytinization of RC BChls caused by binding of 

the protein to  TiO2 (compare Figs. 1, 3; see also Figure S4 

and Sect. 4 and 5 in Supporting Information). The absorp-

tion spectra of working electrodes before and after (photo) 

electrochemical experiments showed no signiicant difer-

ences in line shape (data not shown). This conirmed that no 

further pheophytinization took place during measurements, 

and that the protein was stable on the electrode surface when 

submerged in bufer solution. The maximum measured value 

of IPCE was 1.5 × 10−5 (Fig. 3), which is much lower than 

eiciencies reported in the literature for systems containing 

photosynthetic proteins immobilized on nanostructured  TiO2 

(Mershin et al. 2012).

Photocurrents recorded for working electrodes that had 

been treated using  TiCl4 (see "Experimental section") 

showed a different behaviour in which the initial spike 

Fig. 2  Photocurrent genera-

tion by RC/TiO2 electrodes in 

response to illumination at 

~ 860 nm. Typical photochro-

noamperometric data are shown 

for W-50 electrodes (a) without 

and (b) with  TiCl4 treatment 

prior to protein adherence. The 

inset in panel A shows same 

data over their full ampli-

tude range. Positive currents 

mean an anodic process. Grey 

background indicates periods 

without illumination
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Fig. 3  Source of photocurrents. The IPCE action spectrum (blue) and 

absorptance spectrum (red) for an I-50 RC electrode are compared. 

Each point of the IPCE spectrum was constructed from the magnitude 

of the cathodic photocurrent after 10 s of illumination (see "Experi-

mental section" for details)
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of cathodic current decayed to a steady anodic current 

(Fig. 2b). The size of the light-on and light-of spikes of 

cathodic and anodic current, respectively, were also strongly 

afected by  TiCl4 treatment.

Mechanism of anodic and cathodic photocurrents

Such photocurrent transients with opposing current spikes 

on light-on/of have been presented previously in the lit-

erature for RC cells not involving  TiO2 (Tan et al. 2012a; 

Caterino et al. 2015; Friebe et al. 2016) and explained in dif-

ferent ways. Friebe et al. (2016) attributed this efect to the 

difusion-limited transfer of mediator to and from the work-

ing electrode and showed that this could be overcome by 

use of a rotating disc electrode to achieve mixing. A similar 

explanation was presented by Tan et al. (2012a), who pro-

posed that the bottleneck reaction is reduction of  TMPD+ by 

quinone in the RC. This leads to a capacitor-like behaviour, 

where absorption of light causes accumulation of electrons 

on cofactors of RC and positive charges in  TMPD+, with dis-

charge of the system after turning of the light observable as 

an anodic photocurrent. This explanation may be suicient 

for a situation in Fig. 2a, where both the initial light-on spike 

and steady-state current are cathodic, but does not explain 

the anodic stable photocurrent illustrated in Fig. 2b.

An alternative explanation for photocurrent transients 

of this type has been presented by Caterino et al. (2015), 

based on the concept that both cathodic and anodic photo-

currents coexist, but with diferent kinetics. The source of 

these two currents was proposed to be interactions of either 

the P (oxidizing) or Q (reducing) sides of the RC with the 

electrode. The peak current after light-on arises mostly from 

the cathodic contribution while the peak after light-of arises 

mostly from the anodic contribution. The sign of the stable 

current is determined by the relative magnitudes of the sta-

ble cathodic and anodic components.

Taking into account all the abovementioned hypotheses, 

we build a kinetic model with diferent sources of anodic 

and cathodic photocurrents being presented in the following 

paragraphs.

Regarding the observed anodic steady-state current 

(Fig. 2b), it has previously been proposed that electrons can 

be injected into the conduction band of  TiO2 from the  PT 

triplet excited state of the primary donor BChls (Fig. 4, blue 

arrows) (Lukashev et al. 2007).  PT is usually short-lived in 

Rba. sphaeroides RCs due to transfer of energy to the RC 

carotenoid (Car) via the intervening  BB BChl in around 40 ns 

(Angerhofer et al. 1998). However, as described in Sect. 4 of 

Supporting Information, it is likely that a signiicant fraction 

of this  BB BChl undergoes pheophytinization after deposi-

tion of RCs on the  TiO2 porous layer. It has been shown 

previously in the literature that genetic replacement of the 

native  BB BChl by a BPhe leads to an increase of the lifetime 

for triplet energy transfer from  PT to the Car to around 1.6 µs 

(Mandal et al. 2017). This raises the possibility that, in the 

present work,  PT may also have an extended lifetime in a 

large majority of RCs. Given this, in our proposed model the 

anodic photocurrent is attributed to electron transfer from  PT 

to the conduction band of  TiO2 (Fig. 4, blue arrows), with 

re-reduction of the resulting  P+ by TMPD. Although it has a 

suitable reduction potential, electron injection from  HA
− into 

the conduction band of  TiO2 is unlikely as this cofactor is 

deeply buried within the RC and the lifetime of  HA is short 

(~ 200 ps if  QA is neutral and may accept the electron from 

 HA
− (Woodbury and Allen 1995), and a few ns if  QA is 

reduced to  QA
− (Woodbury and Parson 1984; Gibasiewicz 

and Pajzderska 2008; Gibasiewicz et al. 2011)). The higher 

energy P* singlet excited state has an even shorter lifetime 

of ~ 3 ps and decays to  P+HA
− with a close to 100% quan-

tum yield. Electron injection from  QA
− into the conduction 

band of  TiO2 is unlikely due to too positive redox midpoint 

potential of  QA
−/QA (Fig. 4).

Regarding the cathodic current,  TiO2 electrodes have 

surface states that lie between the conduction and valence 

bands, at around + 550 mV versus SHE (Fig. 4), the value 

obtained for a set of redox mediators in acetonitrile solution 

(Frank and Bard 1975). This is slightly above the P/P+ redox 

midpoint potential of the RC primary donor (+ 500 mV ver-

sus SHE) (Maróti and Wraight 2008). As it is known that 

in aqueous basic solutions the conduction band is shifted 

towards less positive potentials than in organic solvents 

(Fitzmaurice 1994), there is a possibility that the potential 

of the  TiO2 surface states in our system was also shifted 

toward less positive potentials, making electron transfer 

from these states to the oxidized RC primary donor  (P+) 

more favourable. Thus, we propose that the source of the 

cathodic photocurrent is the transfer of electrons from the 

FTO electrode through the surface states of  TiO2 to  P+ 

(Fig. 4, yellow arrows), with TMPD carrying electrons from 

the RC quinones to the counter electrode. The injection of 

electrons from any state of the RC into the surface states of 

 TiO2 is unlikely due to occupation of these surface states 

with electrons at the applied potential of + 225 mV versus 

SHE (Frank and Bard 1975). As with an anodic current 

dependent on  PT, this mechanism for the cathodic current 

would be expected to be facilitated by attachment of the 

RC to the  TiO2 by a protein tag that positions the P BChls 

close to the  TiO2 surface. However, in both cases, productive 

electron exchange with the  TiO2 is expected to be in compe-

tition with energy losses through its dissipation within RCs, 

such that at any given time the photocurrent is supported 

by only a sub-set of RC proteins where  PT oxidation or  P+ 

reduction by the adjacent  TiO2 is possible. There is a possi-

bility that some of the RCs are not properly attached to  TiO2 

(e.g. freely difusing in pores) which favours inner energy 
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dissipation, thus these RCs could be treated as a source of 

parasitic absorption.

Regarding the interaction of the mediator with RCs it 

has been reported that the TMPD/TMPD+ redox pair can 

either reduce  P+ or oxidize  Q− (Fig. 4), with the rate con-

stant for reduction of  P+ being around 200-fold faster than 

for the oxidation of Q (Agalidis and Velthuys 1986). How-

ever, these results were obtained for RCs and TMPD freely 

difusing in solution. In the case of RCs immobilized in the 

porous  TiO2 matrix, the two reaction rate constants could 

be signiicantly diferent from solution values. Thus, in one 

of the models (RMIL—see “Simulation of photocurrents 

using a kinetic model”) these rate constants were left as free 

parameters in optimization. In addition to redox interactions 

with RC cofactors there is the possibility that the TMPD/

TMPD+ electrolyte can interact with the FTO glass elec-

trode either directly at any locations where the FTO is not 

fully covered by the  TiO2 layer, or via tunnelling in any 

areas where the FTO is covered by only a very thin layer 

of  TiO2 from  TiCl4 treatment (see "Experimental section"). 

However, the redox potential of TMPD/TMPD+ is unsuited 

to an exchange of electrons with  TiO2 itself (Fig. 4). As the 

potential applied to working electrode (+ 225 mV SHE) was 

close to the midpoint potential of the TMPD/TMPD+ couple, 

in darkness, the [TMPD]/[TMPD+] ratio in the vicinity of 

the working electrode should be around one, similarly as in 

the bulk solution (see Fig S5 and Sect. 6 and 7 of Support-

ing Information). However, our modelling shows that under 

illumination, the local value of this ratio in the immediate 

vicinity of the mesoporous surface may be transiently or 

even permanently signiicantly diferent from one (see Figs. 

S7 and S8). Therefore, difusion of the oxidized and reduced 

forms of the mediator between the mesoporous region near 

the electrode surface (pores) and the bulk solution also has 

to be taken into account.

Simulation of photocurrents using a kinetic model

A set of diferential equations was used to model the experi-

mental data demonstrating a net cathodic stable photocurrent 

from the W-50 electrodes and a net anodic stable photocur-

rent from the W-50-Cl electrodes (Fig. 2). A simpliied sche-

matic of this model is shown in Fig. 4B, a detailed account 

of the physical and mathematical basis for the model is given 

in Fig. S6 and Sect. 8 of Supporting Information. Two sets 

of conditions were considered (1) only 1 − x = 10% of RCs 

achieve electron transfer between  TiO2 and the mediator, 

while 90% of RCs dissipate the energy (a so-called “inac-

tive pool” (IP) model) and (2) all RCs achieve such electron 

transfer but the rate constants of electron transfer reactions 

between RC and TMPD/TMPD+ are smaller than those cited 

in the literature [a so-called “RC-mediator interface limited” 

(RMIL) model]. For both conditions, some parameters were 

taken from the literature, while others were optimized to 

achieve the best it to the experimental photocurrent tran-

sients (see Table 1 and Sect. 8 of Supporting Information).

Fig. 4  Modelling to account for the mechanism of photocurrent gen-

eration and shapes of photocurrent transients. a Scheme of energy 

levels and processes in the system. Green, blue and yellow arrows 

correspond to three diferent processes that contribute to the net cur-

rent. Black arrows—processes occurring inside RCs, red lines—sup-

pression of electron transfer by  TiCl4 treatment, grey arrows—other 

electron transfer processes including recombination mediated by 

TMPD/TMPD+. CB signiies conduction band, TMPD/TMPD+ signi-

ies the mediator redox pair inside pores, bulk signiies redox media-

tor within the bulk volume of the electrochemical cell. b Scheme of 

the same processes as in panel A but depicting the architecture of 

the electrode and charge transfer reactions occurring between FTO, 

 TiO2, RCs and mediator inside a  TiO2 pore. Six RC states are con-

sidered:  PQA,  P+QA
−,  P+QA,  PQA

−,  PTQA
− and  PTQA. Four of these 

states may exchange electrons with TMPD/TMPD+:  P+QA
−,  P+QA, 

 PQA
− and  PTQA

−. Two of the states may inject the electron to  TiO2: 

 PTQA
− and  PTQA. Two of the states may take the electron from  TiO2: 

 P+QA
− and  P+QA. Two of the states may be photoexcited:  PQA and 

 PQA
−
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The resulting simulated photocurrent transients are shown 

in Fig. 5, overlaid with the experimental data. Accounting 

for the diference in the data with and without  TiCl4 (Fig. 5B 

versus 5A) required variation of only three parameters, the 

rate constant for electron transfer from  TiO2 surface states 

to P+ (k
dirP

) , the rate constant for electron transfer between 

FTO and TMPD/TMPD+ (k
TMPD−FTO

) , which was the same 

in both directions and the rate constant for TMPD/TMPD+ 

difusion (k
diff

) (Fig. 4b). Table 1 contains resulting values of 

all the parameters. As it is presented in literature (O’Regan 

et al. 2007), the  TiCl4 treatment decreases the number of 

surface states thus electron transfer from  TiO2 surface states 

to  P+ is suppressed (k
dirP

 is decreased). This efect is depicted 

by the red lines in Fig. 4a. On the other hand, the expected 

suppression of electron transfer between FTO and TMPD/

TMPD+ by  TiCl4 treatment was rather limited (k
TMPD−FTO

) , 

and the value of this parameter was strongly dependent on 

the value of the third parameter, the rate constant for TMPD/

TMPD+ difusion ( k
diff

 ; these two parameters were compen-

satory). The values used for these two latter rate constants 

were chosen to properly model the shape of the spike of 

positive current obtained after turning of the light. Proper 

interpretation of these two rate constants will require addi-

tional independent experiments to obtain the value of at least 

one of them.

The simulated photocurrent transients resulting from the 

two models are composites of the three component currents 

depicted by the blue, yellow and green arrows in Fig. 4. 

These three component transients are presented in Fig. 6. 

In the RMIL model, all three contribute to the decay of the 

initial cathodic current after turning on the light (Fig. 6a, 

b), whereas the spike of anodic current after turning of 

the light comes mostly from TMPD oxidation by the FTO. 

Simulation of the shapes of both spikes was achieved by 

Table 1  Simulation parameters 

for the IP and RMIL models

For the meaning of the parameters see main text, Fig. 4, and Fig. S6 in Supporting information

*values taken from the literature and ixed (Agalidis and Velthuys 1986)

**values after 299 s (end of the steady photocurrent phase)

Parameter Unit Value

RMIL model no  TiCl4 RMIL 

model with 

 TiCl4

IP model no  TiCl4 IP model with  TiCl4

k
TMPD−P

mol−1  m3  s−1 2 800*

kTMPD−Q mol−1  m3  s−1 0.6 4*

� – 0.0 0.9

k
dirT

s−1 5 × 101 8 × 103

k
dirP

s−1 9.7 × 10−2 4.5 × 10−2 8.0 × 103 3.5 × 102

k
TMPD−FTO

m  s−1 8 × 10−7 7 × 10−7 1.7 × 10−7 1.7 × 10−7

k
diff

mol−1  m3  s− 1 5.5 8 3.3 × 10−1 3.3 × 10−1

k
h�

** mol  m−3  s−1 2.3 2.7 2.0 × 10−2 7.2 × 10−2

k
h�T

** mol  m−3  s−1 6.9 6.4 9.1 × 10−1 9.0 × 10−1
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Fig. 5  Simulations of photocurrent transients. Simulations based on 

two models (lines) for electrodes a without and b with  TiCl4 treat-

ment are compared with experimental data from Fig. 2 (circles)
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optimization of the rate constants of  P+ reduction by TMPD 

and  QB
− oxidation by  TMPD+ ( k

TMPD−P
 and kTMPD−Q in 

Fig. 4b) and simulation of their amplitudes by optimization 

of the rate constants of the TMPD/TPMD+–FTO interaction 

( k
TMPD−FTO

 ) and TMPD/TMPD+ difusion ( k
diff

 ). The region 

of steady photocurrent is dominated by opposing contribu-

tions from the primary donor  P+ and  PT states interaction 

with  TiO2 (yellow and blue in Fig. 6a, b), and the correct 

sign and amplitude of the current in this region was obtained 

by optimizing the corresponding rate constants k
dirP

 and k
dirT

.

In the IP model, the cathodic spike after turning on 

the light comes mostly from reduction of  P+ by the  TiO2 

(Fig. 4a, yellow arrows and Fig. 6c, d yellow line), whereas 

the anodic peak after turning of the light comes, as in RMIL 

model, from TMPD oxidation by the FTO. In this case, the 

rate constants for difusion and the reaction between TMPD/

TMPD+ and FTO were again optimized to simulate the 

shape of the current spikes. Furthermore, in the IP model 

for electrodes without  TiCl4 treatment, the current from 

the TMPD–FTO interaction made a small contribution to 

the steady current (Fig. 6c), and thus had to be taken into 

account during the itting procedure.

Irrespective of the model, the data in Fig. 6 demonstrate 

that competition between cathodic and anodic currents 

produces a low net output, the sign of which is sensitive to 

the relative amplitudes of the two currents.

From the values of parameters summarized in Table 1, 

one can calculate lifetimes of respective reactions as the 

reciprocals of rates for irst-order reactions or the reciprocals 

of the product of rate constants and TMPD or  TMPD+ con-

centration in the steady photocurrent phase (for second-order 

reactions) (Table 2). One can see that, for the RMIL model, 

direct electron transfer from  PT to  TiO2 ( �
dirT

= 20 ms ) is 

three orders of magnitude slower than the lifetime for  PT 

recombination ( �
recT

= 50 �s ). A similar situation is found 

for electron transfer from  TiO2 to  P+ ( �
dirP

= 10∕22 s ) and 

recombination of the  P+Q− state ( �recPQ = 100 ms ), with 

the former reaction being two orders of magnitude slower 

than the latter one. Hence, recombination processes that are 

much faster than direct electron transfer reactions between 

RCs and  TiO2 are the most important factors underlying the 

overall low photocurrent eiciency (IPCE ≈ 10−5; Fig. 3) in 

the RMIL model. Other factors are a low eiciency of light 

capture (up to ~ 10%), and compensation between oppos-

ing cathodic and anodic currents. Artiicially increasing 

the yield of triplet formation from 15 to 100% in the model 

increased both the cathodic and anodic current contributions, 

but did not signiicantly change the net current (data not 

shown). An additional factor responsible for the low IPCE 

Fig. 6  Photocurrent com-

ponents. Plots present time 

traces of the three component 

photocurrents derived from the 

a, b RMIL model with all RCs 

active and c, d IP model with a 

90% pool of inactive RCs
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of the cathodic current is donation of electrons by TMPD to 

 P+ in the steady photocurrent region ( �
TMPD−P0

= 3.8∕4.0 s ) 

which is ~ 3–5 times faster than electron transfer from  TiO2 

to  P+ ( �
dirP

= 10∕22 s ) and so short circuits the RC.

In the IP model, the lifetimes for direct electron transfer 

between the  TiO2 and  P+ are much shorter than those in the 

RMIL model (6/11 ms c.f. 3.8/4.0 s), and either comparable 

with wasteful recombination reactions (compare with the 

values of �
dirT

 and �
recT

 ) or even shorter than that (compare 

with the values of �
dirP

 and �recPQ ). Thus, in the IP model, 

the main factors responsible for the low overall current 

are no longer the competing recombination reactions, but 

instead, the compensating efect of the cathodic and anodic 

currents which diminishes the net current (of the order of 

~ 100 nA) by about two orders of magnitude relative to the 

individual cathodic and anodic components (~ 10 µA each; 

compare Figs. 5, 6). This compensation is a consequence of 

a short circuit in electron transfer that can be summarized as 

P
T
→ TiO

2
→ P

+ . The other factors responsible for the low 

IPCE in the scenario are a small pool of active RCs (10%) 

and, as in the RMIL model, a low eiciency of capturing the 

light (up to ~ 10%). Also as in the RMIL model, an increase 

of yield of triplet formation up to 100% would not lead to 

signiicant change of the net current due to compensation 

between the current contributions.

To sum up, the models reveal four possible reasons, other 

than low absorbance, for the relatively low photocurrent out-

put of the cell. They are (1) electron transfer rates between 

RCs and  TiO2 lower than the rate of charge recombination 

within RCs (dominates in the RMIL model); (2) competition 

between anodic and cathodic photocurrents (dominates in 

the IP model); (3) a pool of photoelectrochemically inac-

tive RCs (IP model only); (4) short-circuiting of the RCs by 

TMPD acting as both oxidant and reductant (especially in 

RMIL model).

For eicient DSSCs, typical lifetimes for electron injec-

tion into  TiO2 by the photoexcited dye are of the order of 

 10−10 s (Martín et al. 2016) which is several orders of magni-

tude faster than the values obtained in this work for electron 

donation from  PT. The most probable reason for this is the 

lack of an excess of energy for the state injecting the electron 

relative to the conduction band edge of the  TiO2; as can be 

seen from Fig. 4, the triplet state of the RC primary donor is 

almost isoenergetic with the edge of the conduction band of 

 TiO2. A possible way of improving this pathway would be 

to change the energy of the  TiO2 conduction band through 

the addition of lithium ions (Yu et al. 2010) or the use of an 

alternative semiconductor such as ZnO with diferent energy 

levels. On the other hand, surface states are known to be 

low eiciency in terms of electron transfer (Frank and Bard 

1975) and this pathway would be hard to improve.

Each of the two models presented in Fig. 5 seemed to be 

able to it the experimental data well only in some parts of 

the time range, and it is possible that combination of these 

into a single, more complex model could lead to a better 

agreement between the experimental data and the simula-

tion in all respects. Furthermore, in the existing models, 

there are ive or six parameters that are chosen arbitrarily 

and may compensate each other, and it would be very useful 

to measure at least some of these in independent experi-

ments. Although at this stage it is hard to clearly say which 

assumptions are proper for the studied system, the results 

obtained show that the proposed approach for modelling can 

give useful information about the operation mechanism of 

such a biohybrid photochemical device. The proposed model 

could be used to simulate data obtained by laboratories that 

have reported higher eiciencies of systems in which pro-

teins and  TiO2 have been combined (Lukashev et al. 2007; 

Mershin et al. 2012; Gizzie et al. 2015a; Kavadiya et al. 

Table 2  Modelled lifetimes of 

the electron transfer reactions to 

and from RCs and the lifetimes 

of recombination reactions 

inside RCs in the two models

The irst two lifetimes were calculated as τTMPD−P0 = 1/(kTMPD−P [TMPD]) and τTMPD−Q0 = 1/(kTMPD−Q 

 [TMPD+]), where values for rate constants were taken from Table 1, whereas [TMPD] and  [TMPD+] val-

ues were taken from 299 s of simulation (end of photocurrent, see Figs. S7 and S8), hence these values are 

reliable only for the stable photocurrent region. The remaining lifetimes were simply calculated as recip-

rocals of corresponding rate constants shown in Table 1 ( �dirT, �dirP ) or taken from literature ( �recT, �recPQ ) 

(Blankenship et al. 1995; Frank et al. 1996)

Parameter Unit Value

RMIL model 

no TiCl4

RMIL model 

with TiCl4

IP model no TiCl4 IP model with TiCl4

( = 0) ( = 0.9)

�
TMPD−P0

s 3.8 4.0 6.0 × 10−3 1.1 × 10−2

�TMPD−Q0
s 13.9 13.3 6.1 1.8

�
dirT

s 2 × 10−2 1.3 × 10−4

�
dirP

s 10.3 22.2 1.3 × 10−4 2.9 × 10−3

�
recT

s 5 × 10−5

�recPQ s 1 × 10−1
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2016), to diagnose what could be improved to obtain even 

higher eiciencies.

Conclusions

Our measured electrochemical and photoelectrochemi-

cal data, and the associated kinetic model, have produced 

new insights into the photocurrent output of photovoltaic 

cells fabricated from photosynthetic RCs and  TiO2. The net 

observable photocurrent is proposed to consist of three par-

allel sources: (1) injection of electrons from the triplet state 

of P (anodic), (2) reduction of  P+ by  TiO2 (cathodic) and 

(3) oxidation/reduction of TMPD/TMPD+ by the FTO glass 

substrate (producing cathodic and anodic peaks). These 

combine to yield a relatively modest stable photocurrent of 

up to 300 nA  cm−2 with an IPCE of up to 1.5 × 10−3%. The 

two models show two alternative main reasons for the low 

eiciency of the system, relatively fast inner recombination 

in the RMIL model and eicient recombination via  TiO2 in 

the IP model. Deconstruction of the net current using the 

kinetic model provides insight into how the photocurrent 

amplitude may be enhanced in either a cathodic or anodic 

direction through future manipulation of the system. The 

eiciency of the system could not be improved signiicantly 

by changing only one parameter in the system, as any change 

inluences both cathodic and anodic contributions to the cur-

rent, which then compensate each other. There is therefore 

a need to both suppress one of the current contributions and 

improve the eiciency of the other.

Experimental section

Biological material

The Rba. sphaeroides RC used in this work was modiied at 

the C-terminus of the PufM polypeptide with the sequence 

LALVPRGSSAAHKKPSKSASAHHHHHHHHHH (see 

Sect. 1 of Supporting Information), using the same approach 

as described previously for His tag modiication (Swainsbury 

et al. 2014). The synthetic DNA sequence used to prepare 

this construct is included in the Supporting Information. This 

sequence comprised a thrombin cleavage site (underlined), fol-

lowed by an LSTB1 tag (Chen et al. 2009) to target binding to 

 TiO2 (bold), followed by a deca-histidine tag to facilitate puri-

ication (italics). The addition of the histidine tag also ensured 

the whole population of puriied RCs which contained the 

LSBT1 tag by selecting for proteins that had not had the tag 

cleaved during protein assembly or protein puriication. The 

modiied RC gene was expressed in Rba. sphaeroides strain 

DD13, producing an antenna-deicient transconjugant strain 

with the modiied RC as the sole pigment-protein (Swains-

bury et al. 2014). This strain was grown in the dark, and RCs 

puriied by a combination of nickel ainity chromatography 

and size exclusion chromatography, as described elsewhere 

(Swainsbury et al. 2014).

Preparation of  TiO2 paste

TiO2 paste for photocurrent measurements was prepared by 

applying a procedure based on the one described by Woronow-

icz et al. (2012) to 50 nm anatase nanoparticles (MKnano, 98% 

pure). Briely,  TiO2 nanoparticles were mixed with double-

distilled water with acetylacetone followed by slow addition of 

double-distilled water with Triton X-100. Electrodes prepared 

using this procedure were denoted W-50.

TiO2 paste for absorption measurements and IPCE was pre-

pared by a procedure based on the one described by Ito et al. 

(Ito et al. 2007), with the exception that a three-roller mill 

was not used. It was chosen for absorption measurements due 

to its lower light scattering and similar photocurrent results 

to W-50 (data not shown). Briely, nanoparticles were mixed 

with water, acetic acid, ethanol, terpineol and ethyl cellulose 

by subsequent treatments with a mortar, magnetic stirrer and 

ultrasonic horn (Sonics Vibra-Cell VCX130). Excess ethanol 

was evaporated using a rotary evaporator. Ethanol and acetic 

acid were from Avantor, and all other chemicals were from 

Sigma-Aldrich. Electrodes prepared using this procedure were 

denoted I-50.

Assembly of working electrodes

Glass slides covered with FTO (Sigma-Aldrich, TEC 15) 

were washed in an ultrasonic bath (CT-Brand CT-432H1) 

sequentially in water with dish soap, double-distilled water 

and ethanol for 10 min each.  TiO2 paste was then deposited 

on the cleaned FTO glass using a doctor-blading technique 

(for paste formulation see above) using Scotch 3M Magic 

Tape as a mask and to deine layer thickness. This was fol-

lowed by sintering in a Nabertherm 5/11 – P330 oven that 

was warmed up to 570 °C over 25 min and held at that tem-

perature for a further 30 min. The active area of the  TiO2 

film was 0.25 cm2. After cooling to room temperature, 

1 µL of a stock solution of ~ 230 µM RC protein in 20 mM 

Tris–HCl (pH 8.0)/0.1% LDAO (N,N-dimethyldodecylamine 

N-oxide) was drop casted onto the sintered substrate and left 

to dry at 4 °C in the dark overnight (the RC concentration 

was determined using an extinction coeicient of 288 mM−1 

 cm−1 for the RC absorbance band at 803 nm) (Straley et al. 

1973). Coated ilms were then rinsed with 20 mM Tris–HCl 

(pH 8.0) to remove any loosely bound RCs, and dried under 

a low of compressed air for around 10 s. Uncoated areas of 

the FTO glass were covered with Scotch 3M Magic Tape 
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to prevent direct contact of mediator with the conductive 

surface and to reduce the dark current.

For some working electrodes (those denoted W-50-Cl), 

an additional treatment with  TiCl4 was applied before dep-

osition of the RCs on the  TiO2 layer, as described previ-

ously (Sommeling et al. 2006). Briely, after sintering as 

described above, the electrodes were immersed in a 50 mM 

 TiCl4 (Sigma-Aldrich) aqueous solution for 30 min at 70 °C, 

followed by rinsing with double-distilled water and sintering 

again at 570 °C for 30 min. The aim of the  TiCl4 treatment 

was to cover the mesoporous  TiO2 structure, and any bare 

areas of FTO glass, with an additional thin layer of  TiO2 

(Sommeling et al. 2006).

Characterization of working electrodes

Photochronoamperometry was conducted using PGSTAT204 

Autolab potentiostat and an 861 nm LED (LED870-66-60, 

Roithner LaserTechnik GmbH – for spectrum see Figure 

S9). The intensity of light used was 29.3 ± 1.5 mW cm− 2, 

unless indicated diferently. A home-made 3-D printed elec-

trochemical cell (with a 1 × 5 × 4.5 cm (L × W × H) glass 

cuvette for the electrolyte compartment) was used for all 

electrochemical experiments in a three-electrode conigura-

tion. The reference electrode was Ag/AgCl with 3 M KCl 

(+ 210 mV vs. SHE—standard hydrogen electrode) and the 

counter electrode was a Pt wire. The electrolyte solution was 

250 µM TMPD (N,N,Nƍ,Nƍ-tetramethyl-p-phenylenediamine; 

Sigma-Aldrich) in 20 mM Tris–HCl (pH 8.0). All constant-

potential electrochemical measurements were conducted at 

+ 225 mV versus SHE as this was the average open-circuit 

potential (OCP) in the dark.

Action spectra were recorded using a PGSTAT302N 

Autolab potentiostat coupled with a photoelectric spectrom-

eter (Instytut Fotonowy). For each wavelength (in 10 nm 

steps), the light was turned on for 10 s and of for 10 s while 

recording the current at an applied potential of + 225 mV 

versus SHE. For the photocurrent amplitude, the average 

value over the last 2 s of dark current was subtracted from 

the average value of the last 2 s of light current for each 

wavelength. The photocurrent amplitudes were then cor-

rected for the intensity of the incident light.

Absorption spectra of  TiO2 electrodes were measured 

using a Jasco V-770 spectrophotometer with an integrating 

sphere (ILN-925). Scanning electron microscopy (SEM) 

of  TiO2 electrodes was performed using a Jeol 7001TTLS 

microscope with an acceleration voltage of 13 kV and cur-

rent on sample of 35 pA. Samples were coated with thin 

layer of gold prior to SEM measurements in order to reduce 

surface charging.
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